
Ministry of Education and Science of Ukraine 

Ternopil Ivan Puluj National Technical University 
 

Faculty of Computer Information System and Software Engineering 
(full name of faculty) 

Department of Computer Science 
(full name of department) 

 

 

 

 

 

 

 

 

QUALIFYING PAPER 
 

For the degree of 

 

Bachelor 
(degree name) 

topic: Information system for analyzing mobile application vulnerabilities 

 

 

 

 

 

Submitted by: student IV course, group ІСН-42 

specialty 122 Computer science 
 (шифр і назва спеціальності) 

  

   
Stanley Onyedikachi 

Umesie 
 (signature)  (surname and initials) 

 

Supervisor   Holotenko O.S. 
 (signature)  (surname and initials) 

Standards verified by  

 

 
 (signature)  (surname and initials) 

Head of Department  

 

Bodnarchuk I.O. 
 (signature)  (surname and initials) 

Reviewer  
  

 
 (signature)  (surname and initials) 

 

 

 

 

 

 

 

Ternopil 

2025 



Ministry of Education and Science of Ukraine 

Ternopil Ivan Puluj National Technical University 
 

Faculty  Faculty of Computer Information System and Software Engineering 
 (full name of faculty) 

Department   Department of Computer Science 
 (full name of department) 

  

  APPROVED BY 

  Head of Department 

    Bodnarchuk I.O. 

  (signature)  (surname and initials) 

  «      »                              2025  

 

ASSIGNMENT 
for QUALIFYING PAPER 

 

for the degree of Bachelor 
 (degree name) 

specialty 122 Computer science 
 (code and name of the specialty) 

student Stanley Onyedikachi Umesie 

 (surname, name, patronymic) 

1. Paper topic Information system for analyzing mobile application vulnerabilities 

 

Paper supervisor Holotenko O.S., PhD 
 (surname, name, patronymic, scientific degree, academic rank) 

Approved by university order as of «   07    »      05        2025   №    4/7-447      . 

2. Student’s paper submission deadline 07.07.2025 

3. Initial data for the paper Literature sources about analyzing mobile application  

vulnerabilities 

 

4. Paper contents (list of issues to be developed) 

 

 

 

 

 

 

 

5. List of graphic material (with exact number of required drawings, slides) 

 

 

 

 

 

 

 

 
 



 

 

6. Advisors of paper chapters  

 

Chapter  Advisor’s surname, initials and position 

Signature, date 

assignment was 

given by 

assignment 

was received by 

Life safety,     

basics of labor 

protection 

   

    

    

    

    

    

 

7. Date of receiving the assignment 07.07.2025 

 

TIME SCHEDULE 

LN Paper stages Paper stages deadlines Notes 

1 Analysis of the task for qualifying work. Selection    

 and work with literary sources.   

2 Writing chapter 1   

3 Writing chapter 2   

4 Writing chapter 3   

5 Writing chapter 4   

6 Standartization control   

7 Plagiarism check   

8 Preliminary defense of qualifying paper   

9 Defense of qualifying paper   

    

    

    

    

    

    

    

    

    

    

    

    

    
 

Student  

 

Stanley Onyedikachi Umesie 
 (signature)  (surname and initials) 

 

Paper supervisor 
 

 

 

Holotebko O.S. 
 (signature)  (surname and initials) 



2 

 

ANNOTATION 

 

Information system for analyzing mobile application vulnerabilities // Diploma 

thesis Bachelor degree // Stanley Onyedikachi Umesie // Ternopil’ Ivan Puluj 

National Technical University, Faculty of Computer Information System and 

Software Engineering, Department of Computer Science // Ternopil', 2025 // P. __, 

Fig. – __, Tables – __, Annexes – __, References – __. 

 

Kеуwоrds: analyzing, mobile application, vulnerabilities, information 

system. 

 

During the qualification work, the tasks were analyzed, the objectives were 

defined, and the requirements were set, following which the set goal can be 

achieved. The relevance of solving the problem of mobile application penetration 

testing in cybersecurity was analyzed. 

An analysis of methods and existing tools for mobile application penetration 

testing was conducted. It was determined that the problem is quite relevant. A 

decision was made to improve the mobile application penetration testing process 

by developing information technology. 

Methods and tools for testing mobile applications for penetration were 

analyzed. After analyzing and comparing methods and tools for testing mobile 

applications for penetration. 

The developed information technology was tested. 

This information technology can be used for penetration testing of mobile 

applications. Information technology consists of different stages, so it is easy to 

adapt it to the required tasks, expand or change the functionality. 



3 

 

CONTENT 

 

LIST OF ABBREVIATIONS, SYMBOLS AND TERMS ...................................... 5 

INTRODUCTION ..................................................................................................... 6 

1. ANALYSIS OF THE SUBJECT AREA .............................................................. 7 

1.1. Android operating system security analysis .............................................. 7 

1.2. Analysis of mobile application penetration testing methods and tools ... 23 

1.3. Formalization of requirements and problem statement ........................... 31 

2. DEVELOPMENT OF INFORMATION TECHNOLOGY................................ 33 

2.1. Information technology structure ............................................................. 33 

2.2. Development of a mobile application penetration testing algorithm ....... 40 

2.2.1. Information collection stage.................................................................. 41 

2.2.2. Mobile application testing stage ........................................................... 43 

2.2.3. Results analysis stage and report creation process ............................... 45 

3. 3. IMPLEMENTATION OF INFORMATION TECHNOLOGY MOBILE 

APPLICATION PENETRATION TESTING ........................................................ 50 

3.1. Mobile application penetration testing ..................................................... 50 

3.3. Creating a report ....................................................................................... 63 

4 SAFETY OF LIFE, BASIC LABOR PROTECTION ......................................... 68 

4.1. Labor protection requirements when working with electrical equipment 68 

4.2. Safety requirements during work ............................................................. 72 

4.3. Safety requirements after completion of repair and maintenance of 

electrical equipment ................................................................................................ 74 

 



4 

 

 

CONCLUSIONS ..................................................................................................... 76 

REFERNCES .......................................................................................................... 77 

 



5 

 

LIST OF ABBREVIATIONS, SYMBOLS AND TERMS 

 

HEI - Higher education institution; 

OS - Operating system; 

ADT - Android Development Tools; 

API - Application Programming Interfaces; 

APK - Android Package; 

ARM - Advanced RISC Machine; 

SQL - Structured Query Language; 

XML - Extensible Markup Language; 



6 

 

 

INTRODUCTION 

 

The modern world of information technology is constantly evolving, 

offering a wide range of mobile applications that play an important role in people's 

daily lives and business areas. Mobile applications provide users with access to a 

variety of information, services and entertainment, and are an integral part of the 

digital environment. The growing popularity of mobile platforms has led to the 

emergence of new information security threats associated with the use of mobile 

applications. 

One of the important tasks associated with the development and use of 

mobile applications is ensuring their security and reliability. Over time, there is an 

increasing need for information protection, as applications contain confidential 

information, personal data and access to network resources. It is important to 

remember that cybercriminals are constantly looking for new ways to penetrate 

mobile applications to steal information or cause other harmful effects. 

To do this, you need to conduct penetration testing of mobile applications. 

Penetration testing is a necessary component of the information security process. 

The main goal is to identify weaknesses in systems and applications before 

attackers can exploit them. Mobile applications, like any other programs, may have 

potentially dangerous points in the security system that need to be identified and 

eliminated. Penetration testing allows you to assess the effectiveness of security 

measures and take steps to improve them. 

 



7 

 

 

1. ANALYSIS OF THE SUBJECT AREA  

 

1.1. Android operating system security analysis 

 

The Android operating system is an open source system. Android has the 

freedom to modify, invent, and implement its own device drivers and features. The 

Android operating system consists of six different layers (Figure 1.1). 

1) System apps layer. Android comes with a set of core apps for email, 

SMS, calendars, internet, contacts, etc. Apps that are part of the platform have no 

special status among the apps that a user chooses to install. Thus, a third-party app 

can become the default web browser, SMS messenger, or even the default 

keyboard. There are some exceptions, such as the system Settings app. System 

apps function as both user apps and provide key capabilities that developers can 

access from their own apps. For example, if you want an app to send SMS 

messages, you don't need to write that functionality yourself. Instead, you can call 

any of the already installed SMS messaging apps to deliver the message to the 

specified recipient [2]. 

2) Java Application Framework Layer. The application framework 

provides several important classes that are used to build Android applications. It 

provides a common abstraction for accessing hardware and helps in managing the 

user interface with the application resources. In general, it provides services 

through which we can create a particular class and make it useful for building 

applications. It includes different types of services such as activity manager, 

notification manager, view system, package manager, etc., which are useful for 

developing our application according to the prerequisites [3]. 

3) The Application Framework layer provides many high-level services 

to applications in the form of Java classes. Application developers can use these 

services in their applications. 



8 

 

 

 

Figure 1.1 – Android platform architecture 

 

The Android framework includes the following key services: 

Activity Manager: Manages all aspects of the application lifecycle and 

activity stack. 



9 

 

 

Content Providers: Allows applications to publish and share data with other 

applications. 

Resource Manager: Provides access to uncoded built-in resources such as 

strings, color settings, and UI layouts. 

Notification Manager: Allows applications to show alerts and notifications 

to the user. 

View System: An extensible set of views used to create application user 

interfaces [3]. 

4) Native C/C++ libraries layer. Many of the core Android system 

components and services, such as ART and HAL, are built on native code that 

requires native libraries written in C and C++. The Android platform provides 

APIs to the Java framework to expose the functionality of some of these native 

libraries to applications. Native libraries are required for Android development, 

and most of them are open source. This is a set of core C/C++ libraries, as well as 

Java-based libraries that support Android development, such as Graphics, Libc, 

SSL (Secure Socket Layer), SQLite, Media, Webkit, OpenGL (Open Graphic 

Library), Surface Manager, etc. Here is a detailed description of some of the key 

Android libraries that are available for Android development [3]. 

The Media library provides support for playing and recording audio and 

video formats; 

The Surface Manager library provides display management functionality; 

OpenGL (Open Graphic Library) and SGL (Scalable Graphics Library) 

libraries are used to create 2D and 3D graphics; 

The SQLite library provides database support; 

The FreeType library provides support for a variety of fonts; 

The SSL (Secure Socket Layer) library provides security technologies for 

establishing an encrypted connection between a web server and a web browser; 

WebKit provides a set of classes designed to embed web browser 

capabilities into applications. 



10 

 

 

4) Android Runtime Layer. The Android Runtime is one of the most 

important parts of Android. It contains components such as core libraries and the 

Dalvik Virtual Machine (DVM). It mainly provides the framework for the 

application and enables the application to run using the core libraries. Like the Java 

Virtual Machine (JVM), the Dalvik Virtual Machine (DVM) is a registry-based 

virtual machine specifically designed and optimized for Android to ensure that the 

device can run multiple instances efficiently. It relies on the Linux kernel layer for 

thread management and low-level memory management. The kernel libraries allow 

us to implement Android applications using standard programming languages such 

as JAVA or Kotlin [3]. 

5) Hardware abstraction layer (HAL). The hardware abstraction layer 

(HAL) provides standard interfaces that expose the hardware capabilities of a 

device to the high-level Java API framework. The HAL consists of several library 

modules, each of which implements an interface for a specific type of hardware 

component, such as a camera or a Bluetooth module. When the framework API 

makes a call to access the device hardware, the Android system loads the library 

module for that hardware component [3]. 

6) Linux Kernel Layer. The Linux kernel is the heart of the Android 

architecture. It manages all the available drivers such as display, camera, 

Bluetooth, audio, memory, etc. that are required during the execution of the 

application. The Linux kernel provides a layer of abstraction between the device 

hardware and other components of the Android architecture. It is responsible for 

managing memory, power, devices, etc. [3]. 

Features of the Linux kernel: 

Security: The Linux kernel is responsible for application-to-application 

securityand the system. 

Memory Management: Manages memory efficiently, providing freedom in 

developing our applications. 



11 

 

 

Process Management: manages the process well, allocates resources between 

processes when they need them. 

Network Stack: Efficiently manages network communication. 

Driver Model: Ensures that the program works properly on devices and 

hardware from manufacturers responsible for including their drivers in the Linux 

build. 

When creating Android applications, you need various components of the 

Android device, such as the camera, GPS, etc. 

In order to use these features of an Android smartphone, you must first 

obtain permission from the user to use something on their phone [3]. In addition, 

permissions have different levels of protection (Figure 1.2), namely: 

1) Normal Permissions - Default value. A low-risk permission that grants 

the requesting application access to isolated application-level functions with 

minimal risk to other applications, the system, or the user. The system 

automatically grants this type of permission to the requesting application during 

installation without asking for explicit user approval, although the user always has 

the opportunity to review these permissions before installation [4]. 

2) Signature Permissions - A permission that the system grants only if 

the request requesting the permission is signed with the same certificate as the 

request declaring the permission. If the certificates match, the system automatically 

grants the permission without notifying the user or asking for their explicit 

approval [4]. 

3) Dangerous Permissions - A high-risk permission that gives the 

requesting application access to the user's private data or control over the device, 

which could negatively affect the user. Because this type of permission is 

associated with potential risk, the system may not automatically grant it to the 

application requesting it.  

 



12 

 

 

 

Figure 1.2 – Scheme of protection levels for permissions 

 

 

Figure 1.3 – An example of a system permission request that appears when a 

program requests execution permission. 

 



13 

 

 

For example, any dangerous permissions requested by the application may 

be displayed to the user and require confirmation before continuing, or another 

approach may be taken to avoid the user automatically granting permission to use 

such features (Figure 1.3) [4-5]. 

4) Permission level "Signature or System Permissions" 

(signatureOrSystem). Old name "signatureOrSystem", which is deprecated from 

Android 

6.0 Marshmallow. A permission that the system grants only to apps that are 

in a special folder in the Android system image or are signed with the same 

certificate as the app that declared the permission. The "signatureOrSystem" 

permission is used in certain special situations where apps from different 

manufacturers are built into the system image and need to share certain features 

because they are built together [6]. 

APK is a file format used to distribute and install applications on the 

Android operating system. It is a compressed file that contains all the files needed 

to run an application on an Android device, including its code, resources, and the 

Android manifest file. APK files are similar to other package file formats, such as 

.exe files on Windows or .dmg files on macOS [7]. 

Users can install apps on their Android devices by downloading them from 

the Internet, transferring them via USB, or using an app store such as the Google 

Play Store. Once the app is installed, you can run and use like any other 

application. Developers can create APKs using the Android Studio development 

environment, which includes tools for building, testing, and packaging applications 

in APKs. Developers can also digitally sign their APKs to ensure the authenticity 

and integrity of the application. [7] 

An APK consists of several components that are required for the application 

to run properly on an Android device. The details of these components are shown 

in Figure 1.4. 

 



14 

 

 

 

 

Figure 1.4 – Example of Android application package file structure – App 

code: This includes the Java or Kotlin source code that defines 

 

Application functionality. This code controls the behavior of the application 

and handles user interaction. 

– Resources: It files, which uses application, for example, 

images, layouts, and strings. These resources define the appearance of the 

application and contain text for different languages. 

– Android manifest: This is a special XML file that contains important 

information about your app, such as its name, version, and the permissions it 

requires. The manifest also defines the app's components, such as actions, services, 

and broadcast receivers. 



15 

 

 

– External libraries: If the app uses external libraries, they are also 

packaged in the APK file. These libraries provide additional functionality and are 

usually open source projects integrated into the app. 

– Assets: These are files that the app uses but does not compile, such as 

fonts, audio, and video files. They are stored in the APK in their native format and 

are read by the app at runtime. 

– Android runtime (ART): This component runs an application on 

Android devices; it converts the application's bytecode into machine code so that 

the device's processor can execute it. 

AAB is a new format introduced by Google for distributing Android 

applications. AAB is a new replacement for APK, introduced on August 6, 2018 

with Android 9 [8], but it is designed to be more efficient and flexible. The main 

difference between AAB and APK is that AAB contains all the code and resources 

of an application, but does not contain compiled machine code for all devices. 

Instead, it contains the code and resources of an application in a form that can 

generate machine code for specific devices during installation. This makes the 

application smaller and more efficient, as it contains only the machine code needed 

for the specific device on which it is installed. In addition, AAB allows developers 

to create multiple APK files from a single Android project that can target different 

devices, screen configurations, and languages, reducing the size of the final APK 

file and improving the user experience [7]. 

According to the Common Vulnerabilities And Exposures database, many 

vulnerabilities have been discovered in the Android operating system since its 

inception. Since 2009, about 5,000 vulnerabilities have been discovered in the 

Android OS. Figure 1.5 shows the vulnerabilities discovered in recent years. It can 

be seen that the number of vulnerabilities discovered in the Android OS has been 

steadily increasing over the years [7]. 



16 

 

 

 

Figure 1.5 – Vulnerability statistics 

 

The numbers demonstrate the ongoing security challenges faced by the 

Android OS. Despite the efforts of developers and researchers to improve the 

security of the Android operating system, the number of vulnerabilities discovered 

continues to increase. Furthermore, these discovered vulnerabilities can be divided 

into different types such as code execution, buffer overflow, and information 

retrieval. This categorization helps to identify which types of vulnerabilities are the 

most popular and common. Figure 1.6 provides details of the vulnerabilities by 

different types. The figure shows that the most common vulnerabilities that lead to 

exploitation are implementation code and overflow buffer. Details reported types 

vulnerabilities are listed below [7]. 

The most popular Android OS vulnerabilities: 

1. Denial of service (DoS):This type of vulnerability occurs when an 

attacker floods a system with traffic or requests to overload its resources and make 

it inaccessible to legitimate users. 



17 

 

 

 

Figure 1.6 – Android vulnerability statistics 

 

2. Bypass something: This vulnerability allows an attacker to bypass 

security controls, such as authentication or authorization, access protected 

resources, or perform unauthorized actions. 

3. Execute code: This vulnerability could allow an attacker to execute 

arbitrary code on a targeted system or device, which could lead to data theft, 

unauthorized access, or other malicious actions. 

4. Memory corruption: This vulnerability involves exploiting errors or 

flaws in an application's memory management system, such as buffer overflows or 

use-after-prohibition errors, to gain unauthorized access to data or execute 

malicious code. 

5. Cross-site scripting (XSS):This vulnerability allows an attacker to 

inject malicious code, such as Java or Kotlin, into a web page or 

  

a program that could potentially lead to data theft or other malicious actions. 

6. Information disclosure: This vulnerability allows attackers to access 

sensitive information without authorization, such as passwords, personal data, or 

system configuration information. 



18 

 

 

7. Privilege escalation: This vulnerability allows an attacker to gain 

higher access or privileges than authorized, potentially allowing them to perform 

malicious actions or access sensitive data. 

8. Buffer overflow: This vulnerability occurs when an attacker injects 

more data into an application's memory buffer than it can handle, potentially 

leading to arbitrary code execution or system failure. 

9. SQL injection: This vulnerability allows an attacker to inject 

malicious SQL code into a web application or database, potentially leading to 

unauthorized access or modification of data. 

10. Directory traversal: This vulnerability involves exploiting a web 

application's file path validation error to gain unauthorized access to files or 

directories outside of the intended application. 

This information can be used to prioritize vulnerability remediation and 

identify patterns in the types of vulnerabilities that are most frequently targeted. It 

can also provide insight into how the industry is evolving and allow for preventive 

measures to be taken to address vulnerabilities that are likely to be targeted in the 

future [7]. 

The Google Play Store is the official app store for Android devices, where 

users can download and install apps, games, and other types of software. [9] Apps 

in the store are developed by third-party developers and are reviewed by Google 

before being made publicly available. Google has introduced Play Protect to scan 

apps for malware and other harmful content before publishing them to the store. 

This includes static and dynamic analysis of applications and checking for any 

known malicious behavior. However, despite these measures, attackers still 

infiltrate the store. There are several approaches through which attackers can 

download and distribute malware through the Google Play Store, the details of 

which are given below. [7]. 

1. Dynamic code loading: Attackers can use dynamic code loading 

techniques, such as Java mapping or Android DexClassLoader, to load and execute 



19 

 

 

code at runtime. This can be used to load and execute additional code or malicious 

payloads after an application is installed, which can be hidden within the legitimate 

application code or downloaded from a remote server. This can allow attackers to 

avoid detection by security scanners because the malicious code may not be 

present in the original version of the application. 

2. Incremental malicious update attack (IMUTA):Attackers can use 

incremental updates to gradually add malicious code to an application over time. 

This can be done using a dropper program that initially appears legitimate but later 

downloads and installs additional components or payloads. Attackers can also use 

code obfuscation and dynamic code loading techniques to add malicious code in a 

way that is difficult to detect, such as through updates. This can allow attackers to 

evade detection by security scanners and extend the lifespan of the malware. 

3. Code obfuscation: Obfuscation is the process of changing the source 

code of a program to make it more difficult to understand or analyze. Attackers can 

use obfuscation techniques, such as renaming variables and classes, adding 

unwanted code, or using encryption, to hide the functionality and purpose of the 

malicious code. This can make it more difficult for security researchers to detect 

and analyze malware. 

4. Repackaging: Attackers can use repackaging techniques to take a 

legitimate app and add malicious code. This can be done by decompiling the app, 

adding malicious code, and then recompiling and re-registering the app. The 

repackaged app can then be uploaded to the Google Play Store, and users can be 

tricked into downloading it because it may appear legitimate and have good 

reviews. 

5. Social engineering: Social engineering is the act of tricking people 

into taking certain actions or revealing sensitive information. Some cybercriminals 

use social engineering to trick users into downloading and installing programs that 

appear legitimate but are actually malicious software. These programs may look 



20 

 

 

like popular programs or games, but they contain malware that can steal personal 

information or perform other malicious actions. 

The Google Play Store hosts numerous malware families that have been 

identified, reported, and published. Google has detected and blocked many 

Android malware families, but many recent incidents still indicate loopholes and 

vulnerabilities in the security mechanisms implemented by the Google Play Store 

[7,9]. 

Table 1.1 lists the 10 malware families that are distributed via the Google 

Play Store. These malware families are not limited to a single application or 

account, and their code can be associated with hundreds of applications that users 

may unwittingly download. Thus, it is of utmost importance that users and 

developers exercise caution and diligence when using and creating applications, 

respectively, and that the Google Play Store continues to implement robust security 

measures to detect and prevent the spread of malware [7,9]. 

Table 1.1 - List of the most common Android malware families detected in 

the Google Play Store. 

 

 



21 

 

 

These malware families can be found in various Google Play Store apps in 

several ways. Once the malware is downloaded and installed on a user’s device, it 

can perform a variety of malicious actions. This can include stealing personal 

information, displaying unwanted ads, or even taking control of the device. These 

malware attacks can be harder to detect with Google Play Protect and other mobile 

antiviruses because they are embedded in the apps and may not have any visible 

signs of malicious behavior. The malware can also only launch after a certain 

amount of time, making it difficult for antiviruses to detect [7,9]. 

Malware can be detected by analyzing the permissions it requests when 

installed on an Android device. Analyzing the permissions, a particular app 

requests can help determine whether it is potentially malicious. For example, if an 

app requests permissions that are not related to its 

intended functions, such as the ability to access the user’s contacts or call 

logs, this may indicate that the application is malicious. Additionally, if the 

application requests permissions that give it access to sensitive information, such 

as location data, this may be a sign of malware. Table 1.2 provides a resource for 

identifying malware by listing the permissions that malware most often requests 

after installation. This can be a useful resource for identifying malware because it 

lists the permissions that malware most often requests after installation [7,9]. 

By analyzing Tables 1.1 and 1.2, security experts and researchers can 

identify potentially malicious applications by analyzing the permissions they 

request. It is also important to note that not all applications that request these 

permissions are malicious, but it may be a red flag that requires further 

investigation. 

 

 

 

 



22 

 

 

Table 1.2 - List of the most common permissions requested by Android 

malware. 

 

 

Continuation of Table 1.2 - List of the most common permissions 

requested by Android malware. 

 



23 

 

 

1.2. Analysis of mobile application penetration testing methods and tools 

 

Mobile application penetration testing encompasses a range of approaches, 

each tailored to specific testing requirements. These methodologies provide a clear 

picture of the application’s security posture and vulnerabilities. There are three 

main types of mobile application penetration testing: 

 Black box testing is conducted without the tester having any 

knowledge of the application under test. This process is sometimes referred to as 

“zero-knowledge testing.” The main goal of this test is to allow the tester to act 

like a real attacker in the sense of exploring possible ways to exploit publicly 

available and open information. 

 White box testing (sometimes called 

"full knowledge test") is the complete opposite of testing by "black box" 

  

"box" in the sense that the tester has complete knowledge of the program. 

Knowledge can include source code, documentation, and diagrams. This approach 

allows testing to be done much faster than black box testing due to its 

transparency, and with the additional knowledge gained by the tester, much more 

complex and detailed test cases can be created. 

 Gray box testing is all testing that falls between the two types of 

testing mentioned above: some information is provided to the tester (usually just 

credentials), and other information is intended for discovery. This type of testing is 

an interesting compromise between the number of tests, cost, speed, and scope of 

testing. Gray box testing is the most common type of testing in the security 

industry [10]. 

Mobile application penetration testing is the process of identifying and 

addressing potential security vulnerabilities in mobile applications. This process 

can be complex and involves multiple steps. The general steps of mobile 

application penetration testing are as follows: 



24 

 

 

1) preparation; 

2) intelligence gathering; 

3) drawing up an application map; 

4) operation; 

5) reporting. 

During the preparation stage, the following tasks are solved: 

– The scope of the security testing is determined, including identifying 

appropriate security controls, the organization's testing objectives, and sensitive 

data. In general, preparation includes all synchronization with the client, as well as 

legal protection for the tester (who is often a third party). 

The next stage involves collecting intelligence information: 

– an analysis of the environment and architectural context of the 

application is performed to obtain a general understanding of the context; 

Application Mapping Phase – builds on information from previous phases; 

may be supplemented by automated scanning and manual application research. 

Mapping provides a deep understanding of the application, its entry points, the data 

it stores, and the main potential vulnerabilities. These vulnerabilities can then be 

ranked according to the damage that their exploitation could cause, so that the 

security tester can prioritize them. This phase involves creating test cases that can 

be used during test execution. 

– In this phase, the security tester attempts to penetrate the application 

using the vulnerabilities identified in the previous phase. This phase is necessary to 

determine whether the vulnerabilities are real and truly positive. 

The final reporting stage is important for the client, the security tester reports 

the vulnerabilities. This includes a detailed exploitation process, categorizes the 

type of vulnerability, documents the risk if an attacker is able to compromise the 

target, and outlines what data the tester had unauthorized access to [11]. 

 



25 

 

 

 

Figure 1.7 – Mobile application penetration testing process diagram After 

scanning the application map, the exploitation stage occurs: 

 

Penetration testing of mobile applications requires compliance with 

various standards and guidelines. Some of the most important standards and 

documents that can be used when conducting penetration testing of mobile 

applications are: 

Open Web Application Security Project (OWASP) - Mobile Security 

Testing Guide (MSTG): MSTG provides a detailed and practical guide on how to 

conduct security testing of mobile applications, covering the Android and iOS 

platforms. MSTG covers topics such as mobile application architecture, data 

storage, cryptography, authentication, networking, reverse engineering, code 

analysis, and penetration testing. MSTG also provides a checklist of security 

requirements and best practices that can be used to assess and improve the security 

of mobile applications [12]. 



26 

 

 

NIST SP 800-163: Vetting the Security of Mobile Applications: The 

standard provides detailed guidance on assessing the security of mobile 

applications, including penetration testing [13]. 

Mobile Application Security Testing (MAST) Framework: This is a resource 

developed by an international banking industry organization that provides a 

common approach to mobile application security testing [14]. 

NIST SP 800-163 Revision 1, “Vetting the Security of Mobile 

Applications,” is a major update to NIST’s guidance on mobile application 

verification and security. The original document (January 2015) detailed the 

processes by which organizations assess mobile applications for cybersecurity 

vulnerabilities. Revision 1 expands on the original document by exploring 

resources that can be used to develop an organization’s mobile application security 

requirements. This includes reviews of relevant documentation from the National 

Information Protection Partnership (NIAP), the Open Web Application Security 

Project (OWASP), MITRE Corporation, and the National Institute of Standards 

and Technology (NIST) [15-16]. 

MITRE ATT&CK: This is a globally accessible knowledge base on tactics 

and adversary methods, based on real-world observations. The ATT&CK 

knowledge base is used as a basis for developing specific models and 

methodologies for countering threats in the private sector, in government, and in 

the community of developers of cybersecurity products and services. 

Table 1.3 lists mobile application penetration testing methods, their clear 

advantages and disadvantages. 

From the table above, it can be determined that the methods lack 

information on how to develop a testing report. To develop our own testing 

method, MSTG was taken as a basis. MSTG is the best and most 

understandable method for testing a mobile application for penetration due to 

the presence of clear documentation, the availability of penetration testing 



27 

 

 

tools, and the ease of understanding of the documentation. 

 

Table 1.3 – Methods mobile application penetration testing. 

 

 

The Mobile Application Security Verification Standard (MASVS) is a 

comprehensive security standard that developed by OWASP. The standard is 

divided into different groups that represent the most critical areas of the mobile 

attack surface. These control groups, designated MASVS-XXXXX, provide 

general recommendations and standards for the following areas: 

1. MASVS-STORAGE: Secure storage of confidential data on the 

device (data-at-rest); 

1.1 MASVS-STORAGE-1 The application securely stores confidential 

data; data. 



28 

 

 

1.2 MASVS-STORAGE-2 The application prevents the leakage of 

confidential. 

2. MASVS-CRYPTO: Cryptographic functions used for protection of 

confidential data; 

2.1 MASVS-CRYPTO-1 Application uses current reliable cryptography 

and uses it in accordance with industry best practices; 

2.2 MASVS-CRYPTO-2 Application manages keys in accordance to 

industry best practices. 

3. MASVS-AUTH: Mechanism’s authentication and authorization, What 

used by a mobile application; 

3.1 MASVS-AUTH-1 Application uses safe protocols authentication and 

authorization and follows appropriate best practices; 

3.2 MASVS-AUTH-2 Application safely performs local authentication 

according to platform best practices; 

3.3 MASVS-AUTH-3 The application protects sensitive transactions 

using additional authentication. 

4. MASVS-NETWORK: Secure network communication between a 

mobile application and remote endpoints (data in transit); 

4.1 MASVS-NETWORK-1 The application protects all network traffic in 

accordance with current best practices; 

4.2 MASVS-NETWORK-2 The application performs identity anchoring 

for all remote endpoints under the developer's control. 

5. MASVS-PLATFORM: Secure interaction with the underlying mobile 

platform and other installed applications; 

5.1 MASVS-PLATFORM-1 The application securely uses mechanisms 

IPC; 

5.2 MASVS-PLATFORM-2 The application uses Web Views securely. 

5.3 MASVS-PLATFORM-3 The application securely uses the interface 

user. 



29 

 

 

6. MASVS-CODE: Best security practices for data processing and 

maintaining the program up-to-date; 

6.1 MASVS-CODE-1 The application requires the latest platform version; 

6.2 MASVS-CODE-2 The application has a mechanism for forced 

program updates; 

6.3 MASVS-CODE-3 Application uses only software components 

without known vulnerabilities; 

6.4 MASVS-CODE-4 The application checks and disinfects all unreliable 

data; 

7. MASVS-RESILIENCE: Resistance to reverse engineering attempts 

and intervention; 

7.1 MASVS-RESILIENCE-1 The application checks the integrity of the 

platform. 

7.2 MASVS-RESILIENCE-2 The application implements mechanisms for 

protection against intrusion; 

7.3 MASVS-RESILIENCE-3 Application implements mechanisms 

antistatic analysis; 

7.4 MASVS-RESILIENCE-4 The application implements anti-dynamic 

analysis methods. 

Mobile application penetration testing requires tools to accomplish the task 

at hand. The most popular mobile application testing tools include: 

1) OWASP ZAP (Zed Attack Proxy) is a universal tool for testing the 

security of web and mobile applications [12]. 

- can perform automated scans to detect common vulnerabilities such as 

SQL injections, cross-site scripting (XSS), etc.; 

- offers functions for intercepting and modifying requests and responses 

for application security testing; 

- provides a user-friendly interface for both beginners and experienced 

testers. 



30 

 

 

2) MobSF (Mobile Security Framework) is a comprehensive tool for 

assessing the security of mobile applications [39]. 

- supports static analysis by decompiling and analyzing APK (Android) 

and IPA (iOS) files; 

- performs dynamic analysis by interacting with the mobile application 

and tracking its behavior; 

- detects vulnerabilities such as unsecured data storage, unsecured 

network connection, etc. 

3) Drozer is specifically designed for Android security testing [28]. 

- can detect vulnerabilities such as incorrect permissions, exported 

components, and unsafe file storage; 

- allows testers to interact with Android devices and applications 

through a command line interface; 

- supports different modules for testing specific

 componentsAndroid applications. 

4) Frida is a dynamic toolkit for Android and iOS [29]. 

- allows analyze and manipulate behavior applications inreal-time, 

including function interception and scripting. 

- useful for analyzing and modifying the behavior of running mobile 

applications at runtime. 

5) AppUse is a virtual machine that comes with a set of pre-installed 

tools for mobile application security testing [40]; 

- provides a controlled environment for testing Android applications 

and their security features. 

6) QARK (Quick Android Review Kit) - focuses on assessing the 

security of Android applications [41]. 

- can detect vulnerabilities such as insecure data storage, code 

execution, and improper permissions; 

- creates detailed reports with information about found vulnerabilities. 



31 

 

 

7) AndroBugs Framework [42]. 

- scans Android apps for security issues; 

- detects vulnerabilities such as code execution, unprotected 

components, and data leakage. 

- offers a user-friendly interface for scanning and generating reports. 

8) Xposed Framework - allows testers to create and install modules that 

can intercept and modify the behavior of Android applications. [43]. 

- useful for configuring and testing application behavior and security 

features. 

9) Burp Suite Mobile Assistant is an extension of Burp Suite used for 

testing the security of mobile application APIs. [44]. 

- intercepts and analyzes requests and responses to detect security 

vulnerabilities in API calls made by mobile applications. 

 

1.3. Formalization of requirements and problem statement 

 

One of the mechanisms for protecting mobile applications is penetration 

testing. Methods and tools for penetration testing of mobile applications were 

analyzed. Creating your own information technology for penetration testing allows 

you to save time searching for testing methods and testing tools and optimize this 

process, because these standards are usually quite voluminous. Depending on the 

type of complexity and set of application functions, testing methods and tools 

differ. 

During the analysis, it was found that OWASP is the best collection of 

methodologies for testing mobile applications for penetration, but the disadvantage 

of each of the methods is that they do not provide information as 

  

create a mobile application testing report and what method and tool to use 

for different types of applications. 



32 

 

 

In this paper, the object is the process of improving penetration testing 

methods for mobile applications during penetration testing. 

The main goal is to improve the penetration testing process at the data 

collection and application operation stages using testing tools. 

After analysis means For MASVS testing, a set of requirements for mobile 

application penetration testing technology was formed: 

– testing the configuration of cryptographic standard algorithms; 

– checking local storage for confidential data; 

– verification of confidential data; 

– testing backups for confidential data; 

– testing data encryption on the network; 

– testing program permissions; 

– testing of local storage to verify entered data. Based on the analyzed 

data, the following tasks were identified: 

– Security Analysis: Conduct a detailed security analysis of the mobile 

application to identify potential vulnerabilities. 

– Penetration Testing: Develop and implement penetration testing using 

a variety of attack methods to verify the effectiveness of the security system. 

– Vulnerability identification and documentation: Identify and 

document vulnerabilities, including a description of possible attack scenarios and 

recommendations for their remediation. 

– Development of recommendations: Develop recommendations for 

improving the security system of the mobile application, taking into account the 

testing results. 



33 

 

2. DEVELOPMENT OF INFORMATION TECHNOLOGY 

 

2.1. Information technology structure 

 

Information technology is a set of methods and tools through which a certain 

task is realized. Information technology consists of processes that are independent 

parts. This approach allows you to identify problems at the early stages of 

development and quickly solve them. 

The information technology of mobile application penetration testing 

consists of several processes, each of which has its own functional purpose. The 

information technology process diagram is shown in Fig. 2.1. 

 

 

Figure 2.1 – Process flow diagram of penetration testing technology 

 

1) Preparation process. At this stage, you need to assess the complexity 

of the task and estimate the necessary resources. 

The process includes the following stages (Fig. 2.2). 

– search for the number of hours spent analyzing the source code; 

– analysis of the number of specialists who need to be involved in the 

preparatory work; 

– analysis of the cost of preparatory work. 

The specified process is mandatory when testing a mobile application for 

penetration. The process model can be described as: 

𝐼= <Tprep, Nspecialists, Cprep> 

where,  

Tprep is the number of hours for source code analysis,  



34 

 

 

Nspecialists is the number of specialists,  

Cprep is the cost of preparatory work. 

 

 

Figure 2.2 – Schematic of the preparation process 

 

2) Information collection process. Scanning the application for 

vulnerabilities, analyzing the scan results, collecting information. 

The process includes the following stages (Fig. 2.3). 

– searching for potential vulnerabilities; 

– analysis of found vulnerabilities. 

The following steps occur during the search for potential vulnerabilities: – 

Gathering information about the application architecture: this includes code 

analysis, research into the libraries and frameworks used. 



35 

 

 

 

Figure 2.3 – Diagram of the information collection process 

 

– Identifying vulnerabilities in security implementation: this may 

include checking for insufficient authentication, the possibility of entering 

incorrect data, the use of outdated encryption methods, and more. 

– Analysis of existing weaknesses in the application: research into 

possible problems related to memory usage, data processing, network protocols, 

and other aspects of the software. 

At the stage of analyzing the found vulnerabilities, the following information 

is collected: 

– Description of discovered vulnerabilities: a detailed description of 

each vulnerability found, including the type, location, possible impact on the 

system, and ways to fix it. 

– Risk assessment: determining the degree of threat it poses to the 

security of the system and assessing the potential consequences if these 

vulnerabilities are exploited by attackers. 

– Remediation recommendations: developing specific recommendations 

and strategies to fix the vulnerabilities found, including practical steps and 

techniques that can be used to ensure greater security application. 

This process is mandatory when testing a mobile application for penetration. 



36 

 

 

The process model can be described as: 

Rdata= < Tset, Iset, Tapp> 

where,  

Rdata is a set of detected vulnerabilities,  

Tset is a set of technologies with which the mobile application will be tested, 

for example, such as: OWASP, NIST SP 800-163, MAST, MITRE ATT&CK, etc.,  

Iset is a set of tools that will be used to test the mobile application, for 

example, such as: OWASP ZAP, MobSF, Drozer, Frida, etc.  

Tapp is the type of application, the type of application can include 

technologies used by the application, for example, such as: Rest API, local 

Database, gRPC, etc. 

3) Testing process. Performing attacks on the application, checking for 

vulnerabilities, analyzing test results. The process includes the following stages 

(Fig. 2.4). 

- selection of attack vectors and necessary tools; 

- application vulnerability testing; 

- analysis of the results of attacks and identified vulnerabilities. 

 

Figure 2.4 – Testing process diagram 



37 

 

 

At the stage of selecting attack vectors and necessary tools, the following 

actions take place: 

– Based on the information collected and potential vulnerabilities 

identified in the previous step, we select the necessary set of attack vectors and 

tools. For example, for an application that does not work with a local database, it is 

not necessary to attack the database for testing. For different types of applications, 

different types of attacks and different tools need to be used. Next, the process of 

testing the application for vulnerabilities occurs. 

During the testing phase, penetration testing of the mobile application takes 

place. 

– After collecting information about the application, we will perform the 

following tests: testing data encryption on the network, checking the configuration 

of cryptographic standard algorithms, checking local storage for sensitive data, 

checking sensitive data, testing backups for sensitive data, testing application 

permissions, testing local storage to verify entered data. 

– Details of each stage: description of the process of performing each 

testing stage, performing vulnerability testing, and evaluating the results. 

– Tools and methods used: a list of tools and methods used to perform 

attacks and assess vulnerabilities. 

The stage of analyzing attacks and identified vulnerabilities describes: 

– Details detected vulnerabilities: description detected

 vulnerabilities,including type, location, and possible impact on the system. 

– Details of detected attacks: assessment of the results of each attack, 

their success, and possible impact on application functionality. 

This process is mandatory when testing a mobile application for penetration. 

The process model can be described as: 

At = { Rdata, Va } 

where  

At is the test result,  



38 

 

 

Rdata is the set of detected vulnerabilities,  

Va is the attack vectors. 

Attack vectors can be described as: 

Vt= {T1.2…N, I1.2…N}, 

where  

T1,2…N is a set of tests  

I1,2…N is a set of tools. 

4) Report creation process. Compiling a report on identified 

vulnerabilities and recommendations for their neutralization. The process diagram 

is shown in Figure 2.5. 

– analysis of identified problems; 

– risk assessment and prioritization; 

– report formatting. 

 

 

Figure 2.5 – Report creation process diagram 

 

The first stage involves: 



39 

 

 

– Description of found vulnerabilities: a detailed description of each 

found vulnerability, including their type, possible impact on the system, and 

exploitation methods. 

– Remediation recommendations: Specific suggestions and 

recommendations for correcting each identified issue, including practical steps and 

methods that can be used to ensure greater security. 

In the second stage, the following occurs: 

– Risk assessment: an assessment of the degree of threat that the 

identified issues pose to the security of the system and an assessment of the 

possible consequences if these vulnerabilities are exploited. 

– Prioritization: Determine the order of priority for fixing identified 

issues based on their importance and potential impact on application operations. 

In the third stage, the following occurs: 

– Creating a report structure: describing the structure of the report, 

including headings, sections, and subsections that help in logical organization of 

information. 

– Report formatting: formatting details, such as the use of tables, 

graphs, lists, and other elements that make the information easier to understand. 

The process model can be described as: 

Tresult= { Ivulnerabilities, Rassessment, Rneutralizing} 

where,  

Tresult - the result of creating a report,  

Ivulnerabilities - identified vulnerabilities,  

Rassessment - criticality assessment,  

Rneutralizing - a set of recommendations for neutralizing vulnerabilities. 

As a result, models and diagrams of information technology processes for 

mobile application penetration testing have been created. The next step is to 

develop a mobile application penetration testing algorithm for information 

technology implementation. 



40 

 

 

2.2. Development of a mobile application penetration testing algorithm 

 

The algorithm for testing a mobile application for penetration consists of the 

following stages (Fig. 2.6): 

preparation stage; 

information collection stage; 

mobile application penetration testing stage; 

the results analysis stage and the report creation process. 

 

 

Figure 2.6 – General diagram of the mobile application penetration testing 

process 

 



41 

 

 

The next stage after creating a mobile application penetration testing process 

diagram is the information collection stage. 

 

2.2.1. Information collection stage 

 

The main goal of this stage is to collect all the necessary information 

regarding the mobile application, its architecture, design, and security (Figure 2.7). 

 

 

Figure 2.7 – Diagram of the information collection algorithm 

 

The first step is to start by reviewing all documentation related to the mobile 

application. This includes technical specifications, functionality descriptions, 

security requirements, system architecture, etc. 



42 

 

 

But since testing is done on the principle of "black and white box", we have 

the source code of the application. It is necessary to analyze the source code, 

conduct an analysis of it to identify possible weaknesses and vulnerabilities. 

To ensure that all security requirements have been properly implemented in 

the source code. Source code can be analyzed using static analysis tools such as 

SonarQube[18], Checkmarx [19], Fortify [20], as well as integrated development 

environments (IDEs) such as Android Studio [23], IntelliJ IDEA [24]. For code 

analysis verification, I prefer Android Studio [23] and IntelliJ IDEA [24] because 

of their ease of use and free access. 

The next step is to check all configuration files to ensure that security 

settings and other parameters are configured properly. To check configuration 

files, you can use tools such as ConfigCheck [21] or built-in tools in development 

environments. The main advantage of ConfigChecker is its ability to retrieve 

configuration parameters from various sources. For example, it can read or check 

the values of: 

 plain text files; 

 xml files; 

 java properties files; 

 manifest files; 

 java windows ini files; 

 Windows registry; 

 apache configuration files; 

 ldif files. 

After collecting information, you need to analyze the existing security 

measures already implemented in the mobile application and evaluate their 

effectiveness. 

The analysis should identify potential security threats that may arise when 

operating a mobile application. This includes threats related to misuse, data leaks, 

network attacks, unauthorized access, etc. 



43 

 

 

2.2.2. Mobile application testing stage 

 

Conducting penetration testing of a mobile application involves a number of 

stages and methods that help identify potential vulnerabilities and ensure a high 

level of security. The stages of testing a mobile application include the following 

steps (Fig. 2.8): 

 

Figure 2.8 – Mobile application testing algorithm diagram 

 

1) Analyzing the application source code: You need to perform the 

following steps: Checking local storage for sensitive data; Checking for sensitive 

data exposure through the user interface; Searching for sensitive information in 

automatically generated screenshots; Testing local storage to verify input data; 

Testing application permissions; Testing backups for sensitive data. All of this can 



44 

 

 

be done using Android Studio [23] and IntelliJ IDEA [24] due to their ease of use 

and free availability. 

2) Static Application Testing: You need to examine the structure and 

functionality of a mobile application to identify potential vulnerabilities. To 

analyze a mobile application, you need to use analysis tools such as MobSF 

(Mobile Security Framework) and AndroBugs. When compared to these tools, 

MobSF: has advanced functionality for analyzing mobile application security; 

includes features such as vulnerability scanning, API testing, permission analysis, 

and many others; supports both Android and iOS, making it a universal tool for 

mobile application analysis; there is an active user community and constant 

updates as AndroBugs has not received as many updates compared to MobSF. The 

best tool is Mobile Security Framework (MobSF). 

3) Dynamic testing: 

 For dynamic application analysis, you should use Frida[27] and 

Drozer [28]. If you need flexibility and the ability to inject your own code: You 

should use Frida. It allows you to intercept and modify the dynamic behavior of 

applications. If you need a tool for auditing and vulnerability detection: Use 

Drozer. It provides vulnerability scanning and penetration testing, but does not 

have the flexibility of Frida. Sometimes it is best to use both tools. For example, 

scan for vulnerabilities using Drozer and then use Frida to further analyze and test 

the application while it is running. 

 Testing for vulnerabilities in inter-component interactions. For this 

testing, you need to use traffic interception tools such as Burp Suite[25] and 

Wireshark[26]. The advantages of Burp Suite include: intercepting and modifying 

HTTP requests and responses, as well as detecting vulnerabilities; ideal for testing 

the security of web applications, but not so powerful for general analysis of all 

network traffic. In turn, Wireshark can: intercept and analyze any network traffic, 

including HTTP, TCP, UDP, etc.; allows you to analyze all aspects of network 

interactions in detail, which makes it useful for various tasks, including network 



45 

 

 

protocol analysis and troubleshooting communication problems. We need to 

analyze general network traffic and our task is not related to web applications, 

Wireshark may be a more suitable tool. 

 

2.2.3. Results analysis stage and report creation process 

 

This stage is crucial in the mobile application penetration testing process as 

it helps to understand the severity of the identified vulnerabilities and determine 

steps to fix them. 

Analyzing the results of mobile application penetration testing can include 

steps such as: 

- Analysis of identified vulnerabilities. Identified vulnerabilities should 

be analyzed in detail in terms of their potential impact on the security of the 

application and user data. Understanding the causes of vulnerabilities is key to 

subsequent remediation. 

- Vulnerability Severity Assessment: Each vulnerability should be 

assessed in terms of its potential impact on system security. Vulnerability severity 

helps determine the priority order for remediation. 

Risk Factors: Each outcome is assigned two factors to measure its risk. The 

factors are measured on a scale of 1 (low), 2 (medium) to 3 (high). 

Impact: Indicates the impact of the identified factor on technical and 

business operations. It covers aspects such as confidentiality, integrity and 

availability of data or systems, as well as financial or reputational losses. 

Likelihood: Indicates the potential for exploiting the research findings. It 

takes into account aspects such as the attacker's skill level and relative ease of use. 

Low: Vulnerabilities that have either a very low business impact or a very 

high probability, or a very low probability but a high business impact are 

considered low severity vulnerabilities. Additionally, vulnerabilities that have both 



46 

 

 

a low impact and a low probability are considered low severity. The risk score 

ranges from 0 to 3. 

Medium: Vulnerabilities with moderate business impact and probability are 

considered "Medium". This also includes vulnerabilities that have either a very 

high business impact combined with a low probability, or a low business impact 

combined with a very high probability. Risk score 3 to 6. 

High: Vulnerabilities with a high or greater business impact and a high or 

greater probability of occurrence are considered high severity vulnerabilities. Risk 

score of at least 6. 

Table 2.1 provides an example of a “Risk Score” calculation. A risk score 

can be defined as the product of impact and probability. For example, a risk score 

is calculated using the formula: 

Risk assessment = Impact * Probability. 

 

Table 2.1 – Definition of risk factors 

 

 

The report creation process consists of the following steps: 

- Creating a report structure. The report should have a clear structure, 

including a description of the vulnerabilities found, their severity, possible 

consequences, and recommendations for remediation. 

- Detailed description of vulnerabilities. Each vulnerability should be 

described in detail, including methods of exploitation, possible consequences, and 



47 

 

 

recommendations for remediation. Examples of attacks and appropriate security 

measures should be included. 

- Recommendations for remediation. You should provide specific 

recommendations for remediating each vulnerability you find. Include detailed 

steps or recommendations for improving your code, application architecture, or 

security processes. 

- Conclusions and recommendations. Finally, you need to draw 

conclusions from the analysis and provide general recommendations for further 

steps to improve the security of the application. 

 

 

Figure 2.9 – Diagram of the report creation algorithm 

 

Table 2.1 shows a matrix of the correspondence of testing tools to testing 

stages. 

 

 



48 

 

 

Table 2.1 – Matrix of correspondence of testing tools to testing stages 

 

 

Table 2.2 – Matrix of compliance of testing tools with the OWASP MASVS 

security standard 

 

 

These MASVS testing tools demonstrate that they can test different aspects 

of mobile application security testing. Depending on your specific needs and the 



49 

 

 

platforms you are testing, you can choose the most suitable tools for mobile 

application penetration testing. 

At the preparation and information collection stages, it is necessary to 

determine what technologies the application works with, such as Rest Api, gRPC, 

Local Database, etc. to determine test sets. 

This section analyzed the methods and tools for testing a mobile application 

for penetration, and provided recommendations in the form of step-by-step stages 

of testing a mobile application for penetration. 



50 

 

 

3. 3. IMPLEMENTATION OF INFORMATION TECHNOLOGY MOBILE 

APPLICATION PENETRATION TESTING 

 

3.1. Mobile application penetration testing 

 

For black box and white box penetration testing, Kali Linux [22] was chosen 

as the test environment and Android Studio [23] was chosen for analyzing the 

source code of the application. Testing will be conducted on a commercial 

application that is hosted on Play Market and is regularly updated. 

At the information gathering stage, it was discovered using Android Studio 

that the following actions would need to be performed on the application (Table 

3.1): 

verification of the configuration of cryptographic standard algorithms; 

checking local storage for confidential data; 

testing backups for confidential data; 

testing program permissions; 

testing local storage to verify entered data; 

testing data encryption in the REST API network. 

Using Android Studio, you need to analyze the source code of a commercial 

application and find potential vulnerabilities. 

Verify the configuration of cryptographic standard algorithms. This requires 

using Android Studio. 

At analysis not was revealed cryptographic copies. ToExamples include: 

– classes Cipher, Mac, MessageDigest, Signature; 

– Key, PrivateKey, PublicKey, SecretKey interfaces; 

– getInstance or generateKey functions; 

 exclusion KeyStoreException, CertificateException, 

NoSuchAlgorithmException; 



51 

 

 

– classes, What use packages java.security.*, 

javax.crypto.*,android.security.* and android.security.keystore.*. 

 

Table 3.1 – Matrix compliance tools testing to application vulnerabilities 

found 

 

 

You need to use Android Studio to check local storage for sensitive data and 

local storage for input validation. Analysis revealed that the data is stored in 

SharedPreferences. 

– Data storage is done using SharedPreferences (Figure 3.1). The 

SharedPreferences API is typically used to persistently store small collections of 

key-value pairs. The data stored in a SharedPreferences object is written to a plain 

XML text file (Figure 3.2). A SharedPreferences object can be declared public 



52 

 

 

(accessible to all applications) or private, in our case SharedPreferences is declared 

private. 

 

Figure 3.1 – Shared Preferences implementation code in private mode 

 

Data stored in SharedPreferences is not encrypted by default. This 

means that if someone gains access to the device files, they can easily view 

and modify the stored data. Trying to store user passwords using 

SharedPreferences is not secure. Passwords should be protected, and it is 

better to use more secure mechanisms such as KeyStore or authentication 

management libraries for this. SharedPreferences can be easily accessed by 

other applications or even the user if they have rooted devices. 

SharedPreferences does not provide a mechanism to control access to 

data if it has access type MODE_WORLD_READABLE "allows other 

applications to read settings" or MODE_WORLD_WRITEABLE "allows 

other applications to write new settings". Other applications may have access 

to your SharedPreferences, which may lead to unwanted disclosure of 

sensitive information. 

You can see that the data is stored in plain text. 

– When opening the Logcat menu item in Android Studio, 

sensitive data logging was found, which displays a log of system messages, 

including messages that work with the REST API (Fig. 3.3). 



53 

 

 

 

 

Figure 3.3 – Confidential user data 

 

– Cached images were detected in the application file system at the path 

data/app_name/cache/images (Fig. 3.4). 

Checking backups for sensitive data. To do this, you need use Android 

Studio. 

– In the AndroidManifest.xml file, an allowBackup setting was found 

that was set to allowed mode (Figure 3.5). This setting allows anyone to backup 

the application data using adb. This will allow users who have enabled USB 

debugging to copy the application data from the device. 

 



54 

 

 

 

Figure 3.4 – View of cached image in application files  

 

 

Figure 3.5 – Full backup capability in Android 

 

– A screenshot of the current screen when an Android application goes 

into the background and is displayed in the list of open applications may lead to 

the leakage of confidential user information. (Fig. 3.6 (a), 3.6 (b)). 



55 

 

 

 

a)      b) 

Figures 3.6 – Screen with user conference data: a – in the application, b – in 

minimized mode 

 

Static analysis is based primarily on obtaining the source code, binary code, 

studying it to identify vulnerabilities, and analyzing the functioning of the 

program. 

Using the MobSF (Mobile Security Framework) utility, we perform a static 

analysis of our application (Fig. 3.7). 

After downloading the application APK, MobSF provides the following 

information: 



56 

 

 

Information about security rating, file information, and application 

information (Fig. 3.8). 

 

 

Figures 3.7 – MobSF utility settings 

 

 

Figures 3.8 – MobSF utility settings 

 



57 

 

 

To check and test the permissions of an application, you need to use the 

MobSF utilities. Different types of permissions that the application will use are 

identified (Fig. 3.9). 

 

Figures 3.9 – Application Permissions 

 

To test data encryption in the REST API network, you need to use the 

MobSF utilities. A configuration issue has been identified with network traffic 

encryption when using the REST API (Figure 3.10). Error description: The base 

configuration is not securely configured to allow clear text traffic to all domains. 

 

Figures 3.10 – Data encryption on the network 

The Application was found to be without proper code obfuscation. The 

decompiled Application shows all class names and parameters (Fig. 3.11). 



58 

 

 

 

Figures 3.11 – Class without proper obfuscation 

 

Using Kali Linux, using the drozer (Fig. 3.11 (a)) and drozer agent (Fig. 

3.11 (b)) utilities, we will test the application for penetration: 

First you need to go to the drozer console and configure the drozer agent 

with the following commands: 

sudo docker pull fsecurelabs/drozer sudo docker run -it fsecurelabs/drozer 

sudo adb forward tcp:31415 tcp:31415. 

 

а)     b) 

Figures 3.12 – Result of drozer agent configuration: a - in kali linux, b - in 

smartphone 



59 

 

 

We connected the drozer agent to our smartphone (Fig. 3.13) using the 

command: drozer console connect --server 192.168.0.173. 

 

Figure 3.13 – Result of connecting drozer agent to smartphone via IP 

 

Command list - shows a list of all drozer modules that can be 

running in the current session. Hides modules that you do not have the 

appropriate permissions to run (Fig. 3.13). 

 

Figures 3.13 – List of dorzer modules 

 



60 

 

 

Using the run app.package.list command, in the drozer console we find all 

the packages of various applications on the smartphone (Fig. 3.14). 

 

Figure 3.14 – List of all packages on the smartphone 

 

Using the run app.service.info command in the drozer console, we obtain 

information about the exported services and using the run app.activity.start –

component SplashActivity command, we launch the SplashActivity activity (Fig. 

3.15). 

Using the run app.package.attacksurface command in the drozer console, we 

get the package attack surface (Figure 3.16). 

Using the run app.package.manifest app.prod command in the drozer 

console, we obtain the contents of the AndroidManifest.xml file, Figure 3.17 (a) 

shows which permissions the application uses, and Figure 3.17 (b) shows the main 

activity of the application. 



61 

 

 

 

 

Figures 3.15 - The result of an attack on SplashActivity 

 

 

Figures 3.16 – Application Packages 

 



62 

 

 

 

a)      b)  

Figures 3.17 – Contents of the AndroidManifest.xml file: a – 1st part of the 

file, b – 2nd part of the file 

 

The run scanner.provider.injection command in the drozer console is used to 

check for content provider injection vulnerabilities in an Android application. 

 

 

Figures 3.18 – Content Provider Vulnerability Injection  

 



63 

 

 

Result It can be seen that no vulnerabilities were detected using this attack 

injection of content providers into an Android application. 

The run scanner.provider.sqltables --package app.prod command in the 

drozer console is used to extract information about SQLite database tables opened 

by content providers in an Android application. 

 

Figures 3.19 – Result of SQLite table attack 

 

It is clear that the attack was not successful, no SQLite tables were detected. 

After testing the application, you need to analyze the application for 

penetration testing and provide recommendations for their neutralization. 

 

3.3. Creating a report 

 

The report should have a clear structure, including a description of the 

vulnerabilities found, their severity, possible consequences, and recommendations 

for remediation. Each vulnerability should be described, including methods of 

exploitation, possible consequences, and recommendations for remediation. Each 

vulnerability should be rated in terms of its potential impact on the security of the 

system. The severity of the vulnerabilities helps determine the order of priority for 

remediation. Specific recommendations for remediation for each vulnerability 

found should be provided. Add detailed steps or recommendations for improving 

the code, application architecture, or security processes. 

The content of the mobile application penetration testing report includes the 

following subsections: 

 1.0 Risk Calculation Methodology 

 2.0 Summary 



64 

 

 

 2.1 Sensitive data in logs 

 2.2 Lack of proper obfuscation of application code 

 2.3 Automatically generated screenshots of conference data actions 

 2.4 Lack of fault tolerance configuration 

 3.0 Conclusions 

Section 1.0 describes the methodology for calculating risks. 

Risk Factors: Each outcome is assigned two factors to measure its risk. The 

factors are measured on a scale of 1 (low), 2 (medium) to 3 (high). 

Impact: Indicates the impact of the identified factor on technical and 

business operations. It covers aspects such as confidentiality, integrity and 

availability of data or systems, as well as financial or reputational losses. 

Likelihood: Indicates the potential use of the research results. It takes into 

account aspects such as the level of attacker's skills the attacker's skill level and 

relative ease of use. 

High: Vulnerabilities with a high or greater business impact and a high or 

greater probability of occurrence are considered high severity vulnerabilities. Risk 

score of at least 6. 

Medium: Vulnerabilities with a moderate business impact and probability 

are considered Medium. This also includes vulnerabilities that have either a very 

high business impact combined with a low probability, or a low business impact 

combined with a very high probability. probability. Risk score from 3 to 6. 

Low: Vulnerabilities that have either a very low business impact or a very 

high probability, or a very low probability but a high business impact are 

considered low severity vulnerabilities. Additionally, vulnerabilities that have both 

a low impact and a low probability are considered low severity. The risk score 

ranges from 0 to 3. 

Section 2.0 describes the Executive Summary. 

A penetration test was conducted on the Android application PROD_APP. 

INFORMATION ABOUT THE APPLICATION 



65 

 

 

Application name: PROD_APP Package name: prod 

Main Activity: SplashActivity Target SDK: 33 

Minimum SDK: 23 

Android version name: 1.0.0.0.0-prod Android version code: 100000 

APK signed v1 signature: True v2 signature: True v3 signature: False 

This white box and black box assessment was conducted to identify 

loopholes in the application from a security perspective. This assessment aimed to 

identify vulnerabilities present in the application that could lead to injection, 

information leakage, and other risks that could cause potential business losses. 

This report presents the results of the assessment. 

Overall, several findings were identified during the evaluation, which will be 

described in detail in the "Conclusions" section. 

Sections 2.1 – 2.4 describe all vulnerabilities found in the mobile 

application. 

Section 2.1 describes confidential data in logs. Risk factors: Medium 

Probability: Medium Impact: Medium 

Attack Vector: Individual User 

Description: The application uses a record to register sensitive information, 

such as the user's JWT token, user data, and user name and surname (Figure 3.3). 

Consequences: If an attacker gains access to the phone (physical or remote), 

he can set up log collection. 

Recommendation: 

- Disable collection of sensitive data. 

Reference: Sensitive Data - OWASP Mobile Application Security [32]. 

Section 2.1 describes the lack of proper obfuscation of the application code. 

Risk Severity: Low Probability: Medium Impact: Low 

Attack Vector: Individual User 

Description: The application was compiled without proper code obfuscation. 

The decompiled program shows all class names and parameters. Code obfuscation 



66 

 

 

can significantly increase the complexity of understanding the logic of the program 

(Fig. 3.11). 

Impact: An attacker can easily decompile the code, understand the program 

logic, and use this knowledge for further attacks. 

Recommendation: 

- Code obfuscation should be done before compilation. Reference: Sensitive 

Data - OWASP Mobile Application Security [33]. 

Section 2.3 describes automatically generated screenshots of conference data 

actions. 

Risk Severity: Low Probability: Low Impact: Low 

Attack Vector: Individual User 

Description: A screenshot of the current activity is taken when an Android 

app goes to the background and is displayed for aesthetic purposes when the app 

returns to the foreground. However, this may lead to the leakage of sensitive 

information. 

Impact: An attacker may be able to access a folder containing automatically 

generated screenshots, which may lead to information disclosure. 

Recommendation: 

- Install flag "SAFELY" for actions with confidential 

information 

Reference: Finding Sensitive Information in Auto-Generated Screenshots - 

OWASP Mobile Application Security [34]. 

Section 2.4 describes the lack of fault tolerance configuration. Risk severity: 

Low 

Probability: Low Impact: Low 

Attack Vector: Individual User 

Description: The program does not detect rooted, emulated, or unencrypted 

devices. 



67 

 

 

Impact: An attacker could exploit this flaw to test an application to find 

vulnerabilities or manipulate it. 

Recommendation: 

- Configure detection of rooted, emulated, unencrypted devices 

References: Testing Root Detection - OWASP Mobile Application Security 

[35], Testing Emulator Detection - OWASP Mobile Application Security [35]. 

In section 3.0, you need to write a conclusion on the penetration testing of a 

mobile application. 

During the penetration test of the Android application, several critical 

vulnerabilities were discovered that could pose serious risks to the security of the 

application and the user's confidential information. 



68 

 

4 SAFETY OF LIFE, BASIC LABOR PROTECTION 

 

4.1. Labor protection requirements when working with electrical 

equipment 

 

General provisions 

The labor protection instructions for an electrician when performing repair 

and maintenance work on electrical equipment were developed in accordance with 

the Law of Ukraine “On Labor Protection” (Resolution of the Verkhovna Rada of 

Ukraine dated 10/14/1992 No. 2694-XII) as amended on 01/20/2018, based on the 

“Regulations on the Development of Labor Protection Instructions”, approved by 

the Order of the Labor Protection Supervision Committee of the Ministry of Labor 

and Social Policy of Ukraine dated January 29, 1998 No. 9 as amended on 

September 1, 2017, taking into account the “Rules for the Technical Operation of 

Consumer Electrical Installations”, approved by the Order of the Ministry of Fuel 

and Energy dated July 25, 2006. No. 258 (as amended by the order of the Ministry 

of Energy and Coal Industry of Ukraine dated 13.02.2012 No. 91, “Rules for the 

safe operation of electrical installations of consumers”, approved by the order of 

the State Supervision Service of Ukraine dated 09.01.1998 No. 4. 

All provisions of this labor protection instruction apply to electricians of an 

educational institution who perform repair and maintenance work on electrical 

equipment. 

Persons not younger than 18 years old who have undergone training in the 

specialty and who are also allowed to perform repair and maintenance work on 

electrical equipment independently are: 

a medical examination and do not have contraindications due to health to 

perform this work; 

introductory and primary workplace briefings on labor protection; 

training in safe methods and techniques of work; 



69 

 

 

testing of knowledge of the rules for installing electrical installations, safety 

rules for operating electrical installations, labor protection requirements; 

when repairing and maintaining electrical equipment voltage up to 1000V 

have an electrical safety group not lower than III, and over 1000V - not lower than 

IV. 

Electricians must know and comply with the requirements of the labor 

protection instructions when performing work on the repair and maintenance of 

electrical equipment, instructions for working with hand tools, power tools and 

ladders. 

Electricians when performing work on the repair and maintenance of 

electrical equipment must comply with the requirements of the Rules for the safe 

operation of electrical installations of consumers and the Rules for the technical 

operation of electrical installations of consumers, and have an appropriate 

electrical safety group in accordance with the requirements of these Rules. 

When performing work on the repair and maintenance of electrical 

equipment, the impact of the following harmful and dangerous production factors 

may be observed: 

fall from a height; 

electric shock; 

increased electric field strength; 

increased dustiness of the air in the work area; 

increased vibration level; 

insufficient illumination of the work area; 

physical overload; 

neuropsychic overload. 

Electricians when performing repairs and maintenance of electrical 

equipment must use the following PPE: 

cotton overalls - for 12 months; 

gloves for - 3 months; 



70 

 

 

leather boots for - 24 months; 

dielectric galoshes - on duty; 

dielectric gloves - on duty; 

dielectric mats - on duty. 

An electrician when repairing and maintaining electrical equipment is 

obliged to: 

keep his workplace clean and tidy; 

comply with the Rules of Internal Labor Regulations; 

be able to use personal and collective protective equipment, fire 

extinguishing equipment; 

be able to provide first aid to accident victims; 

know and comply with all requirements of regulatory acts on labor 

protection, fire protection rules and industrial sanitation. 

immediately inform your immediate supervisor about any accident that 

occurred at work, about signs of an occupational disease, as well as about a 

situation that poses a threat to the life and health of people; 

know the testing dates of protective equipment and devices, the rules for 

their operation, care and use. It is not allowed to use protective equipment and 

devices with an expired inspection period; 

perform only the assigned work; 

comply with the requirements of the equipment operating instructions; 

know where the first aid facilities, primary fire extinguishing equipment, 

main and emergency exits, evacuation routes in the event of an accident or fire are 

located; 

know the telephone numbers of a medical institution (103) and fire 

department (101). 

An electrician may refuse to perform the work assigned to him if a 

production situation arises that poses a threat to his life and health of others, or to 

the environment, and report this to his immediate supervisor. 



71 

 

 

Smoking, drinking alcoholic beverages and other substances that have a 

narcotic effect on the human body are prohibited in the workplace. 

In order to prevent injuries and the occurrence of dangerous situations, the 

following requirements must be observed: it is impossible to involve third parties 

in the work; 

do not start work if there are no conditions for its safe performance; 

perform work only on serviceable equipment, with serviceable devices and 

tools; 

if a malfunction is detected, immediately report it directly to 

to the manager or eliminate them on their own, if this applies to their job 

duties; 

not to touch uninsulated or damaged wires; 

not to perform work that is not part of their professional duties. 

Be able to provide first aid for bleeding, fractures, burns, electric shock, 

sudden illness or poisoning. 

Follow the rules of personal hygiene: 

outerwear, hats and other personal belongings should be left in the 

wardrobe; 

work in clean overalls; 

eat in the designated place. 

Be able to correctly use PPE and collective protection equipment, primary 

fire extinguishing equipment, fire-fighting equipment, know where they are. 

Persons who violate this labor protection instruction for an electrician when 

performing repair and maintenance work on electrical equipment shall bear 

disciplinary, administrative, material and criminal liability in accordance with the 

current legislation of Ukraine. 

Safety requirements before starting work 

Wear overalls, inspect and prepare the workplace, remove unnecessary 

objects. 



72 

 

 

Remove unauthorized persons from the work area and clear the workplace of 

foreign materials and other objects, fence off the work area and install safety signs. 

Make sure that the workplace is sufficiently illuminated, that there is no 

electrical voltage on the repaired equipment. 

Inspect the serviceability of switches, electrical outlets, power cords, 

electrical wires, connecting cables, make sure that PPE (personal protective 

equipment) and warning devices (dielectric gloves, safety glasses, galoshes, mats, 

etc.) are available and in good condition. 

When working with a tool, it is necessary to make sure that it is in good 

condition, that there is no mechanical damage to the insulating coating and that the 

tool has been tested in a timely manner. 

Inspect the workplace for compliance with fire safety requirements and for 

adequate workplace lighting. 

If you find any deficiencies or violations in electrical and fire safety, 

immediately report them to your immediate supervisor. 

 

4.2. Safety requirements during work 

 

When performing your duties, an electrician must have a certificate of 

knowledge testing on labor protection. In the absence of a certificate or a 

certificate with an expiration date, the employee is not allowed to work. 

Work in electrical installations is divided into 3 categories in terms of safety 

measures: 

with voltage relief; 

without voltage relief on or near live parts; 

without voltage relief away from live parts. 

Employees performing special types of work that require additional safety 

requirements must be trained in the safe conduct of such work and have a 

corresponding entry in the knowledge test certificate. 



73 

 

 

An employee who serves electrical installations assigned to him with a 

voltage of up to 1000 V alone must have a III group on electrical safety. 

When performing work in electrical installations, it is necessary to carry out 

organizational measures that ensure the safety of work: 

draw up work orders-permits, orders in accordance with the list of works 

performed in the order of current operation; 

prepare workplaces; 

admittance to work; 

exercise control over the performance of work; 

transfer to another workplace; 

establish breaks in work and its completion. 

To prepare the workplace for work that requires voltage relief, it is necessary 

to apply, in a certain order, the following technical measures: 

perform the necessary shutdowns and take all measures that exclude 

erroneous or unauthorized switching on of switching equipment; 

hang prohibition posters on the drives of manual and remote control keys of 

switching equipment; 

check for the absence of voltage on conductive parts that must be grounded 

to protect people from electric shock; 

install grounding (turn on grounding knives, use portable grounding); 

install fences, if necessary, near workplaces or live parts that remain under 

voltage, and also hang safety posters on these fences. 

depending on local conditions, fence live parts before or after their 

grounding. 

At least two workers should work without removing voltage on or near live 

parts, one of whom, the work supervisor, must have group IV; the others must 

have group III with mandatory registration of the work with a work permit or 

order. 



74 

 

 

When removing and installing fuses under voltage in electrical installations 

with voltage up to 1000 V, all loads connected to the specified fuses should be 

disconnected in advance; use insulating pliers or dielectric gloves, and if there are 

open fuse inserts, then safety glasses. 

Work using ladders must be carried out by two people, one of the workers 

must be at the bottom. Standing on boxes or other objects is prohibited. P 

When installing extension ladders on beams, elements of metal structures, 

etc., the upper and lower parts of the ladder should be securely fixed to the 

structures. 

During maintenance and repair of electrical installations, it is prohibited to 

use metal ladders. 

 

4.3. Safety requirements after completion of repair and maintenance of 

electrical equipment 

 

Disconnect (disconnect) the necessary electrical equipment, power tools 

from the network. 

Clean up the workplace, remove parts, material, garbage and waste to 

special places. 

Remove all tools and devices to the designated place. 

Remove and remove overalls, PPE, wash hands thoroughly. 

Inspect the workplace for compliance with all fire protection requirements. 

Notify your immediate supervisor of any deficiencies and malfunctions that 

occurred during the work. Record this in the operational log. 

Safety requirements in emergency situations 

In case of fire: 

turn off electrical equipment, supply and exhaust ventilation, if any; 

notify the fire department by calling 101 and report this to your supervisor, 

and in his absence, to another official; 



75 

 

 

proceed to eliminate the source of the fire, using the fire extinguishing 

agents provided for this purpose. Extinguish electrical equipment that is under 

voltage can only be extinguished with carbon dioxide fire extinguishers of the OU 

type or sand. It is prohibited to extinguish them with water or foam fire 

extinguishers. 

The electrician must remember that in the event of a sudden power outage, it 

can be supplied again without warning. 

Mechanisms and devices should be quickly turned off: 

in the event of a sudden power outage; 

if their further operation threatens the safety of employees; 

in the event of a feeling of electric current when touching metal parts of the 

starting equipment; 

in case of sparking; 

at the slightest sign of ignition, smoke, or a burning smell; 

if an unfamiliar noise appears. 

In the event of a short circuit in the power supply network, it is necessary to 

de-energize the equipment and notify your immediate supervisor. 

If an electric shock occurs, the victim should be released from the action of 

the electric current, for which purpose the electrical network should be turned off 

or the victim should be disconnected from the conductive parts using dielectric 

protective equipment and other insulating items and objects (dry clothing, dry pole, 

rubberized material, etc.), or the wire should be cut (chopped) with any tool with 

an insulating handle, carefully, without causing additional injuries to the victim. 

Before the arrival of a medical worker, it is necessary to provide the victim with 

first aid. 

In the event of accidents (injury to a person), immediately notify the 

immediate supervisor. 

 



76 

 

CONCLUSIONS 

 

During the qualification work, the tasks were analyzed, the objectives were 

defined, and the requirements were set, following which the set goal can be 

achieved. The relevance of solving the problem of mobile application penetration 

testing in cybersecurity was analyzed. 

An analysis of methods and existing tools for mobile application penetration 

testing was conducted. It was determined that the problem is quite relevant. A 

decision was made to improve the mobile application penetration testing process 

by developing information technology. 

Methods and tools for testing mobile applications for penetration were 

analyzed. After analyzing and comparing methods and tools for testing mobile 

applications for penetration, it was determined that OWASP is the best method for 

testing mobile applications for penetration, but the disadvantage of each method is 

that they do not provide information on how to create a test report and which 

method and tool should be used for testing different types of applications. 

The developed information technology was tested. After testing, a number of 

errors were identified, which included a description of the severity of the threat 

risk, the probability of the threat, the impact on the application, and 

recommendations were provided on what to do to avoid this or that threat to the 

security of the application and user data. 

This information technology can be used for penetration testing of mobile 

applications. Information technology consists of different stages, so it is easy to 

adapt it to the required tasks, expand or change the functionality. 



77 

 

REFERNCES 

 

1. Mobile App Security: A Comprehensive Guide to Penetration Testing: 

Website. URL: https://qualysec.com/mobile-application-penetration-testing-a-

guide/ (date of application 12.2024). 

2. Android Platform architecture: website. URL: 

https://developer.android.com/guide/platform (date of application 2024). 

3. Android OperatingSystem: website. URL: 

https://www.javatpoint.com/android-operating-system (date of application 

12.2024). 

4. Android <permission>: website. URL: 

https://developer.android.com/guide/topics/manifest/permission-element (date of 

application 12.2024). 

5. What are the Different Protection Levels in Android Permission? >: 

website. URL: https:///www.geeksforgeeks.org/what-are-the-different-protection-

levels-in-android-permission/ (access date 02.2025). 

6. Permissions on Android: website. URL: 

https://developer.android.com/guide/topics/permissions/overview (date of 

application 03.2025). 

7. Smartphone Security and Privacy: A Survey on APTs, Sensor-Based 

Attacks, Side-Channel Attacks, Google Play Attacks, and Defenses: Website. 

URL: https://www.mdpi.com/2227-7080/11/3/76 (date of application 03.2025). 

8. About Android App Bundles: website. URL: 

https://developer.android.com/guide/app-bundle (date of application 04.2025). 

9. How Google Play works:website. URL: 

https://play.google/howplayworks/ (date of application 04.2025). 

10. Mobile App Security: A Comprehensive Guide to Penetration Testing: 

Website. URL: https://qualysec.com/mobile-application-penetration-testing-a-

guide/(date of application 04.2025). 

https://qualysec.com/mobile-application-penetration-testing-a-guide/
https://qualysec.com/mobile-application-penetration-testing-a-guide/
https://developer.android.com/guide/platform
https://www.javatpoint.com/android-operating-system
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/permissions/overview
https://www.mdpi.com/2227-7080/11/3/76
https://developer.android.com/guide/app-bundle
https://play.google/howplayworks/


78 

 

 

11. OWASP Mobile Application Security Mobile Application Security 

Testing - Penetration Testing (aka Pentesting): Website. 

URL:https://mas.owasp.org/MASTG/General/0x04b-Mobile-App-Security-

Testing/#penetration-testing-aka-pentesting (date of application 04.2025). 

12. OWASP Mobile Application Security:website. URL: 

https://mas.owasp.org/(date of application 04.2025). 

13. NIST SP 800-163 Rev. 1 - Vetting the Security of Mobile 

Applications: website. URL: https://csrc.nist.gov/pubs/sp/800/163/r1/final(date of 

application 05.2025). 

14. Mobile Application Security Testing (MAST) - Challenges & Tools: 

Website. URL: https://snyk.io/learn/application-security/mobile-application- 

security/mast-mobile-app-sec-testing/(date of application 05.2025). 

15. Vetting the Security of Mobile Applications: NIST Publishes SP 800-

163 Revision 1: website. URL: https://csrc.nist.gov/news/2019/nist-publishes-sp-

800- 163-rev-1 (accessed 05.2025). 

16. NIST SP 800-163 Rev. 1 (Initial Public Draft): website. 

URL:https://www.iso.org/standard/75652.html (date of application 05.2025). 

17. PCI DSS (Payment Card Industry Data Security Standard): website. 

URL: https://csrc.nist.gov/pubs/sp/800/163/r1/ipd (accessed 05.2025). 

18. Sonarhttps: website. URL:www.sonarsource.com/(date of application 

05.2025). 

19. Checkmarx: Website. URL:https://checkmarx.com/(date of 

application 05.2025). 

20. Fortify: website. URL: https://www.microfocus.com/en- 

us/cyberres/application-security(date of application 05.2025). 

21. config-check: website. URL: https://www.npmjs.com/package/config- 

check(date of application 05.2025). 

22. Kali - The most advanced Penetration Testing Distribution: website. 

URL: https://www.kali.org/(date of application 06.2025). 

https://www.iso.org/standard/75652.html


79 

 

 

23. Android Studio: Website. URL: 

https://developer.android.com/studio(date of application 06.2025). 

24. IntelliJ IDEA – the Leading Java and Kotlin IDE: Website. 

URL:https://www.jetbrains.com/idea (date of application 06.2025). 

25. Burp Suite - Application Security Testing Software: Website. 

URL:https://portswigger.net/burp (date of application 06.2025). 

26. Wireshark: Website. URL:https://www.wireshark.org/ (date of 

application 06.2025). 

27. Frida. Dynamic instrumentation toolkit for developers, reverse-

engineers, and security researchers.: website. URL: https://frida.re/(date of 

application 06.2025). 

28. Drozer. Comprehensive security and attack framework for Android.: 

website. URL: https://labs.withsecure.com/tools/drozer(date of application 

06.2025). 

29. EncryptedSharedPreferences.: website. URL: 

https://developer.android.com/reference/androidx/security/crypto/EncryptedShared

Preferences (accessed 06.2025). 

30. Android Keystore system.: website. URL: 

https://developer.android.com/privacy-and-security/keystore (accessed 06.2025). 

31. Glide: website. URL: https://github.com/bumptech/glide 

(date(application 06.2025). 

32. Sensitive Data - OWASP Mobile Application Security.: website. 

URL:https://mas.owasp.org/MASTG/tests/android/MASVS-STORAGE/MASTG-

TEST- 0003/(date of application 06.2025). 

33. Testing Obfuscation - OWASP Mobile Application Security.: 

Website. URL: https://mas.owasp.org/MASTG/tests/android/MASVS-

RESILIENCE/MASTG- TEST-0051/(date of application 06.2025). 

34. Finding Sensitive Information in Auto-Generated Screenshots - 

OWASP Mobile Application Security: Website. URL: 

https://www.jetbrains.com/idea
https://portswigger.net/burp
https://github.com/bumptech/glide


80 

 

 

https://mas.owasp.org/MASTG/tests/android/MASVS-PLATFORM/MASTG-

TEST-0010/#static-analysis. 

35. Testing Root Detection - OWASP Mobile Application Security: 

Website. URL: https://mas.owasp.org/MASTG/tests/android/MASVS- 

RESILIENCE/MASTGTEST-0045/ (date of application 06.2025). 

36. Testing Emulator Detection - OWASP Mobile Application Security: 

website. URL: https://mas.owasp.org/MASTG/tests/android/MASVS-

RESILIENCE/ MASTG-TEST-0049/ (accessed 06.2025). 

37. Mobile Security Framework (MobSF): website. URL: 

https://github.com/MobSF/Mobile-Security-Framework-MobSF (accessed 

06.2025). 

38. AppUse PRO - Let AppUse Pro do the work for you! : website. URL: 

https://appsec-labs.com/appuse/ (access date 06.2025). 

39. Quick Android Review Kit: website. URL: github.com/linkedin/qark 

(accessed 06.2025). 

40. AndroBugs Framework: Website. URL: 

https://github.com/AndroBugs/AndroBugs_Framework (access date 06.2025). 

41. Xposed Framework: What It Is and How to Install It: website. URL: 

lifewire.com/xposed-framework-4148451 (accessed 06.2025) 

42. Burp Suite Mobile Assistant: website. URL: 

yw9381.github.io/Burp_Suite_Doc_en_us/burp/documentation/desktop/tools/mobi

le-assistant/index.html (accessed 06.2025). 

43. Y. Leshchyshyn, L. Scherbak, O. Nazarevych, V. Gotovych, P. 

Tymkiv and G. Shymchuk, «Multicomponent Model of the Heart Rate Variability 

Change-point,» 2019 IEEE XVth International Conference on the Perspective 

Technologies and Methods in MEMS Design (MEMSTECH), Polyana, Ukraine, 

2019, pp. 110-113, doi: 10.1109/MEMSTECH.2019.8817379 

44. Lytvynenko, S. Lupenko, O. Nazarevych, G. Shymchuk and V. 

Hotovych, «Mathematical model of gas consumption process in the form of cyclic 



81 

 

 

random process,» 2021 IEEE 16th International Conference on Computer Sciences 

and Information Technologies (CSIT), LVIV, Ukraine, 2021, pp. 232-235, doi: 

10.1109/CSIT52700.2021.9648621 

45. Bodnarchuk, I., Kunanets, N., Martsenko, S., Matsiuk, O., Matsiuk, 

A., Tkachuk, R., Shymchuk, H.: Information system for visual analyzer disease 

diagnostics. CEUR Workshop Proceedings 2488, pp. 43-56 (2019). 

46. Шимчук Г. В. Дослідження методів захисту відомих хмарних 

платформ : кваліфікаційна робота освітнього рівня „Магістр“ „125 – 

Кібербезпека“ / Г. В. Шимчук. – Тернопіль : ТНТУ, 2022. – 74 с.  

47. Методичні вказівки розроблені у відповідності з навчальним 

планом для студентів освітнього рівня бакалавр спеціальності 126 

«Інформаційні системи та технології» / Уклад.: О. Б. Назаревич, Г. В. 

Шимчук, Н. М. Шведа. – Тернопіль : ТНТУ 2020. – 22 c. 

48. V. Kozlovskyi, Y. Balanyuk, H. Martyniuk, O. Nazarevych, L. 

Scherbak and G. Shymchuk, «Information Technology for Estimating City Gas 

Consumption During the Year,» 2022 International Conference on Smart 

Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 2022, pp. 

1-4, doi: 10.1109/SIST54437.2022.9945786. 


