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Abstract. This article reviews the problem of parameter selection for denoising methods based on
the Discrete Wavelet Transform (DWT) for processing geo-signals with various noise types and external
interference, followed by evaluating the effectiveness in detecting recurring signal patterns. The study
reviews the theoretical impact of denoising parameters, existing wavelet and decomposition level selection
methods, publications on DWT applications in different fields, and the computational challenges of
increasing decomposition levels for microcontrollers. Experimental results of DWT denoising application on
field-gathered signals recorded in different environments, presented as average SNR changes for specific
DWT parameter combinations. Comparison of results by decomposition levels showed gradual improvements
in efficiency with certain wavelets and significant drops after specific levels in some cases due to the filtering
of typical samples, which emphasizes the need to review DWT parameters only in the scope of specific
parameter combinations. Notable anomalies in efficiency due to the non-stationary nature of signals and
parameter resonance with noise or patterns were also observed, requiring further research. Based on the
findings, the most effective parameter combinations for denoising the studied geo-signal were identified, with
a particularly optimal combination of three decomposition levels, hard thresholding, and rbio3.3 wavelet,
which preserved and even amplified signal energy while enabling the detection of typical fragments at
distances of 120-100 meters.

Key words: discrete wavelet transform, DWT, denoising, pulse signal, signal processing, non-stationary
signal, pulse signal, geo-signal.
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1. INTRODUCTION

The Discrete Wavelet Transform (DWT) is a crucial tool in signal processing,
particularly for signal analysis and denoising. By decomposing a signal into wavelet
coefficients, the DWT allows for multi-resolution analysis, providing both time and frequency
localization. This makes it especially effective for handling non-stationary signals in various
fields such as geosciences [1], engineering [2], medicine [3], etc.

Signal denoising using DWT has been successfully applied in various fields such as
denoising biomedical signals [4, 5], acoustic emission signals [6], rail surface ultrasonic wave
signals [7], and more. The DWT s favored for its ability to reduce entropy, offer multiple
resolutions, and provide decorrelation, which collectively contributes to its effectiveness in
noise reduction [6]. Moreover, the multiresolution property of the DWT is particularly
advantageous for signal denoising as it can accurately describe nonstationary signal
characteristics [8].

Commonly denoising methods are compared to Fast Fourier Transform based denoising
method which have its own drawbacks. Such denoising method usage is problematic due to the
appearance possibility of the Gibbs phenomenon and its low effectiveness in obtaining partial
characteristics of sensor signal [9]. In some cases, the wavelet transform denoising method may
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lead to worse SNR results than the FFT denoising method. For example, the comparison of
denoising methods applied on partial discharge signal demonstrated that the DWT denoising
method has lower efficiency than the FFT-based method, and even degraded SNR compared to
unprocessed noisy signal [10].

Innovative approaches have also been proposed to enhance denoising effectiveness
which are using wavelet transform. For instance, an adaptive noise removal method for EEG
signals integrated wavelet denoising with minimum mean square error (MMSE) and an
adaptive threshold-based LMS algorithm to enhance denoising accuracy [11]. Additionally, an
integrated denoising method based on wavelet packet transform and energy-correlation analysis
was developed to address sensor mixed noises in industrial settings [9].

The discrete wavelet transform stands out as a powerful tool for signal denoising across
various domains, including geophysics, owing to its multiresolution property, noise reduction
capabilities, and adaptability to different signal types. Researchers are continuously exploring
novel techniques and combinations to further enhance the denoising efficiency and accuracy of
the DWT in practical applications.

2. PROBLEM OVERVIEW

Researched pulse signal with harmonic components stores information captured on
a range of distances up to 150m. The signal was captured by sensor GD-10 during field
experiments with a developed autonomous device based on an 8-bit microcontroller
ATmega328p with embedded 10-bit resolution ADC [12], a sample rate of 100 Hz, which
satisfies the conditions of the Nyquist-Shannon theorem based on the geo-signal frequency
spectrum range. The captured digital signal was transferred through a UART interface. The
main goal of the researched signal processing is the detection of time fragments where
repeated typical samples appear (Fig. 1), where smpl is the sample ADC value, and i is an
ordinal number of the sample. Used geo-sensor can capture low amplitude signals with
searched typical samples which can be observed visually up to 120m. Automatic detection
approaches are limited by the computational capabilities of the microcontroller and are
complicated by white noise, external interfering sources, and signal distortion affected by
distance to the observed signal source [13].

smpl - e g =
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Figure 1. Searched typical samples in geo-signal
The first attempt to recover a typical fragment from a noisy signal was conducted

with a list of correlation function applications and their comparison by SNR [14]. The usage
of correlation functions was explained by similar characteristic features of searched typical
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fragments, which may be recovered by correlation of geo-signal to prepared templates
formed from a stack of manually recovered typical samples. From the used correlation
functions only 3 out of 8 provided better results than the input signal. The best of those
functions improved SNR by 44.5% on average and allowed the capture of typical fragments
with amplitude threshold up to 80m, which is still less than can be captured by manual
search.

Further research showed that the frequency spectrum of noise and recorded signal
overlaps [13]. With a distance longer than 60m signal is getting closer to noise in a frequency
range, and is in the same frequency ranges, within 2—17 Hz (Fig. 2), which explains why it is
problematic to recover typical samples from longer distances. The application of filters based
on FFT provided worse results than some correlation functions [15]. Filter application on the
same signal used in correlation functions testing, showed SNR results improvement by 14%,
which is 6% less effective than the relay correlation function in denoising capabilities. That
information gave us an understanding that signal recovery based on methods that rely on
frequency spectrum are less effective than those that rely on signal form and characteristic
features.
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Figure 2. Frequency spectrum of input signal (1) and noise (2)

DWT is similar in some points of view to correlation functions, both involve
convolution and time-shifting operations. Although the DWT denoising method uses
an ability to isolate and manipulate frequency components to reduce noise, which is
already confirmed as a less effective way of researched signal processing targeted
at the detection of repeated typical samples, it can’t be ignored how commonly and widely
that tool is used for signal denoising, including geo-signals denoising, which is the type of
signal what is being processed and researched, and that assumption of method efficiency
requires experimental confirmation. Unlike FFT, which provides only frequency
information, DWT offers both time and frequency localization. This helps in the
identification and denoising of transient noise, such as spikes or bursts, which can be found
in the researched geo-signal.

3. DWT DENOISING PROCESS AND RESULT EVALUATION

The denoising process based on DWT can be divided into three steps (Fig. 3) —
analysis, thresholding, and synthesis. The analysis step uses forward wavelet transform to
decompose signal into high-frequency and low-frequency components using scaling and
wavelet functions. The threshold step applies a thresholding function on received
components to remove noise. The synthesis step reconstructs the signal from thresholded
coefficients by using inverse DWT.
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Figure 3. Schematic representation of DWT denoising process

The choice of wavelet in DWT can significantly impact the results of denoising. The
wavelet function affects how the signal is decomposed into approximation and detail
coefficients, which in turn influences how effectively noise is reduced and how well the signal
is preserved. There are existing automated methods for wavelet selection based on correlation,
signal energy, and SNR, but in this article, it was decided to use a list of widely used discrete
wavelets and score their efficiency through the conduction of the experiment and SNR
comparison [16]. In the scope of this research, the following wavelet families were used: Haar,
Daubechies, symlets, coiflets, biorthogonal, reverse biorthogonal, and discrete Meyer. Also
included into consideration wavelet order, because it can affect computational complexity and
noise filtering efficiency.

A threshold is another component of the denoising process that may have a high impact
on the result of the denoising process since that step filters noise components out of the
researched signal by removing the coefficients relevant to specific threshold value [17]. During
experiments, the two most popular thresholding methods were compared — hard and soft.

Hard thresholding (1) removes coefficients with magnitudes below the threshold, which
effectively eliminates noise components associated with small coefficients. [18] However, this
can also remove important signal details if those details are represented by small coefficients.
This method can introduce discontinuities and artifacts at the boundaries where coefficients are
set to zero. The abrupt removal of coefficients can result in a signal that has noticeable jumps
or irregularities. Large coefficients are preserved, which can maintain prominent features of the
signal. However, fine details may be lost if they are associated with smaller coefficients. Hard
thresholding may also give rise to ringing and pseudo-Gibbs phenomenon in reconstructed
signals [19]

W = {Wj,k Wil = 2 M
Ik 0 Wi <2

Soft thresholding (2) shrinks coefficients towards zero, which helps in reducing noise
while preserving more of the signal structure [18]. The gradual reduction of coefficient
magnitudes tends to smooth out the signal, reducing the effect of noise. This method generally
produces a smoother denoised signal compared to hard thresholding. By shrinking coefficients,
it avoids abrupt changes and discontinuities, leading to a more natural-looking reconstruction.
Soft thresholding tends to preserve more of the signal’s smooth features. However, it may still
over-smooth the signal if the threshold is not chosen carefully, leading to a loss of fine details.

Wi = {Sign(wjk) (W= ) Wiz @)

ok 0 Vl/j,k <A

Another considerable parameter in DWT denoising is the decomposition
level (Fig 4) [20]. Each level has own pair of low-pass filter h for approximation and high-pass
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filter (g) for detail, followed by dyadic decimation. By convolving the input signal with the
following filters on the first level we receive sets of approximation coefficients cA; and detail
coefficients cD;. Then on the next level, the same process applies to approximation coefficients
from the previous level.

('_—.1_ -1

>
¢ ()

g 4@_, cD;

Figure 4. Decomposition with j-level DWT.

By increasing the decomposition level, we increase the number of decomposition steps,
and, as a result, increase calculation complexity, which can be especially problematic for
microcontrollers. Too small decomposition level may not provide enough denoising results and
too high level may not provide a significant efficiency increase related to calculation
complexity increase. Traditional methods determine the optimal decomposition level through
trial and error or according to the frequency spectrum distribution before a noisy signal is
processed by wavelet transform, however, it is expert-dependent and subjective [20].
Publication [21] introduced an automatic method, where the maximum decomposition level can
be estimated based on the energy spectral density of the signal. Also, publications [22] and [23]
introduced a method to estimate minimal decomposition level based on the energy-ratio
threshold, which can help retain signal energy and keep the computational task at a minimum.
The simplest method to calculate the maximum denoising level (3) is based on signal length N,
but it may be unreliable in cases of noisy signals or long signals [18].

Linax = Ing(N) (3)

In this article, we relied on the limitations of the microcontroller, and the range of typical
samples length to estimate the maximum decomposition level. According to previously
conducted research [13] the majority of searched signal fragments have lengths up to 20
samples, but on longer distances in rare cases, we can observe fragments with lengths up to 30
samples, which we will consider as our signal window width. We can use the method based on
signal length, due to the small length of signal window that we process, and microcontroller
limitations, which don’t allow us to set a high level of decomposition. By calculating the
maximum decomposition level based on the window length of 30 samples (3), we receive a
level equal to 5, which gives us a decomposition bandwidth of 3.13 Hz. That maximum level
is sufficient for the research, because higher levels of decomposition would be practically too
high for the used microcontroller, and we would be able to see dynamics of SNR change with
level increase, so a larger range of decomposition level would be unnecessary.

To evaluate the efficiency of denoise results with specific wavelets application, thresholding
methods, and decomposition level, we calculated the SNR of input and output signal according to
the used formula in previous research [14] as a relation of signal and noise energies (4)

Es
SNR = = (4)

n
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For the evaluation of DWT denoising efficiency on researched geo-signal, we
compared denoised signal SNR with input signal SNR from the set of recorded signals
during field studies in different environments. All fragments taken have equal lengths of
500 samples. Denoise results were formed with varying parameters of input, such as the
used wavelet, thresholding method, and decomposition level, which will provide
information on how those parameter combinations affect the denoising process result of the
researched signal.

4. EXPERIMENT RESULTS

Gathered SNR results of DWT denoising with different parameters applied on the
set of signals gathered in field experiments, showed that highlighting the effect of parameter
change is complicated because of the instability of results in the set of signals and parameter
changes. Moreover, there were captured anomaly results when wavelets were providing
worse SNR than the input signal but at some parameters, SNR improved multiple times.
The same applies to other named parameters, which complicates the evaluation of preferred
parameters for the researched geo-signal. Those anomalies may appear due to the
non-stationary nature of the geo-signal and resonance of picked denoising parameters with
processed signal segment characteristics and require separate research. More important is
the stability of SNR improvement with specific parameters through all the sets of signals
after the DWT denoising application, which will tell that the chosen parameters have stable
results of denoising for all captured noise, and not only for specific noise characteristics
that may appear.

To reduce the effect of results instability and anomaly appearance, according to the
results, we excluded parameters that gave us negative results for some signals and gathered
average SNR change with specific parameters through the set of signals. Wavelets that provided
the best results of hard threshold (Fig. 5) and soft threshold (Fig 6) were provided in the form
of a 3D chart to visualize the dynamics of decomposition level (L) change for each wavelet by
the value of SNR increase after denoising process in percents (SNR incr.).

SNR incr. (%)
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- "
Wavelet .~
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Figure 5. The best results of SNR improvement for the hard thresholding
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Figure 6. The best results of SNR improvement for the soft thresholding

Change of the threshold method showed that with 5 levels of decomposition, we
achieved better results with most of the wavelets, although the results differences were close.
As we can see soft threshold for highlighted wavelets has visible efficiency growth on 4 levels
and with some wavelets on 5 levels of decomposition. With a hard threshold, we get more
gradual SNR growth, which allows us to use fewer decomposition levels to optimize
computational tasks for the microcontroller. As we can see in the Table 1, the average SNR on
3 and 4 levels of decomposition L is around 50% larger with the hard threshold.

Table 1. The most effective parameters per decomposition level

L Hard threshold Soft threshold

Avg. SNR improvement Wavelet Avg. SNR improvement Wavelet
1 104% sym2 104% sym2
2 119% rbio3.1 119% rbio3.1
3 201% rbio3.3 148% rbio3.7
4 244% rbio3.3 197% rbio3.9
5 301% biorl.1 306% rbio2.4

As already mentioned, the majority of wavelets showed the best result with 5 levels of
decomposition, although some cases showed a fall in efficiency after some level or just for a
specific level. Those cases may be caused by filtering out of some searched fragments. From
the selected list of wavelets, the best results were found mostly for the reverse biorthogonal
wavelets family. Also worth mentioning are haar and dbl wavelets which provided rapid
growth on 4 and 5 levels of decomposition with around 200% and 300% average SNR
respectively with the hard threshold method.

Through many parameter combinations, the best results showed average SNR
improvement by three times compared to an input signal with 5 levels of decomposition,
soft threshold, and rbio 2.4 wavelet (Fig. 7). After the DWT denoising, signal on distance
range 120-100 m can be easily distinguished from noise and as we can see the noise is
closer to a straight line but still contains fragments, most likely of interference signals. Both
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signal and noise lost some energy after processing, but the result allowed us to gather typical
fragments from a further distance than with the correlation methods.
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Figure 7. Denoising results of rbio2.4, soft threshold, L=5: 1 — input signal, 2 — denoised signal,
a — noise, b — signal with typical fragments

More optimal in the calculation task was rbio3.3 for the hard threshold, which allows to use
lower decomposition level to 3 levels, with still high improvement of average SNR through the set
of signals. Selected denoising parameters lowered signal noise, highlighted existing typical
samples, and even boosted its signal (Fig. 8). Signal hasn’t improved a lot on 4 levels, noise energy
lowered, but some signal interference fragments were boosted together with typical samples.
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Figure 8. Denoising results of rbio3.3, hard threshold: 1 — L=3, 2 — L=4,
a — noise, b — signal with typical fragments
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Compared to the best parameters for soft threshold, we get a more noisy signal, with
more prominent segments with signal interference, but what is more important energy of typical
samples wasn’t lowered, selected parameters even increased it, which potentially will improve
search possibilities of the processed signal.

5. CONCLUSIONS

This study explored the efficiency of discrete wavelet transform (DWT) for denoising
researched geo-signals, testing various configurations to determine optimal conditions.
Specifically, we investigated the impact of different decomposition levels (ranging from 1 to 5),
thresholding techniques (both hard and soft), and wavelet families, that include Haar,
Daubechies, symlets, coiflets, biorthogonal, reverse biorthogonal, and discrete Meyer, on the
denoising performance. The key conclusions drawn from this study are as follows:

1. The assumption that The DWT denoising method will provide worse results than
correlation was disproven by the gathered results. It gave better denoising efficiency and
processing results for further typical sample search tasks. The best correlation result gave us an
improvement of SNR by 144.5%, while the best DWT denoising gave us the maximum result
of 306% [14].

2. Further review of processed signals showed that less performance-heavy parameters,
including hard threshold, rbio3.3 wavelet, and 3 decomposition levels, gave us better processing
signal results than best-chosen parameters by average SNR improvement.

3. Evaluation of the DWT processing efficiency applied on non-stationary geo-signals
requires an improved methodology to capture anomaly results and signal characteristics
improvements. Average SNR provides denoising improvement evaluation but not potential
improvement in typical fragments search possibilities.

4. Each parameter of the DWT denoising should only be reviewed with a combination
of other parameters and not separately, because of the parameter's resonance to the signal
characteristics, which can highlight either noise characteristics or signal characteristics, which
may lead to a significant decrease or increase in efficiency.

5. A single parameter of the DWT denoising which showed some dynamics in
efficiency change is the decomposition level, although it should be reviewed with connection
to a specific wavelet.
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Discrete wavelet transform denoising method efficiency evaluation for processing pulse signals with harmonic
components

wymamy pisHUX mMunie ma HAKIAOAHHI CMOPOHHIX CUSHANIE MA NOOANbULO2O0 OYIHIOBAHHA edeKmusHoOCmi
3aCcmocy8anst 05l NOUWYKY HOSMOPIOGAHUX MUNOBUX 83ipyie cueHany. IIpogedeno oensd meopemuuno2o Gniugy
napamempie 00CHIONCYBAHO20 MemoOdy 3HEUYMIEHHS, [CHYIOUYUX Memoodis niobopy eellgiemié ma pIGHIe
Oexomnosuyii, nyonikayitl i3 3acmoCcy8ants OUCKPEMHO20 Gelléiem Nepemeopentst 01 3a0ay Y PI3HUX cgepax
OisLIbHOCMI, MeopemuyHoi npobemu 8niugy 30LIbUIeHHS. PIBHIE 0eKOMNO3UYIl HA 0OYUCTIOB8ANIbHY 3a0ayiy OJis
Mmikpoxoumpoaepis. Ilooano pesyibmamu  eKCREPUMEHMATLHOZO OOCHIONCEHHs.  3ACHMOCYBAHHSA  Memooy
SHEULYMAEHHA HA OCHOBI OUCKPEMHO20 6ellglem-nepemeopents Ha HAbip CUSHANIG, 3aNUCAHUX NPU HAMYPHUX
eKCNepuUMeHmax 3a pisHux cepedosully NOWUPEHHA CUSHANY, Y 6uenadi cepednvoi sminu SNR onpayvosanozo
cucHany 00 8xXiOHO20 CUZHANY NPU BU3HAYEHUX KoMmOinayiax napamempie DWT memooy snewymaenns. Iopieuanns
SMIHU pe3yIbmamie 3a pisHUX PIBHI8 0eKOMNO3uyii npoOeMOHCMPY8aAnU AK NO3UMUBHY OUHAMIKY NIOSUUeHHS
epekumusHocmi 3 neeHUMU Geliglemamu, maxK i pi3Ki NAadiHHA e@eKmusHOCmi Ha NeeHOMY pi6HI uepe3
Qinompayiro munosux 63ipyis, WO 6KA3YE HA OOYLNbHICMb po321ady egexkmuenocmi napamempie DWT
SHeULYMIeHHs uwe 8 OKpeMux KomOiHayiax. 3aghikcosano maxodc pi3Ki aHOMATbHI 3pOCMAHHA YU NAOIHHA
ehekmusHOCMi 3HEWYMACHHS KOHKPEMHUX CUSHANIE Yepe3 HeCMAYiOHApHY Rpupody CUSHALY MA DPe30HAHC
napamempis 00 Wymie uu munogux 63ipyis, wo nompedye no0anbLUlo20 00CIiONCeHHA. 3a OMPUMAHUMU OAHUMU
cpopmosano nepenix  HavepekmueHiwux KOMOIHAYI napamempis Onsi 3HEUWYMICHHS O0CHIONCYBAHO20
2€0CUSHATY, NOOAIbUWUL 0210 SAKUX, HA MONCAUBICMb QiKcayil munoux 63ipyié 3 ONpaybOSaHux CUSHALS,
nOKA3a6 OOYLIbHICb SUKOPUCIMAHHS ONMUMATbHIWOT KOMOIHAYIL 3 MPboMA PIBHAMU OeKOMNO3UYLL, meepoum
nopozysanusim ma rbio3.3 eeiienemom, wo OKpiM 3HEULYMIEHH MA HAOAHH MOJNCIUBOCMI (iKcayii munosux
@paemenmis na giocmani 120-100 m 36epie enepeito cuenany ma Hagimes nocunus ii.

Knruosi cnosa: ouckpemmue getisnem-nepemeoperusi, DWT, wiymonoodasienns, onpayio8anHs CUsHAIS,
HeCMayioHapHUuli CUSHAL, IMIYTbCHUL CUSHAT, 20CUSHAL.
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