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Abstract. To describe the processes of distribution of elastic waves, a model of a three -dimensional
isotropic body is used under the action of dynamic loads. A well known presentation of the general solution of
equations had been considered in a vector form, which contains four functions. It is established that the function
that describes the expansion waves is uniquely determined by the volume deformation. It is shown that the dynamic
tense-deformed state of the body with zero volumetric extension can be expressed through two independent
functions that satisfy the equation that describes the waves of shift. It is proved that the overall solution of
equations can be expressed through three four dimensional displacement functions, which are defined as the
solutions of wave equations of the second order. This solution was used and an analytical expression of the general
solution of the equations of dynamic theory of elasticity in the curvilinear orthogonal coordinate system was found.
This submission has been used and a clear expression of elastic displacements in the cylindrical coordinate system
was recorded. However, there are multipliers near one displacement function, which depend on the angular
variable, which complicates its practical use. The general solution is regulated in the cylindrical coordinate system
in such a way that the coefficients of the expansion in the Fourier rows do not depend on the angle ¢. This made

it possible to significantly simplify the expression of solution. The components of a stress-deformed state in the
cylindrical coordinate system are recorded.

Key words: cylindrical coordinate system, solution of Navier’s equations, dynamic stresses and
displacements.
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1. INTRODUCTION

Integrating the equations of elasticity theory and finding stresses in an elastic body under
dynamic loads is an important task [1, 2]. The study of the processes of propagation and
diffraction of elastic waves in bodies under the action of a time-varying load is based on the
use of cumbersome mathematical approaches [1, 3, 4], which use the presentation of the general
solution of dynamic equilibrium equations.

Setting and solving problems of elastic dynamics from the beginning of the
19th century. was the object of many studies [5, 6]; in particular, they sought to generalize
the solution of G. Lamé's static equations for isotropic, linearly elastic bodies in the dynamic
case in the Cartesian coordinate system. These dynamic solutions were originally found by
C. L. M.-H. Navier in the partial case when . = 1 ; and also later G. Lamé [7] and G. G. Stokes [6].

In fluid mechanics, they are known as the Navier-Stokes equations. In 1892, C. Somigliana [8]
gave a new representation of the solution of the Navier-Stokes equations using three scalar potential
functions, each of which satisfies the double wave equation (fourth order in partial derivatives).
This representation remained forgotten for a long time until M. lacovache [6] independently
rediscovered it in vector form in 1949. Based on the representation of Somigliana [8], E. Sternberg
and R. A. Eubanks [9] proposed a representation of the solution using four scalar potential
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functions, one of which satisfies the equation of longitudinal waves (second order in partial
derivatives), and the other three satisfy the equation of transverse second order waves.
This representation of the Navier-Stokes equations in the dynamic case generalizes the
well-known Papkovich-Neuber [2] representation given for the Lamé equations in the static
case.

The paper [10] provides a quantitative and qualitative analysis of wave fields in a
half-space, a layer, and a cylinder. In [10], the peculiarities of the reflection of elastic waves
from the boundary of these regions were considered, and in [11], the scattering of waves in
a half-space was investigated and the peculiarities of its elastic wave motions were studied.
The problems of the dynamic theory of elasticity are among the most complex problems of
a deformable solid. Currently, representations of the general solution in vector form are
widely used [1, 4, 5, 10], which contain four functions that satisfy second-order wave
equations.

The work [12] proposed a method of reducing dynamic problems of the theory
of elasticity for an infinite body weakened by a crack to integral singular equations
using four potentials. It was shown that it is sufficient to consider only three potential
functions. In work [13] it is proved that the general solution of the equations of the static
isotropic theory of elasticity is expressed in terms of three three-dimensional harmonic
functions that satisfy the static equations of the second order. The purpose of the article is
to find a general solution of three-dimensional dynamic problems of the theory of elasticity
through three functions in Cartesian, curvilinear orthogonal and cylindrical coordinate
systems.

2. FORMULATION OF THE PROBLEM AND RECORDING OF
EQUILIBRIUM EQUATIONS OF AN ELASTIC BODY IN THE DYNAMIC CASE

Consider the general formulation of a three-dimensional dynamic problem of elasticity
theory. Suppose an elastic isotropic body is in a state of elastic dynamic equilibrium:

XQ=X, X0 =Y, X3=2Z ., We will assume that the dynamic deformations of the body are

negligible and depend on time in a nonlinear manner.
Strain components according to Hooke's law are related to stress components [2, 5]:

1 1 .
Sj :’ij :E{(1+V)Gj —V@}, ’ij za‘tkj,kij, (1)
: N : E
where E is Young's modulus; , is Poisson's ratio; ® = 61 +069 +03, G = 201+ v) is the shear
\Y
modulus. We also write down the explicit expression of the physical relations
Tkk EGk:7\.6+2GSk, Tkj :Gykj,kij, (2)
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We substitute the components of the stress tensor (2) into the equilibrium equation, take
into account the expression of deformations (3), and after transformations we obtain the known
equations of dynamic equilibrium in displacements [2, 4]

2

GV2u+(G +k)grade:pa—;. 4)
ot

Applying the divergence operator to the system of equations (4), we obtain the equation that
must satisfy the volume deformation

Le=0, ®)

2
where L, =c?v? _ 9" s the wave operator, ¢; = 6(1-v)
at? (1-2v)p

expansion waves.
Itis known [2, 4] that the volume deformation can be expressed in terms of a single function

is the speed of propagation of

u=grad(1>,e=V2‘D, (6)

where the function @ satisfies equation (5). In [1, 4], a general solution to the system of
equations (4) is given through four functions

u =grad @ +rot ;i +rot ¥, j+rot Y3k | (7

where the functions W' j, j = 1,3 satisfy the equations

22 07

ot ®)

¢, =+/G/p is the propagation speed of shear waves. It is known [3, 5], that a part of the vector
rotational displacements (7) uj=rot(¥ej), j=13 have zero volume deformation.
Therefore, the function @ in form (7) is certainly determined by the volume deformation

5, 8%®

2
e=Cc; *——, ®=c ||edtdt. 9
ot2 1 ”

The unknown integration functions in the second equation (9) can be set to zero, since
the displacements are nonlinear in time.

3. CONSTRUCTION OF THE GENERAL SOLUTION OF THE EQUATIONS
OF THE DYNAMIC THEORY OF ELASTICITY THROUGH THREE FUNCTIONS

Let us find the general expression of elastic displacements that satisfy equation (4) but have
zero volume deformation, e = 0. For such displacements, the system of equations (4) will take a
simplified form
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The condition e = 0 implies that the displacements (10) have to satisfy the equation:

aul __ aUZ B 8U3 (11)
oX;  OXy OXg

Lemma 1. The dynamic stress-strain state of a body with zero volume deformation can
be given as

u = rot ¥, j + rot ¥, k , (12)

where W), k = 1,2 are independent functions satisfying equation (8).
Proof. The vector displacements (12) have the form
oY, oV 02w, v,

U=—=——=, Up=-— , Ug=—, 13
1 2 ox 37 (13)

where ¥, = M, k =1,2 . The components of the vector (13) satisfy equations (8), (11).
k

Let us consider an arbitrary vector solution ., of equations (8) under condition (11). In
general, its components can be represented as

o 8
wy = V2 oy, =Y (14)

oy,
W, = ——,
1 OX OX 3 OX

0 Oyy  Oyy 0yg3
— + + =0
8x( ox oy oz )=0, (19)

where  j are functions satisfying equations (8), (11). Let us show that the displacement
representations (13), (14) are equivalent. We compare them with each other and obtain
equalities: Y1 = V3, w, =y, . Subtract the components of (13) from the relations (14) and

write the displacement difference vj =W —uj;:

Oy1 , W2  OV3
OX oy 0z

vy = , V2 =0, v3=0. (16)

Since the condition (15) coincides with the first equation (16), the component v, is
zero. Therefore, representations of the displacements (13), (14) will be equivalent if we put:

8\|/1 _ 8‘{’2 _ 8‘1’1
ox oy or

V3="11, y,=—w,, (17)

The lemma is proved.
Theorem 1. The general solution of the system of equations (4) can be represented as

u=grad ® +rot Q; j+ rot Q, k , (18)
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where function cD:chﬂedtdt satisfies equation (5), and functions Qy, k=12 satisfy
equation (8).

Proof. We have established that the vector of elastic displacements (18) satisfies
equation (4). Let us prove that any solution U(X,Xo,X3,t) of the system of equations (4)

can always be represented in the form (18). If its volume deformation is zero, then
according to Lemma 1, it will have the form (18), where ® =0. Consider the case when the
volume deformation is not zero, e = 0. According to equation (9), it is always possible to
choose a function @ that defines a given non-zero volume deformation. The theorem is
proved.

4. OBTAINING A GENERAL SOLUTION TO THE EQUATIONS OF THE
DYNAMIC THEORY OF ELASTICITY IN THE CURVED ORTHOGONAL
COORDINATE SYSTEM

To represent the elastic displacements in the curved coordinate system [14], we use the
solution (18), which was found in the invariant vector form. In the curved coordinate system

(%1, %2,%3,t), j=1,3, the displacement vector is notated by Uc(Cq,62,C3,t), and
according to the vector transformation formulas [14], its components will be

1 0D 1 2 —
= +Qy, k=1,3,
Urk = h 2C, +Qk +Qk (19)

2 2 2
e (2] (2] (%)
L agk oCy oCy
i 1 0 8C3 NS 8@2 2
Ql - h2h3 {6@2 |:8Xm h3lP_|:| 8C3 |:8Xm ks :|}’
j_ 1 0 6@1 2 5@3 2
% _hlhs{aciaxm hllp’} acl{ ¥ }} )

Q= 1 02 24, o

] — 2 1 B .
j h = =

° h2hl{aCl {axm 2 J:| 0C2 {8Xm 1 J:|} j=12, m=j+1

are the components of the rotor vector in the orthogonal coordinate system.
The deformations are found after using the displacements (19) by formulas [5]

h u h u o
ykmzi 0 { Qk}rm 0 { Cm}, k=m, km=13
hm hy oGy

where
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k,j=1.3. (21)

The components of the stress tensor can be determined from the relations (2). The
stresses defined by formulas (2), (21) describe the stress-strain state of a three-dimensional
body in an orthogonal coordinate system through three independent functions.

5. EXPRESSION OF THE COMPONENT OF THE DYNAMIC STRESS-
DEFORMED STATE IN THE CYLINDRICAL COORDINATE SYSTEM

Relations (2), (21) are used to determine the stress tensor in the cylindrical coordinate
system Gy =T, (=0, (3=17 (r>0, ¢ —[0,2x]) Which is related to the Cartesian system by
the following formulas [14]

X, =rC0SQ, Xp =rsing, x3=2, y=1,h, =r,hs=1,
. . . : 22
| =cosoe, —singe,, j=Cosee, +sinoe; . (2)

Substitute dependencies (22) into relation (19) and write the expression of elastic
displacements in the cylindrical coordinate system

o0 10¥ oy, 100 0¥ . oWy
= S —Coso u, = ——+sing

Up = ——+——— R RN ;
or r op 0z rop or 674 -
u -ai)+cos Ei(r‘P )—Ei(sin ¥) “
27 5 (Prar 1r r 60 0T ),

where @, w , are independent displacement functions that depend on r, e, z,t. The
function @ satisfies the wave equation (5), and functions w, w,_ satisfy equation (8), where

16 o6 1 8% 82
r =

+ .
ror or r?a¢? oz

The part of the solution (23) defined by the function ,, has a complex expression. This
is because it involves factors that depend on the angle ¢. To construct a simpler expression of

this part of the solution, we will use the general solution (7). Let us represent the functions
w,, v, from (7) as the following Fourier series with respect to the angle ¢ [15]:

¥, = 3 (Phcosne+QLsinng), W, = 3 (W2 cosng+QF sinng) | (24)
n=1 n=1
where the coefficients ‘PnJ , Qr{ depend only on the variables r, z, t. Since the functions v, , w,

are solutions of equation (8), the coefficients ¥ J an satisfy the equation

2 2 2

i 10 o© n 0 0

erﬂ’nj =0, j=1.2, Lﬁzcg[——r———+—]——.
ror or 2 5727 at?
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We put
Qn =+¥7, QF =+¥y. (26)
We will use dependencies (24)—(26) and write the part of the rotary solution (7) in the

cylindrical coordinate system

Wi+ Woj= 3 {[cos(n FL@Wh +sin(1+n)o¥ e, +
n=0 (27)

+[cos(n il)(p‘I’nZ —-sin(1F n)(p\P%]e(p.
To be clear, let us put a sign «+» in expressions (26) and rewrite the relation (27)

o0
Wi+ Woj= Y {lcos(n—L)pWh +sin(n + 1o e, +[cos(n + 1)o7 +
n=0

+sin(n— 1)(p‘P%]e(p.

(28)

Let us use the representation (28), replace the indices and determine the direct value of
the rotor from the vector (28) in the cylindrical coordinate system [14].

o0
u, = _z j[cos mp‘PnZ_l +5sin n(p‘P%H] )
n=192
u(p = z a[cos neY¥, 1 +sin n(p‘I’n,l] ) (29)
n=1

Z{ [Tn+15|n ne — ‘P 1cosn(p]+—[‘11 1cosn(p+‘Pn+15|n nej.
n=1

It should be noted that the displacements (29) replace the displacements defined by the function
v, inexpressions (23). The value of the lower index in the functions is determined by equation (25).
We also represent the functions @, ¥ from representation (23) as Fourier series:

(o] o0
o=> (@1 cosng + D2 sinng), ¥ = > (¥, cosng +Q, sin ng) , (30)
n=1 n=1

where coefficients d)rj,, Q,, ¥, depend only on variables r, z,t and satisfy equation (25).

Substitute the expands (30) into the relations (23) and determine the displacements. Add the
displacements (29) to them and we obtain the general expression for the displacements

1 2
®y N n .
: +FQH - _F\Pn _LPr11+1)S|n ne},
Z{( ®f o | wl,;)cosne- ( D, + ;”—‘Pnz_l)sin ne}, (31)
1 2
oDy 0 2 2 oDs D1 N1 o
+ - Wha ¥ T+ Wi - Phalsinne}
or oz or r
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We write [5] the expression of the strain of relative elongation and shear in the
cylindrical coordinate system

—aur :Eau(P.Fuir _auZ
gr - T _ (p ) 82 - )
or r oo r 0z (32)
0 U(p 1 Gur ou ou 15UZ au(p
yr(p:rii.l,.fi’ Yoy = z 4 r !'YZ(p:77+7'
orr r op or oz r op o0z

Having substituted the displacements (31) into the relation (32), we find the
deformations of relative elongation and shear. An important feature of the representation of
displacements (31) is that their volume deformation is determined by formula (9). Substitute
the obtained strains into dependence (2) and find the stresses.

6. CONCLUSIONS

It is established that the general solution of the equations of the theory of elasticity
in an elastic body for dynamic loads can be expressed in terms of three functions, which are
defined as solutions of second-order wave equations. A simple expression of the function
was found, which describes the propagation of expansion-compression waves due to volume
expansion. It is shown that the dynamic stress-strain state of a body with zero volumetric
expansion can be expressed in terms of two independent functions that satisfy the second-
order equation describing shear waves. The expansion for the solution of the dynamic
equations of the theory of elasticity in the cylindrical coordinate system is constructed so
that it does not contain factors that include functions that depend on the angle ¢. For the

first time, displacements and deformations that describe oscillations in a cylindrical
coordinate system were found.
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HOJAHHA PO3B’A3KIB TPUBUMIPHUX TUHAMIYHUX 3AJAY
TEOPII IPY?KHOCTI B KPUBOJIITHIMHIA OPTOI'OHAJIBHIN
CUCTEMI KOOPAUHAT

BikTop PeBenko

Inemumym npuxiadnux npobiem mMexaniKu i Mamemamuxy
imeni A. C. Iliocmpueawa HAH Yxpainu, Jlveis, Ykpaina

Pesztome. [ns onucysanns npoyecié nowiupents nPYICHUX X6Ulb 3ACMOCOBAHO MOOelb MPUBUMIDHO0
i3omponno2o mina nio Ji€l0 OUHAMIYHUX HABAHMAJICeHb. Burxopucmano ysazanvheni cniggionowenns 1yxka 0
NOOAHHS HANPYICeHb 8 0OHOPIOHOMY meepoomy mini. Ilicia niocmanoeKku npyjiCHUX HANPYsiceHb )y OUHAMIYHI
PIBHANNA Pi6HOGAYU 3aNUCAHO cCUcmeMy Oudepenyianvruux pisnans Hag’e ¢ uacmunnux noxionux opy202o nopsaoKy
Ha npyxcui nepemiwjenns. Pozenanymo eioome nodamnsa 3azanvho2o po3e’ssky pienanv Has’e y eexmopnomy
suenAoi, Axe mMicmums yomupu Qyuxyii. Bcmanosneno, wo ynkyis, Axa OnUCye X6uni po3uiupenHs, 0OHO3HAYHO
sU3HaYaemuvcs uepes 00'emue poswupenns. [lokazano, wo OunamivHull HanPYIceHo-0edoOpMOSanull cman mina 3
HYIbOBUM 00'EMHUM POUWUPEHHAM MOJCHA UPA3UMU Yepe3 08I He3anNedcHi (QYHKYil, AKi 3a00801bHANOMb
PIBHAHHA, WO onucye xeuai 3cygy. Posensinymo Oekapmosy cucmemy KoopouHam i 008e0eHO, WO 3a2anbHull
03830k pienans Hae’e modcna supasumu yepe3 mpu YomupuxmipHi QoyHKyii nepemiujens, Ki 6U3HAYAIOMbCS
SAK PO38'A3KU X8UIbOBUX PIBHAHbL OpPY2020 NOPAOKY. Bukopucmano yeii po36'sa30k i 3uatioeHo anarimuyHuil eupas
302aNbHO20 PO36'A3KY PIBHAHbL OUHAMIYHOI Meopii NPYIHCHOCMI V KPUBOMIHINHILL OpPMO2OHANbHIN cucmemi
KOOpOUHam uepes mpu ne3anedxcni Qynkyii nepemiujenv. Ak uacmxosuii Bunadox ybo2o0 NOOAHHS 3ANUCAHO AGHULL
BUPA3 NPYICHUX NepemMilyeHb y YUTIHOpuuHil cucmemi koopounam. IIpome 6 yvomy nooani 6i1s o0Hiel ynryii
nepemiujeHb CMoAMb MHOJICHUKY, AKI 3anedcamsv 6i0 Kymoeoi 3miHHOi (), w0 YCKIAOHIOE 11020 NpaKmuuHe

3acmocysanns. [na no6yooeu npocmiuio20 6upazy yb020 PO36'A3KY GUKOPUCHAHO 084 3A2albHUX PO36'SA3KU
pisnans Hae’c 6 oexapmosiu cucmemi koopounam. Ilicis nepesedenns ix y yuriHOpuyHy cucmemy KOOpOUHAmM
@yukyii nepemiwenv poskiadeno 6 psou Dyp'e eionocno kyma (). Ilpogedeno pecyrapusayiro 3a2anbHo2o

PO36'A3KY MAKUM YUHOM, WO YCYHYMO 6 Koepiyichmax po3Kkaady uienu, ki 3anedxcams 6io kyma 0. Lle cymmeso

CHpOCMUNO 6Upas po3e'azky. 3anucano KOMROHEHMU HANPYICEHO-0ePOPMOBAHO20 CMAHY 6 YUNHOPUYHILL
cucmemi KOopouHam.

Kniouoesi crosa: yuninopuuna cucmema xoopounam, po3e'sazox pisuans Hae’c, ounamiuni nanpysicenns i
nepemiuyeHHs.

https://doi.org/10.33108/visnyk_tntu2024.04.014 Ompumaro 15.10.2024

22 . ISSN 2522-4433. Scientific Journal of the TNTU, No 4 (116), 2024 https://doi.org/10.33108/visnyk_tntu2024.04


https://doi.org/10.33108/visnyk_tntu2024.0
https://doi.org/10.33108/visnyk_tntu2024.04.014

