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Abstract. This article reviews the problem of parameter selection for denoising methods based on 

the Discrete Wavelet Transform (DWT) for processing geo-signals with various noise types and external 

interference, followed by evaluating the effectiveness in detecting recurring signal patterns. The study 

reviews the theoretical impact of denoising parameters, existing wavelet and decomposition level selection 

methods, publications on DWT applications in different fields, and the computational challenges of 

increasing decomposition levels for microcontrollers. Experimental results of DWT denoising application on 

field-gathered signals recorded in different environments, presented as average SNR changes for specific 

DWT parameter combinations. Comparison of results by decomposition levels showed gradual improvements 

in efficiency with certain wavelets and significant drops after specific levels in some cases due to the filtering 

of typical samples, which emphasizes the need to review DWT parameters only in the scope of specific 

parameter combinations. Notable anomalies in efficiency due to the non-stationary nature of signals and 

parameter resonance with noise or patterns were also observed, requiring further research. Based on the 

findings, the most effective parameter combinations for denoising the studied geo-signal were identified, with 

a particularly optimal combination of three decomposition levels, hard thresholding, and rbio3.3 wavelet, 

which preserved and even amplified signal energy while enabling the detection of typical fragments at 

distances of 120–100 meters. 

Key words: discrete wavelet transform, DWT, denoising, pulse signal, signal processing, non-stationary 
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1. INTRODUCTION 

 

The Discrete Wavelet Transform (DWT) is a crucial tool in signal processing, 

particularly for signal analysis and denoising. By decomposing a signal into wavelet 

coefficients, the DWT allows for multi-resolution analysis, providing both time and frequency 

localization. This makes it especially effective for handling non-stationary signals in various 

fields such as geosciences [1], engineering [2], medicine [3], etc. 

Signal denoising using DWT has been successfully applied in various fields such as 

denoising biomedical signals [4, 5], acoustic emission signals [6], rail surface ultrasonic wave 

signals [7], and more. The DWT is favored for its ability to reduce entropy, offer multiple 

resolutions, and provide decorrelation, which collectively contributes to its effectiveness in 

noise reduction [6]. Moreover, the multiresolution property of the DWT is particularly 

advantageous for signal denoising as it can accurately describe nonstationary signal 

characteristics [8]. 

Commonly denoising methods are compared to Fast Fourier Transform based denoising 

method which have its own drawbacks. Such denoising method usage is problematic due to the 

appearance possibility of the Gibbs phenomenon and its low effectiveness in obtaining partial 

characteristics of sensor signal [9]. In some cases, the wavelet transform denoising method may 
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lead to worse SNR results than the FFT denoising method. For example, the comparison of 

denoising methods applied on partial discharge signal demonstrated that the DWT denoising 

method has lower efficiency than the FFT-based method, and even degraded SNR compared to 

unprocessed noisy signal [10]. 

Innovative approaches have also been proposed to enhance denoising effectiveness 

which are using wavelet transform. For instance, an adaptive noise removal method for EEG 

signals integrated wavelet denoising with minimum mean square error (MMSE) and an 

adaptive threshold-based LMS algorithm to enhance denoising accuracy [11]. Additionally, an 

integrated denoising method based on wavelet packet transform and energy-correlation analysis 

was developed to address sensor mixed noises in industrial settings [9]. 

The discrete wavelet transform stands out as a powerful tool for signal denoising across 

various domains, including geophysics, owing to its multiresolution property, noise reduction 

capabilities, and adaptability to different signal types. Researchers are continuously exploring 

novel techniques and combinations to further enhance the denoising efficiency and accuracy of 

the DWT in practical applications. 

 

2. PROBLEM OVERVIEW 

 

Researched pulse signal with harmonic components stores information captured on 

a range of distances up to 150m. The signal was captured by sensor GD-10 during field 

experiments with a developed autonomous device based on an 8-bit microcontroller 

ATmega328p with embedded 10-bit resolution ADC [12], a sample rate of 100 Hz, which 

satisfies the conditions of the Nyquist-Shannon theorem based on the geo-signal frequency 

spectrum range. The captured digital signal was transferred through a UART interface. The 

main goal of the researched signal processing is the detection of time fragments where 

repeated typical samples appear (Fig. 1), where smpl is the sample ADC value, and i is an 

ordinal number of the sample. Used geo-sensor can capture low amplitude signals with 

searched typical samples which can be observed visually up to 120m. Automatic detection 

approaches are limited by the computational capabilities of the microcontroller and are 

complicated by white noise, external interfering sources, and signal distortion affected by 

distance to the observed signal source [13]. 
 

 

 

Figure 1. Searched typical samples in geo-signal 

 

The first attempt to recover a typical fragment from a noisy signal was conducted 

with a list of correlation function applications and their comparison by SNR [14]. The usage 

of correlation functions was explained by similar characteristic features of searched typical 
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fragments, which may be recovered by correlation of geo-signal to prepared templates 

formed from a stack of manually recovered typical samples. From the used correlation 

functions only 3 out of 8 provided better results than the input signal. The best of those 

functions improved SNR by 44.5% on average and allowed the capture of typical fragments 

with amplitude threshold up to 80m, which is still less than can be captured by manual 

search. 

Further research showed that the frequency spectrum of noise and recorded signal 

overlaps [13]. With a distance longer than 60m signal is getting closer to noise in a frequency 

range, and is in the same frequency ranges, within 2–17 Hz (Fig. 2), which explains why it is 

problematic to recover typical samples from longer distances. The application of filters based 

on FFT provided worse results than some correlation functions [15]. Filter application on the 

same signal used in correlation functions testing, showed SNR results improvement by 14%, 

which is 6% less effective than the relay correlation function in denoising capabilities. That 

information gave us an understanding that signal recovery based on methods that rely on 

frequency spectrum are less effective than those that rely on signal form and characteristic 

features. 
 

 

 

Figure 2. Frequency spectrum of input signal (1) and noise (2) 

 

DWT is similar in some points of view to correlation functions, both involve 

convolution and time-shifting operations. Although the DWT denoising method uses 

an ability to isolate and manipulate frequency components to reduce noise, which is 

already confirmed as a less effective way of researched signal processing targeted 

at the detection of repeated typical samples, it can’t be ignored how commonly and widely 

that tool is used for signal denoising, including geo-signals denoising, which is the type of 

signal what is being processed and researched, and that assumption of method efficiency 

requires experimental confirmation. Unlike FFT, which provides only frequency 

information, DWT offers both time and frequency localization. This helps in the 

identification and denoising of transient noise, such as spikes or bursts, which can be found 

in the researched geo-signal. 
 

3. DWT DENOISING PROCESS AND RESULT EVALUATION 

 

The denoising process based on DWT can be divided into three steps (Fig.  3) – 

analysis, thresholding, and synthesis. The analysis step uses forward wavelet transform to 

decompose signal into high-frequency and low-frequency components using scaling and 

wavelet functions. The threshold step applies a thresholding function on received 

components to remove noise. The synthesis step reconstructs the signal from thresholded 

coefficients by using inverse DWT. 
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Figure 3. Schematic representation of DWT denoising process 

 

The choice of wavelet in DWT can significantly impact the results of denoising. The 

wavelet function affects how the signal is decomposed into approximation and detail 

coefficients, which in turn influences how effectively noise is reduced and how well the signal 

is preserved. There are existing automated methods for wavelet selection based on correlation, 

signal energy, and SNR, but in this article, it was decided to use a list of widely used discrete 

wavelets and score their efficiency through the conduction of the experiment and SNR 

comparison [16]. In the scope of this research, the following wavelet families were used: Haar, 

Daubechies, symlets, coiflets, biorthogonal, reverse biorthogonal, and discrete Meyer. Also 

included into consideration wavelet order, because it can affect computational complexity and 

noise filtering efficiency. 

A threshold is another component of the denoising process that may have a high impact 

on the result of the denoising process since that step filters noise components out of the 

researched signal by removing the coefficients relevant to specific threshold value [17]. During 

experiments, the two most popular thresholding methods were compared – hard and soft.  

Hard thresholding (1) removes coefficients with magnitudes below the threshold, which 

effectively eliminates noise components associated with small coefficients. [18] However, this 

can also remove important signal details if those details are represented by small coefficients. 

This method can introduce discontinuities and artifacts at the boundaries where coefficients are 

set to zero. The abrupt removal of coefficients can result in a signal that has noticeable jumps 

or irregularities. Large coefficients are preserved, which can maintain prominent features of the 

signal. However, fine details may be lost if they are associated with smaller coefficients. Hard 

thresholding may also give rise to ringing and pseudo-Gibbs phenomenon in reconstructed 

signals [19] 
 

𝑊𝑗,𝑘
ℎ̅̅ ̅̅ ̅ =  {

𝑊𝑗,𝑘    |𝑊𝑗,𝑘| ≥ 𝜆

0    |𝑊𝑗,𝑘| < 𝜆
 (1) 

 

Soft thresholding (2) shrinks coefficients towards zero, which helps in reducing noise 

while preserving more of the signal structure [18]. The gradual reduction of coefficient 

magnitudes tends to smooth out the signal, reducing the effect of noise. This method generally 

produces a smoother denoised signal compared to hard thresholding. By shrinking coefficients, 

it avoids abrupt changes and discontinuities, leading to a more natural-looking reconstruction. 

Soft thresholding tends to preserve more of the signal’s smooth features. However, it may still 

over-smooth the signal if the threshold is not chosen carefully, leading to a loss of fine details. 
 

𝑊𝑗,𝑘
𝑠̅̅ ̅̅ ̅ =  {

𝑆𝑖𝑔𝑛(𝑊𝑗,𝑘) ∙ (𝑊𝑗,𝑘 −  𝜆)     𝑊𝑗,𝑘 ≥ 𝜆

0                                                 𝑊𝑗,𝑘 < 𝜆  
 (2) 

 

Another considerable parameter in DWT denoising is the decomposition 

level (Fig 4) [20]. Each level has own pair of low-pass filter h for approximation and high-pass 
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filter (g) for detail, followed by dyadic decimation. By convolving the input signal with the 

following filters on the first level we receive sets of approximation coefficients cA₁ and detail 

coefficients cD₁. Then on the next level, the same process applies to approximation coefficients 

from the previous level. 
 

 

 

Figure 4. Decomposition with j-level DWT. 

 

By increasing the decomposition level, we increase the number of decomposition steps, 

and, as a result, increase calculation complexity, which can be especially problematic for 

microcontrollers. Too small decomposition level may not provide enough denoising results and 

too high level may not provide a significant efficiency increase related to calculation 

complexity increase. Traditional methods determine the optimal decomposition level through 

trial and error or according to the frequency spectrum distribution before a noisy signal is 

processed by wavelet transform, however, it is expert-dependent and subjective [20]. 

Publication [21] introduced an automatic method, where the maximum decomposition level can 

be estimated based on the energy spectral density of the signal. Also, publications [22] and [23] 

introduced a method to estimate minimal decomposition level based on the energy-ratio 

threshold, which can help retain signal energy and keep the computational task at a minimum. 

The simplest method to calculate the maximum denoising level (3) is based on signal length N, 

but it may be unreliable in cases of noisy signals or long signals [18]. 
 

𝐿𝑚𝑎𝑥 =  log
2

(𝑁) (3) 

 

In this article, we relied on the limitations of the microcontroller, and the range of typical 

samples length to estimate the maximum decomposition level. According to previously 

conducted research [13] the majority of searched signal fragments have lengths up to 20 

samples, but on longer distances in rare cases, we can observe fragments with lengths up to 30 

samples, which we will consider as our signal window width. We can use the method based on 

signal length, due to the small length of signal window that we process, and microcontroller 

limitations, which don’t allow us to set a high level of decomposition. By calculating the 

maximum decomposition level based on the window length of 30 samples (3), we receive a 

level equal to 5, which gives us a decomposition bandwidth of 3.13 Hz. That maximum level 

is sufficient for the research, because higher levels of decomposition would be practically too 

high for the used microcontroller, and we would be able to see dynamics of SNR change with 

level increase, so a larger range of decomposition level would be unnecessary. 

To evaluate the efficiency of denoise results with specific wavelets application, thresholding 

methods, and decomposition level, we calculated the SNR of input and output signal according to 

the used formula in previous research [14] as a relation of signal and noise energies (4) 
 

𝑆𝑁𝑅 =  
𝐸𝑠

𝐸𝑛
  (4) 
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For the evaluation of DWT denoising efficiency on researched geo-signal, we 

compared denoised signal SNR with input signal SNR from the set of recorded signals 

during field studies in different environments. All fragments taken have equal lengths of 

500 samples. Denoise results were formed with varying parameters of input, such as the 

used wavelet, thresholding method, and decomposition level, which will provide 

information on how those parameter combinations affect the denoising process result of the 

researched signal.  

 

4. EXPERIMENT RESULTS 

 

Gathered SNR results of DWT denoising with different parameters applied on the 

set of signals gathered in field experiments, showed that highlighting the effect of parameter 

change is complicated because of the instability of results in the set of signals and parameter 

changes. Moreover, there were captured anomaly results when wavelets were providing 

worse SNR than the input signal but at some parameters, SNR improved multiple times. 

The same applies to other named parameters, which complicates the evaluation of preferred 

parameters for the researched geo-signal. Those anomalies may appear due to the 

non-stationary nature of the geo-signal and resonance of picked denoising parameters with 

processed signal segment characteristics and require separate research. More important is 

the stability of SNR improvement with specific parameters through all the sets of signals 

after the DWT denoising application, which will tell that the chosen parameters have stable 

results of denoising for all captured noise, and not only for specific noise characteristics 

that may appear. 

To reduce the effect of results instability and anomaly appearance, according to the 

results, we excluded parameters that gave us negative results for some signals and gathered 

average SNR change with specific parameters through the set of signals. Wavelets that provided 

the best results of hard threshold (Fig. 5) and soft threshold (Fig 6) were provided in the form 

of a 3D chart to visualize the dynamics of decomposition level (L) change for each wavelet by 

the value of SNR increase after denoising process in percents (SNR incr.).  
 

 

 

Figure 5. The best results of SNR improvement for the hard thresholding 
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Figure 6. The best results of SNR improvement for the soft thresholding 

 

Change of the threshold method showed that with 5 levels of decomposition, we 
achieved better results with most of the wavelets, although the results differences were close. 
As we can see soft threshold for highlighted wavelets has visible efficiency growth on 4 levels 
and with some wavelets on 5 levels of decomposition. With a hard threshold, we get more 
gradual SNR growth, which allows us to use fewer decomposition levels to optimize 
computational tasks for the microcontroller. As we can see in the Table 1, the average SNR on 
3 and 4 levels of decomposition L is around 50% larger with the hard threshold. 
 

Table 1. The most effective parameters per decomposition level 
 

L 
Hard threshold Soft threshold 

Avg. SNR improvement Wavelet Avg. SNR improvement Wavelet 

1 104% sym2 104% sym2 

2 119% rbio3.1 119% rbio3.1 

3 201% rbio3.3 148% rbio3.7 

4 244% rbio3.3 197% rbio3.9 

5 301% bior1.1 306% rbio2.4 
 

As already mentioned, the majority of wavelets showed the best result with 5 levels of 
decomposition, although some cases showed a fall in efficiency after some level or just for a 
specific level. Those cases may be caused by filtering out of some searched fragments. From 
the selected list of wavelets, the best results were found mostly for the reverse biorthogonal 
wavelets family. Also worth mentioning are haar and db1 wavelets which provided rapid 
growth on 4 and 5 levels of decomposition with around 200% and 300% average SNR 
respectively with the hard threshold method. 

Through many parameter combinations, the best results showed average SNR 
improvement by three times compared to an input signal with 5 levels of decomposition, 
soft threshold, and rbio 2.4 wavelet (Fig. 7). After the DWT denoising, signal on distance 
range 120–100 m can be easily distinguished from noise and as we can see the noise is 
closer to a straight line but still contains fragments, most likely of interference signals. Both 
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signal and noise lost some energy after processing, but the result allowed us to gather typical 
fragments from a further distance than with the correlation methods. 
 

 
 

Figure 7. Denoising results of rbio2.4, soft threshold, L=5: 1 – input signal, 2 – denoised signal, 
a – noise, b – signal with typical fragments 

 

More optimal in the calculation task was rbio3.3 for the hard threshold, which allows to use 
lower decomposition level to 3 levels, with still high improvement of average SNR through the set 
of signals. Selected denoising parameters lowered signal noise, highlighted existing typical 
samples, and even boosted its signal (Fig. 8). Signal hasn’t improved a lot on 4 levels, noise energy 
lowered, but some signal interference fragments were boosted together with typical samples. 
 

 
 

Figure 8. Denoising results of rbio3.3, hard threshold: 1 – L=3, 2 – L=4, 
a – noise, b – signal with typical fragments 
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Compared to the best parameters for soft threshold, we get a more noisy signal, with 

more prominent segments with signal interference, but what is more important energy of typical 

samples wasn’t lowered, selected parameters even increased it, which potentially will improve 

search possibilities of the processed signal. 

 

5. CONCLUSIONS 

 

This study explored the efficiency of discrete wavelet transform (DWT) for denoising 

researched geo-signals, testing various configurations to determine optimal conditions. 

Specifically, we investigated the impact of different decomposition levels (ranging from 1 to 5), 

thresholding techniques (both hard and soft), and wavelet families, that include Haar, 

Daubechies, symlets, coiflets, biorthogonal, reverse biorthogonal, and discrete Meyer, on the 

denoising performance. The key conclusions drawn from this study are as follows: 

1. The assumption that The DWT denoising method will provide worse results than 

correlation was disproven by the gathered results. It gave better denoising efficiency and 

processing results for further typical sample search tasks. The best correlation result gave us an 

improvement of SNR by 144.5%, while the best DWT denoising gave us the maximum result 

of 306% [14]. 

2. Further review of processed signals showed that less performance-heavy parameters, 

including hard threshold, rbio3.3 wavelet, and 3 decomposition levels, gave us better processing 

signal results than best-chosen parameters by average SNR improvement. 

3. Evaluation of the DWT processing efficiency applied on non-stationary geo-signals 

requires an improved methodology to capture anomaly results and signal characteristics 

improvements. Average SNR provides denoising improvement evaluation but not potential 

improvement in typical fragments search possibilities. 

4. Each parameter of the DWT denoising should only be reviewed with a combination 

of other parameters and not separately, because of the parameter's resonance to the signal 

characteristics, which can highlight either noise characteristics or signal characteristics, which 

may lead to a significant decrease or increase in efficiency.  

5. A single parameter of the DWT denoising which showed some dynamics in 

efficiency change is the decomposition level, although it should be reviewed with connection 

to a specific wavelet.  

 
References 

1. Javadi M., Ghasemzadeh H. (2017) Wavelet analysis for ground penetrating radar applications: a case study. 

Journal of Geophysics and Engineering, vol. 14, no. 5, pp. 1189–1202. https://doi.org/10.1088/1742-2140/aa7303 

2. Islam M. S., Pears R., Bacic B. (2018) A wavelet approach for precursor pattern detection in time 

series. Journal of Electrical Systems and Information Technology, vol. 5, no. 3, pp. 337–348. 

https://doi.org/10.1016/j.jesit.2018.03.003 

3. Y. Yavorska et al. (2020) Evaluation of methods for determining abnormalities in cardiovascular system 

by pulse signal under psycho-emotional stress in dental practice. Scientific journal of the Ternopil National 

Technical University, vol. 100, no. 4, pp. 118–126. https://doi.org/10.33108/visnyk_tntu2020.04.118 

4. Rodriguez-Hernandez M. A. (2016) Shift selection influence in partial cycle spinning denoising of 

biomedical signals. Biomedical Signal Processing and Control, vol. 26, pp. 64–68. Available at: https://doi. 

org/10.1016/j.bspc.2015.12.002. https://doi.org/10.1016/j.bspc.2015.12.002 

5. S. Shridhar et al. (2019) Denoising of ECG Signals Using Wavelet Transform and Principal Component 

Analysis. SSRN Electronic Journal. Available at: https://doi.org/10.2139/ssrn.3356368. 

6. X. Zeng et al. (2024) Study on Noise Reduction of Acoustic Emission Signals based on Improved Wavelet 

Thresholding. Scientific Journal of Technology, vol. 6, no. 3, pp. 1–9. https://doi.org/10.2139/ssrn.3356368 

7. P. Li et al. (2021) Denoising of LCR Wave Signal of Residual Stress for Rail Surface Based on Lifting 

Scheme Wavelet Packet Transform. Coatings, vol. 11, no. 5, pp. 496. Available at: https://doi.org/10.3390/ 

coatings11050496. 

8. N. Liu et al. (2020) Research on Wavelet Threshold Denoising Method for UWB Tunnel Personnel Motion 

Location. Mathematical Problems in Engineering, vol. 2020, pp. 1–14. https://doi.org/10.3390/coatings11050496 

https://doi.org/10.33108/visnyk_tntu2024.0
https://doi.org/10.1088/1742-2140/aa7303
https://doi.org/10.1016/j.jesit.2018.03.003
https://doi.org/10.33108/visnyk_tntu2020.04.118
https://doi.org/10.2139/ssrn.3356368
https://doi.org/10.2139/ssrn.3356368
https://doi.org/10.3390/%20coatings11050496
https://doi.org/10.3390/%20coatings11050496
https://doi.org/10.3390/coatings11050496


Vitalii Vanchak, Stepan Melnychuk 

 

ISSN 2522-4433. Вісник ТНТУ, № 4 (116), 2024 https://doi.org/10.33108/visnyk_tntu2024.04 .......................................... 133 

9. C. Tan et al. (2014) An Integrated Denoising Method for Sensor Mixed Noises Based on Wavelet Packet 

Transform and Energy-Correlation Analysis. Journal of Sensors, vol. 2014, pp. 1–11. Available at: 

https://doi.org/10.1155/2014/650891. 

10. N. A. Yusoff et al. (2016) Denoising technique for partial discharge signal: A comparison performance 

between artificial neural network, fast fourier transform and discrete wavelet transform. IEEE International 

Conference on Power and Energy (PECon), Melaka, 28–29 November 2016. 2016. Available at: 

https://doi.org/10.1109/pecon.2016.7951579. 

11. R. Chu et al. (2022) An adaptive noise removal method for EEG signals. Journal of Physics: Conference 

Series, 2414, 012007. 

12. ATmega328P 8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash Datasheet [Electronic 

resource]. Available at: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-

Microcontrollers-ATmega328P_Datasheet.pdf. https://doi.org/10.1088/1742-6596/2414/1/012007 

13. Vanchak V., Melnychuk S. (2024) Influence Assessment of Distance to the Source of Pulse Signals With 

Harmonic Components on the Temporal Distortion of Their Forms. Advances in Cyber-Physical Systems, 

vol. 9, no. 1, pp. 61–67. Available at: https://doi.org/10.23939/acps2024.01.061. 

14. Vanchak V. S., Melnychuk S. I., Manuliak I. Z. (2023) Correlation Functions Application Effect on 

Periodic Pulse Signal with Harmonic Elements. Visnyk of Vinnytsia Politechnical Institute, vol. 169, no. 4. 

P. 46–53. https://doi.org/10.31649/1997-9266-2023-169-4-46-53 

15. Vanchak V., Melnychuk S., Manuliak I. Efficiency of low-pass filters based on FFT for SNR improvement 

of periodic impulse signals with harmonic components. materials of XII-th scientific and practical 

conference “Problems of informatics and computer technologies”: materials of scientific and practical 

conference, Chernivtsi, 10–12 November 2023. Chernivtsi, 2013. P. 71–73.  

16. Luo Y., Li Z., Wang H. (2017) A Review of Online Partial Discharge Measurement of Large Generators. 

Energies, vol. 10, no. 11, pp. 1694. Available at: https://doi.org/10.3390/en10111694. 

17. Singh A. (2016) Comparative Analysis of Gaussian Filter with Wavelet Denoising for Various 

Noises Present in Images. Indian Journal of Science and Technology, vol. 9, no. 1, pp. 1–8. 

https://doi.org/10.3390/en10111694 

18. Srivastava M., Anderson C. L., Freed J. H. (2016) A New Wavelet Denoising Method for Selecting 

Decomposition Levels and Noise Thresholds. IEEE Access, vol. 4, pp. 3862–3877. Available at: https:// 

doi.org/10.1109/access.2016.2587581. https://doi.org/10.1109/ACCESS.2016.2587581 

19. C. He et al. (2015) A New Wavelet Thresholding Function Based on Hyperbolic Tangent Function. 

Mathematical Problems in Engineering, vol. 2015, pp. 1–10. Available at: https://doi.org/ 10.1155/2015/528656. 

20. Li Y., Li Z. (2020) Application of a Novel Wavelet Shrinkage Scheme to Partial Discharge Signal Denoising 

of Large Generators. Applied Sciences, vol. 10, no. 6, pp. 2162. https://doi.org/10.3390/app10062162 

21. C. F. F. C. Cunha et al. (2015) A new wavelet selection method for partial discharge denoising. Electric 

Power Systems Research, vol. 125, pp. 184–195. Available at: https://doi.org/10.1016/j.epsr.2015.04.005. 

22. Altay Ö., Kalenderli Ö. (2015) Wavelet base selection for de-noising and extraction of partial discharge 

pulses in noisy environment. IET Science, Measurement & Technology, vol. 9, no. 3, pp. 276–284. 

https://doi.org/10.1049/iet-smt.2013.0114 

23. A. T. Carvalho et al. (2015) Identification of partial discharges immersed in noise in large 

hydro-generators based on improved wavelet selection methods. Measurement, vol. 75, pp. 122–133. 

https://doi.org/10.1016/j.measurement.2015.07.050 

 

УДК 004.62 
 

ОЦІНЮВАННЯ ЕФЕКТИВНОСТІ ЗАСТОСУВАННЯ МЕТОДУ 

ЗНЕШУМЛЕННЯ НА ОСНОВІ ДИСКРЕТНОГО 

ВЕЙВЛЕТ-ПЕРЕТВОРЕННЯ НА ІМПУЛЬСНИЙ СИГНАЛ З 

ГАРМОНІЙНИМИ СКЛАДОВИМИ  
 

Віталій Ванчак; Степан Мельничук 
 

Івано-Франківський національний технічний університет нафти і газу, 

Івано-Франківськ, Україна 

 
Резюме. Розглянуто проблему підбору параметрів для методу знешумлення на основі 

дискретного вейвлет-перетворення (DWT) при опрацюванні досліджуваного геосигналу з присутніми 
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шумами різних типів та накладанні сторонніх сигналів та подальшого оцінювання ефективності 

застосування для пошуку повторюваних типових взірців сигналу. Проведено огляд теоретичного впливу 

параметрів досліджуваного методу знешумлення, існуючих методів підбору вейвлетів та рівнів 

декомпозиції, публікацій із застосування дискретного вейвлет перетворення для задач у різних сферах 

діяльності, теоретичної проблеми впливу збільшення рівнів декомпозиції на обчислювальну задачу для 

мікроконтролерів. Подано результати експериментального дослідження застосування методу 

знешумлення на основі дискретного вейвлет-перетворення на набір сигналів, записаних при натурних 

експериментах за різних середовищ поширення сигналу, у вигляді середньої зміни SNR опрацьованого 

сигналу до вхідного сигналу при визначених комбінаціях параметрів DWT методу знешумлення. Порівняння 

зміни результатів за різних рівнів декомпозиції продемонстрували як позитивну динаміку підвищення 

ефекитивності з певними вейвлетами, так і різкі падіння ефективності на певному рівні через 

фільтрацію типових взірців, що вказує на доцільність розгляду ефективності параметрів DWT 

знешумлення лише в окремих комбінаціях. Зафіксовано також різкі аномальні зростання чи падіння 

ефективності знешумлення конкретних сигналів через нестаціонарну природу сигналу та резонанс 

параметрів до шумів чи типових взірців, що потребує подальшого дослідження. За отриманими даними 

сформовано перелік найефективніших комбінацій параметрів для знешумлення досліджуваного 

геосигналу, подальший огляд яких, на можливість фіксації типових взірців з опрацьованих сигналів, 

показав доцільність використання оптимальнішої комбінації з трьома рівнями декомпозиції, твердим 

порогуванням та rbio3.3 вейвлетом, що окрім знешумлення та надання можливості фіксації типових 

фрагментів на відстані 120–100 м зберіг енергію сигналу та навіть посилив її.  

Ключові слова: дискретне вейвлет-перетворення, DWT, шумоподавлення, опрацювання сигналів, 

нестаціонарний сигнал, імпульсний сигнал, геосигнал. 
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