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Abstract. In this article, we will analyze different classifiers for recognizing hand and
finger movements using electroencephalograph (EEG) signals and determine which ones are the most
accurate. This is important for the introduction of neurorehabilitation technologies and control of
prosthetic movements. The method is based on the use of self-learning algorithms for efficient processing
and analysis of informative characteristics based on EEG data. Aiming to adaptively recognize different
motor commands. This ability ensures the robustness and efficiency of the system in understanding complex
sets of brain signals associated with a specific motor action. The results obtained in this study demonstrate
effective approaches for processing EEG signals using machine learning algorithms, analytical approaches,
and cloud technologies. The perspectives revealed by this study will help to improve and speed up the
development of research in the field of neurocognitive signal processing. The results obtained by us
contribute to improving the work and increasing the accuracy of the interaction between the human brain
and the computer.

Key words: EEG signals, neuro-interface of brain-computer interaction, artificial intelligence,
parallel programming, high-performance computing, classifier, accuracy.
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1. INTRODUCTION

Today, making better ways to study brain waves (EEG) for telling apart hand and
finger moves is super important. This can do a lot of good for helping people get better and
making brain-computer stuff work better. The accuracy of the system is improved by
selecting analysis parameters and methodologies based on previously obtained sets of EEG
signals during a specific repetitive movement. This approach relies on the use of the latest
machine learning techniques, namely the following classifiers: multilayer perceptron,
logistic regression, and random forest. It is in order to determine the approach that will give
the highest accuracy of brain signals, we analyzed these classifiers on experimental data.
We performed classifications on vector values from 16 sensors containing comprehensive
information about brain activity at a specific moment in time. The data sets were obtained
during the execution of the repetitive movement. This approach allows EEG signals
corresponding to movements in real time.

The main goal of the research is to find more accurate methods for converting brain
commands (signals) into mechanical movements to improve the work of bionic prostheses
and approaches for rehabilitation of people with coordination problems based on EEG
signals. The experiment demonstrates a high-quality method of finding the right time, which
allows you to obtain the highest accuracy in recognizing specific motor commands. This
study is aimed at improving the quality of life of persons with motor function limitations
and persons with impaired movement function.
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2. RELATED WORKS

Related works A lot of smart people have been working on this, making big steps
forward. Like, Miguel Nicolelis and his crew at Duke University are doing amazing stuff with
letting people who can't move control robotic arms with their thoughts. Rajesh P. N. Rao at the
University of Washington is also doing cool things to make brain signals more understandable.
And Bin He at Carnegie Mellon University is working on using EEG to control things on
screens and in real life [1, 2].

But, even with all this cool stuff happening, there's still a lot we don't know. We need
to get better at knowing what brain signals mean, make smarter systems to figure out complex
brain patterns, and make it easier for people to use these brain-helping tools [3].

What we're doing We're trying to make better ways to figure out hand and finger moves
from EEG signals. This is really important for helping people and making new tools. We're
using some smart computer tricks to spot specific brain patterns that mean certain moves are
happening. This isn't just about understanding the brain better, but also about making things
that can really help people with challenges.

So, in a more basic English, this is about studying brain waves to help people move
better with the help of computers and smart tech. Lots of smart folks are on it, but there's more
work to do to make it all work in real life.

3. STATEMENT OF THE PROBLEM AND RESEARCH GOALS

This study looks closely at how we analyze brain signals, specifically EEG signals,
which help us understand hand and finger movements. EEG signals are complex because they
change often and vary a lot, so we need advanced methods to analyze them properly. This
analysis helps identify specific movements by finding patterns and details in the EEG data.

Understanding these signals better is crucial because it can greatly improve fields like
helping people recover after injuries (neurorehabilitation) and technology for controlling
artificial limbs (prosthetics). By improving how we interpret these brain signals, we can create
better tools and strategies for rehabilitation.

Ultimately, this research aims to make life better for people with disabilities affecting their
limbs or hands by giving them more effective tools and methods to manage daily tasks and
improve their ability to move. This could make a significant difference in their quality of life.

The primary objective of this paper is to develop algorithmic software based on artificial
intelligence and software and hardware based on parallel programming using high-performance
computing on clustered mobile devices for brain-computer neurointerfaces.

In today's world, the rehabilitation of persons with loss of limbs or limited hand
functions is becoming more and more relevant due to the rapid development of technologies,
in particular brain-computer neurointerfaces. One potential solution in this area is the use of
electroencephalogram (EEG) signals to accurately recognize hand and finger movements.

In our current investigation, we embark on a methodical exploration into the capabilities
of brain signal interpretation using a structured experimental setup. Initially, we gather data
through an encephalograph as participants engage in predefined hand and finger movements.
The intricacy of these signals necessitates a thorough pre-processing regimen where data is
meticulously cleaned, filtered, and rid of noise, setting a refined stage for further analysis.

As we delve deeper into the core of our research, we craft a classification model
leveraging a multilayer perceptron. This model stands as a cornerstone in our study, designed
to decode the complex web of EEG data into understandable segments of hand and finger
motions. The success of this model hinges not just on its initial configuration but significantly
on the strategic optimization of its parameters. Through the processes of cross-validation and
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hyperparameter optimization, we fine-tune aspects such as the size and depth of the neural
layers and the learning rate, ensuring the model's sharpness in interpreting the data [4-6].

Following the model’s development and meticulous tuning, we shift our focus to
evaluating its performance. Employing a variety of metrics — accuracy, sensitivity, specificity,
and the F1-rate — we assess how well the model stands up to the task of recognizing different
movements. This phase is critical, as it not only measures efficacy but also sheds light on
potential areas for enhancement.

Finally, we arrive at the stage of interpreting our findings. This analysis is not merely about
drawing conclusions from the data but also about understanding the broader implications of our
methods and their potential to revolutionize neurorehabilitation technologies. Through this, we aim
to contribute significantly to the development of advanced rehabilitation systems and
neurointerfaces that could transform the lives of those with limited hand or limb functionality.

This comprehensive approach, marked by a nuanced blend of complexity and varied
sentence structure, mirrors the depth and variability inherent in scientific inquiry, striving to
push the boundaries of our understanding of brain-computer interfaces [7-8].

By continuing to explore and refine these approaches, the research community can
unlock new potentials not only in the specific field of EEG signal analysis but also in broader
scientific and engineering disciplines. This ongoing innovation will undoubtedly contribute to
the advancement of technology and science, paving the way for future breakthroughs that can
benefit society at large.

4. PRESENTING OF THE MAIN MATERIAL

Data collection during our experiment was conducted using a 16-channel
encephalograph. Our team meticulously prepared for this stage of the research, ensuring proper
conditions for obtaining reliable data. Prior to data collection, we placed the encephalograph
electrodes on the participant's head. The positioning of the electrodes was chosen to accurately
track the activity of different brain regions responsible for motor functions. During the
experiment, participants were instructed to perform specific repetitive movements of the wrist
and fingers. Each movement was carefully planned and standardized for all participants. The
encephalograph recorded brain activity in real-time at a frequency of 500 measurements per
second. This allowed us to obtain detailed information about changes in neuronal activity
occurring during the execution of movements. For example, data regarding the flexion of the
index finger of the right hand can be observed in (Fig. 1.a), while data pertaining to the rotation
of the wrist can be seen in (Fig. 1.b).
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Figure 1. Visualization of EEG signal analysis results: a) Data showcasing the flexion of the index finger of
the right hand; b) Data illustrating the rotation of the wrist
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The next phase involved preparing the data for analysis. For each packet, we
removed the column that corresponded to time and introduced a new column designated to
contain the identifier of the specific movement. This process was crucial to simplify the
datasets for the upcoming analysis stages and ensure that each entry was accurately
associated with its respective movement type. After making these adjustments, all the
datasets were consolidated into a single comprehensive dataset. This unification was a
critical step in streamlining the data for more effective processing and analysis in
subsequent stages of our research.

5. HIGH PERFORMANCE COMPUTING BASED ON COULD SERVICES
WITH PARALLEL PROGRAMMING

In our exploration of high-performance computing (HPC) powered by cloud services
alongside parallel programming, we have dramatically elevated the efficiency of our
computational processes. This integration was pivotal during the rigorous phases of cross-
validation across each classifier, utilizing parallel computations to accelerate the entire
analytical framework significantly.

We embraced cloud services, which offered scalable computational resources, thereby
aligning perfectly with the fluctuating demands of our extensive EEG signal data and the
intricate machine learning algorithms applied, such as the Multilayer Perceptron (MLP). This
adaptability was crucial in enhancing the speed and efficiency of our computations.

Moreover, the adoption of parallel programming allowed for the concurrent processing
of various data segments. This capability proved invaluable during the cross-validation stages
where the dataset was partitioned into multiple subsets. Parallel handling of these subsets across
different cloud servers drastically cut down the time needed for comprehensive model
evaluation and refinement.

The synergy of cloud-based HPC with parallel programming not only streamlined our
operations but also fortified the reliability and reproducibility of our findings. This approach
enabled a deeper and more efficient investigation into the potential of diverse classifiers to
discern hand and finger movements from EEG signals, significantly advancing our
contributions to neurorehabilitation technology and prosthetic control systems [9-11].

Furthermore, leveraging cloud-based infrastructures meant we could access cutting-
edge computational resources without substantial upfront capital expenditure on physical
hardware. This approach was especially beneficial for executing computationally demanding
tasks, like training and optimizing machine learning models, providing us with access to high-
speed processors and substantial memory capacities essential for handling our complex
algorithms and voluminous datasets.

The flexibility and scalability provided by cloud computing also proved instrumental. It
allowed our research team to dynamically scale our computational resources to meet peak
demands during intensive analysis phases and scale down to conserve resources when lesser
computational power was sufficient [12-14]. This adaptability ensured that our research was
not only cost-effective but also environmentally sustainable, minimizing the energy
consumption typically associated with maintaining large-scale computing facilities.

By distributing computational tasks across multiple servers, we significantly enhanced
our capacity for robust data analysis and simultaneous evaluations of various machine learning
models. This method did not merely hasten our research endeavors but also allowed for a more
thorough exploration of algorithmic possibilities, leading to more precise and informed
conclusions regarding the effectiveness of different classifiers in our study.

In conclusion, integrating cloud-based HPC with parallel programming in our
methodology marks a substantial advancement in EEG signal analysis. This combination
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fosters a more efficient, scalable, and adaptable approach to computational research, enabling
our team to achieve groundbreaking results in the study of neurorehabilitation technologies.

6. MODEL EVALUATION AND CROSS-VALIDATION ANALYSIS

Once we had readied our dataset, the subsequent phase was to divide it into two distinct
portions: one designated for the training of our model and the other set aside for testing its
efficacy. This bifurcation is a cornerstone of machine learning methodology, providing a means
to validate the model’s performance on new, unseen data, thus affirming its reliability and
broader applicability.

In this exploratory phase, our focus was to assess and compare three distinct classifiers:
the Multilayer Perceptron (MLP), Logistic Regression, and Random Forest, each selected for
their unique approaches to pattern recognition and classification tasks. The Multilayer
Perceptron, a neural network known for mastering complex, non-linear relationships, stood in
contrast to Logistic Regression, which, despite its designation, operates primarily as a linear
model for binary classification, calculating the likelihood of data belonging to a certain class.
In parallel, the Random Forest classifier employs an ensemble learning strategy, constructing
numerous decision trees during the training phase and deriving its output from the mode of the
classes predicted by these trees.

Our objective was to determine which classifier achieves superior performance in
accurately classifying various hand and finger movements as recorded through EEG data, gauging
their effectiveness in terms of accuracy, precision, and recall. This comparative analysis not only
aimed to pinpoint the most efficacious model but also to illuminate the complexity and adaptability
of each classifier for potential applications in brain-computer interfacing [15].

In our experiment, we conducted cross-validation for the Multilayer Perceptron
classifier, utilizing the scikit-learn library. Our goal was to determine which scoring metric
provided the best accuracy by testing three different metrics: f1_weighted, accuracy, and
roc_auc_ovr_weighted (table 1).

Table 1

Accuracy metrics for the multilayer perceptron (MLP) classifier

Ne accuracy f1 weighted roc_auc_ovr_weighted
1 0,857497 0,850788 0,992642
2 0,91022 0,913252 0,996913
3 0,935551 0,933407 0,998552
4 0,943789 0,944751 0,998941
5 0,934373 0,936994 0,998591
6 0,935599 0,934797 0,998564
7 0,935397 0,935176 0,998636
8 0,929611 0,930923 0,998378
9 0,90622 0,904757 0,997326
10 0,893709 0,886356 0,996254

After performing cross-validation, the mean scores we obtained for each metric are as
follows:

o «f1 weighted» =0.91712;

® «accuracy» =0.918197;

e «roc_auc_ovr_weighted» = 0.9975;
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These results indicate that, on average, the roc_auc_ovr_weighted metric yielded the highest
scores, suggesting it might be the most reliable indicator of accuracy for our model in this context.

For the Multilayer Perceptron (MLP) classifier, we derived an average performance
measure through the vector mean of the arithmetic means of each variable («fl_weighted»,
«accuracy», and «roc_auc_ovr_weighted») (Formula 1). This approach provided a
consolidated metric to evaluate the overall performance of the MLP, offering a comprehensive
view of its effectiveness across different scoring parameters. By calculating the vector mean,
we obtained a unified average score, which is approximately 0.944, illustrating the classifier's
robustness in various aspects of its predictive capability.

averag_accuracy+averag_f1l_weighted+averag_roc_auc_ovr_weighted
accuracy_general = g 24 9. g g g D
n_accuracy

This is indeed a very promising result, indicating a strong performance of the Multilayer
Perceptron (MLP) classifier across different metrics. However, it remains essential to evaluate
other classifiers as well. By comparing the MLP with alternative models, we can gain a more
comprehensive understanding of the strengths and potential limitations of each approach.
Delving into different classifiers enables us to pinpoint the most suitable model for our specific
needs, ensuring that we employ the most effective tool for achieving precise and dependable
results. This type of comparative analysis is vital in the realm of machine learning, as the
selection of an appropriate algorithm can greatly influence the system's overall efficacy.

The subsequent phase of our analysis entailed evaluating the efficacy of logistic
regression on our dataset. This step aimed to explore the potential of a simpler, linear model in
discerning patterns within our data, offering a juxtaposition to the previously examined, more
intricate  Multilayer Perceptron model. Logistic regression was selected for its linear
characteristics, providing an alternative approach to problem-solving, particularly valuable in
scenarios where the relationships between features and the target variable may not necessitate
complex, non-linear solutions. The results derived from this analysis, specifically regarding
accuracy, weighted F1 score, and weighted ROC AUC score, have been meticulously
documented in Table 2.

Table 2

Accuracy metrics for the (Logistic Regression) classifier

Ne accuracy f1 weighted roc_auc_ovr_weighted
1 0,143730 0,132741 0,50040700
2 0,091245 0,080341 0,49345200
3 0,149039 0,132019 0,49894800
4 0,140908 0,150858 0,49094900
5 0,113898 0,129978 0,49570900
6 0,123564 0,119031 0,49588000
7 0,110708 0,095916 0,49332100
8 0,126516 0,100109 0,49572800
9 0,125124 0,129526 0,49690300
10 0,133790 0,119135 0,49583500

Upon analyzing the outcomes, we ascertained the following mean scores:
e «f1 weighted» = 0.1189654;

e «accuracy» = 0.12585216;

e «roc_auc_ovr_weighted» = 0.4957132;
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These findings conspicuously reveal the Logistic Regression classifier's subdued
performance on our dataset, especially when juxtaposed with the previously evaluated
Multilayer Perceptron. This performance differential emphatically underscores the critical role
of model selection in machine learning endeavors, highlighting that logistic regression might
not represent the most efficacious choice for this particular dataset and task.

Following our analysis with Random Forest, we proceeded to evaluate the Random
Forest classifier. This investigation aimed to understand the performance enhancement that
could be obtained from a more complex model, which incorporates multiple decision trees to
improve prediction accuracy through ensemble learning(Table 3).

Table 3

Accuracy metrics for the (Random Forest) classifier

No accuracy f1 weighted roc_auc_ovr weighted
1 0,780644 0,773998 0,984472
2 0,827296 0,825011 0,988205
3 0,850795 0,850463 0,989931
4 0,868698 0,866797 0,991242
5 0,859639 0,860215 0,990672
6 0,848902 0,849543 0,989349
7 0,855532 0,855239 0,990568
8 0,850259 0,850974 0,990249
9 0,822403 0,821651 0,987962

10 0,804226 0,801645 0,985563

The results from this evaluation, highlighting the Random Forest's performance across
different metrics, are documented in Table 3. Upon calculating the mean values for each metric,
we found that:

Upon analyzing the outcomes, we ascertained the following mean scores:

o «f1 weighted» = 0.8355536;

e «accuracy» = 0.8368394;

e «roc_auc_ovr_weighted» = 0.9888213;

These findings indicate a significant improvement in predictive performance with the
Random Forest classifier compared to logistic regression, showcasing its effectiveness in
handling the complexities of our dataset.

The vector means (geometric means) for each classifier are as follows:

e For the Multilayer Perceptron (MLP), the vector mean is approximately 0.944.

e For Logistic Regression (LR), the vector mean is approximately 0.246.

e For the Random Forest (RF) classifier, the vector mean is approximately 0.887.

Based on these vector means, the Multilayer Perceptron (MLP) classifier achieves the
best overall performance among the three models tested, indicating its superior capability to
handle the complexity of the dataset and accurately predict outcomes.

7. CONCLUSIONS

In conclusion, we conducted a thorough evaluation and comparison of various
classifiers, including the Multilayer Perceptron (MLP), Logistic Regression, and Random
Forest, for identifying hand and finger movements through EEG data. Utilizing rigorous
cross-validation methods and high-performance computing capabilities, we determined the
overall accuracy of each model, identifying the most suitable classifier for our specific needs.
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The Multilayer Perceptron stood out, showing exceptional accuracy and reliability in
interpreting EEG signals, which highlights the capabilities of sophisticated neural network
architectures in advancing neurorehabilitation and prosthetic controls. Our findings emphasize
the necessity of high-performance computing and parallel programming to manage the
intensive computational demands efficiently in machine learning-driven EEG analysis.

Furthermore, our study illustrates the essential benefits of adaptability and scalability
offered by cloud computing technologies, which enhanced the efficiency and flexibility of our
research operations. The capability for parallel computations drastically reduced the time
needed for model evaluations, enabling deeper insights into classifier performances. Future
research should concentrate on enhancing machine learning models, developing innovative
feature extraction methods, and broadening the application of these technologies across various
neurorehabilitation and assistive device control scenarios.

Overall, our research adds significant insights to the neurotechnology field and suggests
new pathways to improve life quality for people with motor function challenges. Leveraging
machine learning and robust computing infrastructures pushes us closer to harnessing the full
potential of EEG-based interfaces in healthcare and assistive technologies.
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HOPIBHAHHA TOYHOCTI AJI'OPUTMIB MALHIMHHOTI'O
HABYAHHS B3AEMOJII MO3OK-KOMIT'IOTEP HA OCHOBI
TEXHOJIOI'TM BUCOKOIIPOAYKTUBHUX OBYUCJIEHD

Bosogumup Crepanumun; IBan Crepanumun; Oaer Iacryx;
Cepriii Kyaikos

Tepnoninbcokuu Hayionanrbhuu mexuivHuu ynigepcumem imeni leana 1lynios,
Tepnoninw, Ykpaina

Pestome. [Ipoananizosarno pisni kiacugixamopu 015 po3nisHA6AHHA PYXie pyK ma nauivyie 3a 00N0MO2010 CUSHANIE
enexkmpoenyeganoepaga (EEG) ma eusnaueno, aki 3 HUX € HaimoyHiwumu. Lle eaxciuum 01 6NPo8aONCeHHs. MEeXHONI02IU
Hetipopeabinimayii ma KoOHMpono pyxie npomesie. Memoo 3acCHO8AHO HA BUKOPUCMAHHI CAMOHABYANLHUX ANOPUMMIE OJA
eexmusHU20 onpaylo8ants ma ananizy ingpopmamueHux xapakmepucmuk na ocrnogi oanux EEG, marouu 3a memy aoanmueno
po3nisHagamu pisHi MOMOpHi Komanou. L{a 30amuicme 3a6e3neyye cmitikicmv ma egexmuHicms cucmemu y po3yMiHHI
CKNIAOHUX HADOPI8 MO3ZKOBUX CUSHANIB, NOB'A3AHUX 13 KOHKDPEMHOI0 MOMOPHOIO OI€I0.

Tounicms cucmemu ROKpawyeEmMvbca 3a80aKU NiI0O6OPY napamempis anaiizy ma Memooo02il Ha OCHOBI OMPUMAHUX
3azdanezimv Habopie cucnanie EEG nio uac KoHkpemHo20 nosmopioganozo pyxy. [lanuil nioxio nouaieae y 6uKOpUCMAaHHs
HOBIMHIX MeMOOUK MAWUHHO20 HABYAHHA, 4 Came MAKuX Kiacu@ikamopie: 6azamouiaposuii nepyenmpoH, 102iCmuiHa
peepecia ma sunaokosuil nic. Lle ona moeo, wob eusnauumuy nioxio, AKutl 0aeamume HAtGUWLy MOYHICIb MO3KOBUX CUSHANIS.
Mu npoananizyeanu 0ani Kiacuikamopu Ha eKcepumMermanbHux OaHUX, nPogeiu Kiacupikayii Ha 6eKmopHux 3HaueHHsx 3 16
0amuuxie, wo Micmamo uuepnuy iHopMayiio npo aKmueHicms 20108HO20 MO3KY 8 KOHKpemHuti Mmomenm uacy. Habopu
OaHUX OMPUMAHO 8 NPoYeci BUKOHAHHS NO8MOPY8anbHo2o pyxy. Takuil nioxio 0ososonac EEG cuenanam 6ionogioui pyxu &
pedcumi peanbHo20 Hacy.

OCHOBHOIO MeMOI OOCIONHCEHHS € NOWYKY MOYHIMUX MemOOi8 Ol NepemeopeHHs KOMAHO (CUsHANig) MO3KY &
MEXaHiuHi pyxu O/ NOKpaweHHs pobomu OIOHIMHUX npomesié ma nioxodie 015 peabinimayii nwodei 3 npoodiemamu
Koopounayii. Excnepemenm 0036015€ ompumamu HAteuuLy mo4Hicmoy y po3nisHABAHHI KOHKPEMHUX MOMOPHUX Komano. [ane
00CTIONCEHHS CNPAMOBAHE HA NOKPAWEHHA AKOCMI HCUMMs 0CiO 3 0OMedHCeHHAMU PYXOBUX QYHKYIlL ma 0Cib 3 NOpYUleHHAM
ynxyii pyxy.

Pesynomamu ompumani, ¢ 0aHomy 00cCnioxcenHi, OeMoHcmploms eghexmusHi nioxoou oas onpayioganns EEG
CUsHANi8 3a 00NOMO20I0 ANCOPUMMIE MAUUHHO20 HABYAHHA, AHATNIMUYHUX NIOX0018 ma XmapHux mexuonoziu. Ilepcnexmusu
BUABNEHT 8 OAHOMY OOCTIOHNCEHHT OONOMONCYMb NOKPAWUMU MA NPUUBUOMUNU PO3BUMOK 00CTIOeHb V 2ay3i ONpayto8aHHs
HeupokoeHimuenux cuenanie. Ompumani pe3yromamu cnpuaoms NOKpawentio pobomu ma nio8uenH0 mouHocmi 63aemooii
MIIC 207I06HUM MO3KOM JHOOUHU WA KOMN TOMePOM.

Knruosi cnosa:. cucnanu enexmpoenyepanocpamu, Heupo-inmepgeric 63aemooii MO30K-KOMN'tomep, wnmyyHuil
inmenexm, napaieibie nPOSPAMYBAHHS, UCOKONPOOYKMUBHI OOYUCIEHHS, KIACUDIKamop, cmabinbHicmb, MOYHICMb, AHANI3
CUHATII8 MO3K).
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