VIl MixHapodHa cmydeHmcbKa HayKO80 - mexHiYHa KOHgbepeHUist
"NMPUPOAHNYI TA T'YMAHITAPHI HAYKWN. AKTYAJIbHI MUTAHHS1"

YK 621.326
[Terpummn . — cr. rp. Cllc-21, Mapuuntok .
Teproninbcokuyl HaYiOHAILHUL MeXHIYHUU YHIgepcumem imeni leana Ilynrosn

POJIb CI/CD Y NIJIBULIIEHHI EGEKTUBHOCTI TA HAJIIMHOCTI
IHPOI'PAMHOI'O 3ABE3IIEYHEHHA

Haykosuii kepiBuuk: Kpapuyk I'.b.

Petryshyn Y., Martsynyuk Y.
Ternopil Ivan Puluj National Technical University

ROLE OF CI/CD IN IMPROVING SOFTWARE EFFICIENCY AND
RELIABILITY

Supervisor: Kravchuk H.B.

KirouoBi ciosa: CI/CD, edheKTUBHICTD, HJIIHHICTb, SKICTb.
Keywords: CI/CD, efficiency, reliability, quality.

CI/CD, or Continuous Integration/Continuous Deployment, has become a necessary
practice for modern software development [1, 2]. Coordinated CI/CD processes help ensure
efficiency, reliability and high product quality [3]. Continuous Integration (CI) is a process
that allows developers to integrate their changes into the core code of an application on a
regular basis. This creates the ability to quickly identify and resolve conflicts between
different versions of code, and to automatically run tests to verify the correctness and integrity
of new code. This approach allows developers to respond more quickly to changes in market
requirements and make the necessary changes to the software. After successfully passing the
Cl phase, the code is ready to be deployed in the production environment. Both Continuous
Delivery and Continuous Deployment consist of the following stages: Acceptance test,
Deploy to staging, Deploy to production, Smoke test [4].

The only difference is that Deploy to production stage is done manually in Continuous
delivery. Continuous Delivery/Continuous Deployment (CD) provides a way to implement
software changes. Continuous Delivery involves the automated implementation of changes in
the production environment according to certain guidelines or criteria. This allows developers
to maintain control over the deployment process and choose when to implement changes. On
the other hand, Continuous Deployment involves fully automated implementation of changes
immediately after successful completion of all tests and checks. This approach ensures the
fastest introduction of new features and fixes to the product.

Consider a specific Ul project (Fig. 1) and its CI/CD process. At the initial stage, code
testing is performed. Dependencies are installed and tests run to check that the code works as
expected and is bug-free. Static code testing is also performed at this stage to detect errors in
the early stages of development, which allows efficient use of time and resources. This
includes code reviews, style checks, system requirements testing, and other methods aimed at
evaluating the quality of code and documentation without actually executing it.

333

VIl MixHapodHa cmydeHmcbKa HayKO80 - mexHiYHa KOHgbepeHUist
"NMPUPOAHNYI TA T'YMAHITAPHI HAYKWN. AKTYAJIbHI MUTAHHS1"

Unit test Add tag Deploy dewvelop
—_— E2E testing

—» il —»

Test build image [%uild docker image} Deploy production

Figure 1 — CI/CD of Ul project

Building the Docker image to be used for further deployment is done as the following
step, based on the code. After the tests pass successfully, a new tag is added to the Git
repository to indicate the version of the application and help track changes. This stage is
started manually. Next, the Docker image is built using the generated tag. This means that
each Docker image will be tagged according to the version of the application, which helps to
track releases and determine which version of the application is being used. Next comes the
deployment stage. The first step is to deploy to a test environment. At this stage, the tag in the
configuration files is replaced with the one specified in the current repository. Finally, the
updated code is deployed to the production server which also requires a manual start. At the
final stage, end-to-end (E2E) tests are conducted automatically to check the operation of the
application as a whole, from frontend to backend. This allows identifying problems that may
arise due to the interaction of various system components. Running E2E tests helps ensure
testing is complete. E2E testing completes the pipeline.

The above steps demonstrate how the CI/CD process helps improve the efficiency,
reliability and quality of software development, allowing for the execution of repetitive tasks
without human intervention. This not only saves time but also reduces the likelihood of
human errors. Automation and standardization of processes allow developers to respond more
quickly to changes in market requirements and ensure product stability and reliability [5].
This approach helps reduce time to implementation of changes, increases code quality and
provides competitive advantages in the software market.

References

1. ISO/IEC/IEEE 12207:2017, IDT - Systems and software engineering. Software life
cycle processes. URL.: https://www.iso.org/standard/63712.html.

2. ISO/IEC/IEEE 29148-2018, IDT - International Standard. Systems and software
engineering. Life cycle processes. Requirements engineering. URL.:
https://ieeexplore.ieee.org/document/8559686.

3. Software Engineering Body of Knowledge (SWEBOK). URL:
https://www.computer.org/education/bodies-of-knowledge/software-engineering.

4. Continuous integration vs. delivery vs. deployment. URL.:
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs -
delivery-vs-deployment.

5. Constant Readiness or What is CI/CD in DevOps. URL:
https://dataforest.ai/blog/constant-readiness-or-what-is-ci-cd-in-devops.

334

