
VІI Міжнародна студентська науково - технічна конференція
"ПРИРОДНИЧІ ТА ГУМАНІТАРНІ НАУКИ. АКТУАЛЬНІ ПИТАННЯ"

333

УДК 621.326

Петришин Я. – ст. гр. СПс-21, Марцинюк Я.

Тернопільський національний технічний університет імені Івана Пулюя

РОЛЬ CI/CD У ПІДВИЩЕННІ ЕФЕКТИВНОСТІ ТА НАДІЙНОСТІ

ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

Науковий керівник: Кравчук Г.Б.

Petryshyn Y., Martsynyuk Y.

Ternopil Ivan Puluj National Technical University

ROLE OF CI/CD IN IMPROVING SOFTWARE EFFICIENCY AND

RELIABILITY

Supervisor: Kravchuk H.B.

Ключові слова: CI/CD, ефективність, надійність, якість.

Keywords: CI/CD, efficiency, reliability, quality.

CI/CD, or Continuous Integration/Continuous Deployment, has become a necessary

practice for modern software development [1, 2]. Coordinated CI/CD processes help ensure

efficiency, reliability and high product quality [3]. Continuous Integration (CI) is a process

that allows developers to integrate their changes into the core code of an application on a

regular basis. This creates the ability to quickly identify and resolve conflicts between

different versions of code, and to automatically run tests to verify the correctness and integrity

of new code. This approach allows developers to respond more quickly to changes in market

requirements and make the necessary changes to the software. After successfully passing the

CI phase, the code is ready to be deployed in the production environment. Both Continuous

Delivery and Continuous Deployment consist of the following stages: Acceptance test,

Deploy to staging, Deploy to production, Smoke test [4].

The only difference is that Deploy to production stage is done manually in Continuous

delivery. Continuous Delivery/Continuous Deployment (CD) provides a way to implement

software changes. Continuous Delivery involves the automated implementation of changes in

the production environment according to certain guidelines or criteria. This allows developers

to maintain control over the deployment process and choose when to implement changes. On

the other hand, Continuous Deployment involves fully automated implementation of changes

immediately after successful completion of all tests and checks. This approach ensures the

fastest introduction of new features and fixes to the product.

Consider a specific UI project (Fig. 1) and its CI/CD process. At the initial stage, code

testing is performed. Dependencies are installed and tests run to check that the code works as

expected and is bug-free. Static code testing is also performed at this stage to detect errors in

the early stages of development, which allows efficient use of time and resources. This

includes code reviews, style checks, system requirements testing, and other methods aimed at

evaluating the quality of code and documentation without actually executing it.

VІI Міжнародна студентська науково - технічна конференція
"ПРИРОДНИЧІ ТА ГУМАНІТАРНІ НАУКИ. АКТУАЛЬНІ ПИТАННЯ"

334

Figure 1 – CI/CD of UI project

Building the Docker image to be used for further deployment is done as the following

step, based on the code. After the tests pass successfully, a new tag is added to the Git

repository to indicate the version of the application and help track changes. This stage is

started manually. Next, the Docker image is built using the generated tag. This means that

each Docker image will be tagged according to the version of the application, which helps to

track releases and determine which version of the application is being used. Next comes the

deployment stage. The first step is to deploy to a test environment. At this stage, the tag in the

configuration files is replaced with the one specified in the current repository. Finally, the

updated code is deployed to the production server which also requires a manual start. At the

final stage, end-to-end (E2E) tests are conducted automatically to check the operation of the

application as a whole, from frontend to backend. This allows identifying problems that may

arise due to the interaction of various system components. Running E2E tests helps ensure

testing is complete. E2E testing completes the pipeline.

The above steps demonstrate how the CI/CD process helps improve the efficiency,

reliability and quality of software development, allowing for the execution of repetitive tasks

without human intervention. This not only saves time but also reduces the likelihood of

human errors. Automation and standardization of processes allow developers to respond more

quickly to changes in market requirements and ensure product stability and reliability [5].

This approach helps reduce time to implementation of changes, increases code quality and

provides competitive advantages in the software market.

References

 1. ISO/IEC/IEEE 12207:2017, IDT - Systems and software engineering. Software life

cycle processes. URL: https://www.iso.org/standard/63712.html.

 2. ISO/IEC/IEEE 29148-2018, IDT - International Standard. Systems and software

engineering. Life cycle processes. Requirements engineering. URL:

https://ieeexplore.ieee.org/document/8559686.

 3. Software Engineering Body of Knowledge (SWEBOK). URL:

https://www.computer.org/education/bodies-of-knowledge/software-engineering.

 4. Continuous integration vs. delivery vs. deployment. URL:

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs -

delivery-vs-deployment.

 5. Constant Readiness or What is CI/CD in DevOps. URL:

https://dataforest.ai/blog/constant-readiness-or-what-is-ci-cd-in-devops.

