Ministry of Science and Education of Ukraine
Ternopil Ivan Pul’uj National Technical University

Department of Higher Mathematics

Higher Mathematics. Part 1:
Linear Algebra, Vector Algebra and
Analytical Geometry

Ternopil
2023



VJIK 512
514

BBK 22.143
22.147
r'12

VYkianaui
I'. B. I'abpyces, kanouoam izuxo-mamemamudHux HayK, OOYeHm,
L FO. I'abpycesa, kanouoam mexuHiuHux HayK,
b. I'. lllenecmogcwkuil, kanouoam Qizuko-mamemamuyHux HayK, OOYyeHm

MeTtonuuHuii MOCIOHUK PO3IIIIHYTO W 3aTBEPIKEHO Ha 3aClJaHH1 HAYKOBO-METOIUYHO1
koMicii DakynpTeTy NpUKIaIHuX 1H(HOPMAIIHHUX TEXHOJIOTIHN Ta eNeKTPOIHKEHEPIi
TepHONUTBCHKOTO HAIIIOHAILHOTO TEXHIYHOTO YHIBepcuTeTy iMeHi [Bana [lymrost mpoTokon
No9 Bin «5» kBiTHs 2023 p.

['12 Tab6pyces I'. B. Buma maremaruka. Yactuna 1: JliniiiHa anreOpa, BeKTopHa anredpa
ta aHamitnyaa reomerpis / I'. B. T'a0Opyces, 1. FO. I'abpycesa, b. I'. lllenecToBchbKkuit —
Tepuomnins : CMII "Tain", 2023 — 84 c.

© Tl'abpyces I'. B., I'abpycena 1. 1O.,
[llenecroBerkuii b. I'., 2023
© CMII "TAMIT", 2023

Habrusiev H. V. Higher Mathematics. Part 1: Linear Algebra, Vector Algebra and Analitical
Geometry / H. V. Habrusiev, I. Yu. Habrusieva, B. H. Shelestovskyi — Ternopil : SMP
"TAYP", 2023 — 84 p.

This textbook consists of 3 parts devoted to the mathematical methods of Linear
Algebra and Analytical Geometry based on the vector analysis technique. The basic concepts
are explained by examples and illustrated by figures.

The textbook is helpful for students who want to understand and be able to use matrix
operations, solve systems of linear equations, analyze relative positions of figures, transform
coordinate systems, and so on.

The textbook is designed to English speaking students.

© Habrusiev H. V., Habrusieva I. Yu.,
Shelestovskyi B. H., 2023
© SMP "TAYP", 2023



LINEAR ALGEBRA
1.Matrices

Matrices allow us to operate with arrays consisting of many numbers, functions or mathematical
statements, just as if we operate with several items.

Matrices have a wide application in different branches of knowledge, for instance, in mathematics,
physics, computer science, and so on. Matrices allow us to solve systems of ordinary equations or sets of
differential equations, to predict the values of physical quantities in quantum theory, to encrypt messages
in the Internet, and so on.

In this chapter, we discuss the basic concepts of the matrix theory, introduce matrix characteristics,
and study some matrix applications. The important propositions are proved and illustrated by examples.

1.1 Basic Definitions

A matrix is a rectangular array of numbers, algebraic symbols or mathematical functions, provided
that such arrays are added and multiplied according to certain rules.

Matrices are denoted by upper case letters: A, B, C, ...

The size of a matrix is given by the number of rows and the number of columns. A matrix
with m rows and n columns is called an mxn matrix (pronounce m-by-n matrix). The numbers m
and n are the dimensions of the matrix. Two matrices have the same size, if their dimensions are equal.

Examples:
2 -7
3x2 matrix: A=|1 0 |;
3 4

) -1 50
2x3 matrix: B = ;
3 3 8

: sinx —CosX

2x2 matrix: C:[ ] j
cosXx sinx

Members of a matrix are called its matrix elements or entries. The entry in the i-th row and the j

-th column of a matrix A is denoted by a; or A;. The subscripts indicate the row first and the column

second.

In the examples above, the boldface elements are a,, =4 and b, =5.

A matrix with one row is called a row matrix: (a, a, .. a,).
8y

A matrix with one column is called a column matrix: | 2
a

ml

In the general form, a matrix is written as follows:



8; &, 8 8y,

a‘21 a‘22 a‘2 j a‘2n
A=

all ai 2 al] ain

aml amz amj a‘mn

A short form of this equality is A={a; .

A square matrix has as many rows as columns, the number of which determines the order
of the matrix, that is, an nxn matrix is the matrix of the n-th order.

1.2. Matrix Operations

Equality of Matrices

Two matrices, A={a;} and B={b,}, are equal, if they have the same sizes and their elements are
equal by pairs, that is, A=B <> a; =b; for each pair of indexes (i, ).

Scalar Multiplication

Any matrix A may be multiplied on the right or left by a scalar quantity A .

The product is the matrix B=AA (of the same size as A) such that

b, = 1a;

for each (i, j).

To multiply a matrix by a scalar, multiply every matrix element by that scalar.

2 -3 0 10 -15 O
Example: Let A= . Then 5A= .
1 4 -1 5 20 -5

The Sum of Matrices
If A={a;} and B={b;} are matrices of the same size, then the sum, A+B, is the matrix

C ={c;} such that
C; =a; +by
for each pair (i, j).

To add matrices, add the corresponding matrix elements.

3 71 6 -15 3
Example: Let A:( 1 2 0) and B:{ ] Then

3 71 6 -15 3 9 -8 4
A+B= + = .
(—1 2 Oj (4 1 Zj (3 3 2)

Multiplication of a Row by a Column
Let A be a row matrix having as many elements as a column matrix B .

In order to multiply A by B, it is necessary to multiply the corresponding elements of the matrices
and to add up the products. Symbolically,



by,

b21

AB=(a; a, .. a,) °
by

= a11b11 + a12b21 +o+a,0, = Zalkbkl .
k=1

Thus, multiplying a row matrix by a column matrix we obtain a number.
Later we will show that any number can be considered as an 1x1 matrix.

To multiply a two-row matrix A:(Alj:[a“ b ai”J by the column matrix
A2 a21 a‘22 aZn

by,

b.
B=(B,)=| * |, we multiply each row of A by the column of B. In this case, the product AB is the

by
following 2x1 matrix:

AB:(AJ(BJ:[A&J:(anbu+a12b21+---+ambm].
AZ AZBl a21bll + a22b21 oot a'annl

Similarly, the multiplication of an m-row matrix by an n-column matrix generates the mxn
matrix.
Matrix Multiplication

The product of two matrices, A and B, is defined, if and only if the number of elements in a row
of A equals the number of ones in a column of B.

Let A bean mxI| matrix and B be an | xn matrix. Then the product AB is the mxn matrix such
that its entry in the i-th row and the j -th column is equal to the product of the i-th row of A and the j-th

column of B. If we denote the rows of A by A,A,,..., A, andthe columnsof B by B,,B,,...,B,, then

A AB, AB, .. AB,

C:AB=/¥(Q B, .. B)= ABL AB . AB,

A, AB AB, .. AB,
To find the element c; in the i-th row and the j-th column of the matrix C = AB, multiply the
i -th row of A by the j-th column of B :

|
c; = AB, :kz,;aikb"j .

Note 1: The symbolic notation A® means the product of two equal square matrices: A* = AA.

Similarly, A*>=AAA, ..., A" = AAA_A.
n

Note 2: In general, the product of matrices is not commutative: AB = BA.
Examples:
1) For each of the following matrices,

2 0 2 2 1 . . :
B= ,C=| |,D=(2 0),and F= , determine whether it equals the matrix
1 3 0 1-1 2+1



2 1
A= or not.
0 3

Solution: The dimensions of both matrices, C and D, differ from ones of A. Therefore, A=C

and A=D.
There are two matrices, B and F , which consist of the same elements as A and have the same
order. However, the corresponding entries of A and B are not equal in pairs, and so A= B.

The matrix F satisfies all conditions of matrix equality, thatis, A=F .

1 3 4 10
2) Let A= and B= .
2 -4 5 15

Solve for X the matrix equation

X+4A=8B.
Solution:
4 10 1 3
X =B-4A= -4 =
5 15 2 -4
_4 10+—4 —12_ 0o -2
|5 15) (-8 16 ) (-3 31)
5
3) Given two matrices A=(1 2 3) and B=| —4 |, find the matrix products AB and BA.
0
Solution:
5
AB=(1 2 3)|-4|=1.5+2-(-4)+3-0=-3,
0
5 51 5.2 5.3 5 10 15
BA=| 4|1 2 3)=|-41 4.2 -4.3|=|-4 -8 -12|.
0 01 0-2 0-3 0O O 0

2 1 3 5
4) Let Az( ] and B:(4 J. Find the difference between matrix products AB and

BA.
Solution:

ap_(2 T)(3 5)_(2:3+14 25+1(-1))_(10 9
lo 3l4 -1) (0-3+3-4 0.5+3-(-1)) (12 -3)’

(330 e s )



10 9) (6 18) (4 -9
AB—BA = - - _
e 51 TG 2

11
5)  Find A®2 if A= [ ]

Solution:

o
(BN

1.3. Types of Matrices
In a square matrix A={a;}, the elements a,, with i=12,3,..., are called the diagonal matrix
elements. The set of the entries a, forms the leading (or principle) diagonal of the matrix.
A square matrix A= {aij} is called a diagonal matrix, if off-diagonal elements are equal to zero

or, symbolically, a; =0 forall i = j:

a, 0 .. O
A 0 a, 0
0 0 .. a

Identity matrices | are square matrices such that

I-A=Aand A-1 =A.

Compare these matrix equalities with the corresponding property of real numbers:

l-a=aand a-1=a.

Theorem: Any identity matrix | is a diagonal matrix whose diagonal elements are equal to unity:

1 0 .. 0
01 .. 0

I = .
0 0 .. 1

This theorem is proved in the following section.
Examples:



1) Itisnot difficult to verify that
1 0)a b a b a b)1 0 a b
= and = :
0 1)lc d c d c d/\0 1 c d
1 0). L .
Therefore, [0 J is the identity matrix of the second order.

2)  Let A={a;} beany 2x3 matrix. Then

1 Oj(au a, aﬁj:(aﬂ 3, aisjand
O 1 a21 a22 a23 aZl a22 a23

100
a, aisj 01 0 z(an a, aia)
a21 a22 a23 0 0 1 a21 a22 a23

A matrix is called a zero-matrix (0-matrix), if it consists of only zero elements: a; =0 for
each (i, j).

In a short form, a zero-matrix is written as O:

0 .. 0
0= o |
0 .. 0
By the definition of a zero-matrix,
0-A=A.-0=0
and
A+0=A,

that is, a zero-matrix has just the same properties as the number zero.

However, if the product of two matrices is equal to zero, it does not mean that at least one of the
matrices is a zero-matrix.

0 1 3 2
For instance, both matrices, A=[0 4} and B:(O Oj’ are non-zero matrices, while their
product is a zero-matrix:
0 1\3 2 00
AB = = )
0 4/\0 O 00

A square matrix has a triangular form, if all its elements above or below the leading diagonal are
Zeros:

all a; =0 fori>jorfori<j.

Examples:

Upper-triangular matrix: A=

O O N
o T o
A O O



1
Lower-triangular matrix: B=| 4
-2

o N O
w O O

Given an mxn matrix A={a,}, the transpose of A is the nxm matrix A" ={a;} obtained from
A by interchanging its rows and columns.

This means that the rows of the matrix A are the columns of the matrix A" ; and vise versa:

(AT)ij:aji.
2 -7
. R 2 1 3
For instance, the transpose of A={1 0 |is A" = - 0 al
3 4

A square matrix A= {aij} is called a symmetric matrix, if A is equal to the transpose of A:
A=A" & a;=a;.
The examples below illustrate the structure of symmetric matrices:

Qo a d e
R=( bj:RT and S=|d b f|=S".
e f ¢
A square matrix A= {aij} is called a skew-symmetric matrix, if A is equal to the opposite of its
transpose:
a; =-a;.

The example below shows the structure of a skew-symmetric matrix:

0 3 1
A=3 0 -2|=-A".
-1 2 0

1.4. Kronecker Delta Symbol
The Kronecker delta symbol is defined by the formula

L if i=j,
e T
b0, if i

The delta symbol cancels summation over one of the indexes in such expressions as

Zaiﬁij ) Zajdj ’
i j

Zaijdij, Zaijé. and so on.
i j

ij !
For instance, the sum Zaiéij may contain only one nonzero term a;5; =a;, while all the other
i

terms are equal to zero, because of 5; =0 forany i = j.



If k< j<n, then > as, =a,.
i=k

(]
If j<kor j>n,then > as, =0.
i=k
Likewise, if k<i<n, then > a5, =4a,.
=k

Otherwise, if i <k or i>n, then > a5, =0.

j=k
Examples:

100
> i%5,=1"-0+2%-0+3"1+4%-0+..=9.

i=1

20 5
D 25,4, =2" =1024, however > 2“5, ,, =0.
k=1 k=1

Now we can easily prove the above-mentioned theorem of identity matrix:

10 .0
01 ..0
O
00 .. 1

The theorem states that the | ={5

u} IS an identity matrix. Therefore, we have to prove that Al = A

for any matrix A.

Proof: Let A be an arbitrary mxn matrix and {dj} be the square matrix of the n-th order. Then
the matrix product Al is the matrix of the same size as A.

By the definition of the matrix product and in view of the properties of the delta symbol, we obtain
that

(AI )ij = zaiké‘kj =g
k=1

for each pair of indexes (i, j).

The equality of the corresponding matrix elements implies the equality of the matrices: Al = A.

1.5. Properties of Matrix Operations
Properties involving Addition

1. For any matrix A there exists the opposite matrix (—A) suchthat
A+(-A)=A-A=0.
2. If A and B are matrices of the same size, then
A+B=B+A.
3. If A, B,and C are matrices of the same size, then

(A+B)+C=A+(B+C).

10



4. The transpose of the matrix sum is the sum of the transpose of the matrices:
(A+B) =A" +B".

The above properties of matrices result from the properties of real numbers. The proofs are left to
the reader.

Properties involving Multiplication

1. Let A beamatrix. If 4 and g are scalar quantities, then
l(,uA) = (ﬂ,,u)A.
2. Let A and B be two matrices such that the product AB is defined. If A is a scalar

quantity, then
A(AB)=(AA)B=A(4B).

3. Let A, B,and C Dbe three matrices such that all necessary multiplications are appropriate.
Then

(AB)C = A(BC).
4. Let A and B be two matrices such that the product AB is defined. Then
(AB) =B'A'.
5. If A and B are two diagonal matrices of the same order, then

AB = BA.

Properties 1) and 2) simply result from the properties of real numbers and the definition of the
scalar multiplication.

To prove Property 3, we have to show that the corresponding elements of the two matrices,
(AB)C and A(BC), are equal.

By the definition, the matrix element in the i-th row and the k -th column of the matrix AB is
(AB), = leai,blk :
The matrix element in the i -th row and the j -th column of the matrix (AB)C can be expressed as
((AB)C)ij =Zk:(AB)ik Cy =zk:Zai,blkckj .

By changing the order of summation, we obtain

((AB)C)” :Zklzllanblkckj ZZI:anZk:blkaj =
=22 (BC), =(A(BC)),.

The equality of the corresponding matrix elements is satisfied that implies
the equality of the matrices: (AB)C = A(BC).

To demonstrate Property 4, we transform the entry in the i-th row and the j-th column of the
matrix (AB)' . In view of the definition of the transpose of matrix,

(AB Z b, =

11



:ZAIJ'Bil :zBilAYTJ :(BTAT )ij'
k k
Thus, (AB)T and (BT AT ) obey the conditions of equality of matrices.

Property 5 is based on the following reasons: 1) diagonal matrices are symmetric ones; 2) the
product of diagonal matrices is a diagonal matrix.

Therefore, we need only to show that (AB). =(BA). . Indeed,

AB) =Zaikbki :Zakibik :Zbikaki :(BA)”-
k k k

Properties involving Addition and Multiplication

1. Let A, B, and C be three matrices such that the corresponding products and sums are
defined. Then

A(B+C):AB+AC,
(A+ B)C =AC+BC.

2. Let A and B be two matrices be two matrices of the same size. If A is a scalar, then
A(A+B)=1A+1B.

To prove Property 1, consider the element on the i-th row and the j-th column of the
matrix A(B+C).

By the definition of the matrix product and in view of the addition properties, we have
(A(B+C)), Za,k B+C), Za,k (b +c,)=

Za,kbkJ +Za,kckJ = . +(AC), =(AB+AC),.

for each pair of indexes (i, j).
Therefore, the matrices A(B+C) and (AB+ AC) are equal.

The equality of the matrices (A+B)C and (AC +BC) can be proven in a similar way:
((A+B)C), Z(A+ B), Cy =2 (2 +by ), =
k
= Za,kckJ +Zb,kckJ = ; +(BC), =(AC+BC), .

The corresponding matrix elements are equal by pairs. Hence, the matrices are equal.
Property 2 results from the properties of real numbers. The proof can be performed by the reader.

Short Summary: Operations with matrices, such as addition and multiplication, have similar
properties as that with usual real numbers. Numerical matrices of the first order can be interpreted as usual

real numbers, that is, {a,,} =a,,. The set of matrices is a generalization of the set of real numbers.

Examples:

3 -1 -2 41
1) Let A=(1 2), B= ,and C = :
0 4 5 0 2

12



By a straightforward procedure, show that (AB)C = A(BC).

Solution: AB = (1 2)[3 _4]:(3 7),
(AB)C =(3 7)(_52 g ;]=(29 12 17),

3 -1)(-2 41 -11 12 1
BC = = ,
(o 4)(5 0 2} (20 0 8]

A(BC)=(1 z)[;)l " ;j:(zg 12 17)=(AB)C.

2)  Let A={a;} and B={b;} be two matrices of the second order. Verify the identity
(AB) =B"A".
Solution: Find the matrix product of A and B and the transpose of AB:

AB:(a11 an][bu blsz[anbn"'aizbu a11b12+a12b22],

a21 a22 b21 b22 a‘21b11 + a'22bZl a21b12 + a22b22

(AB )T — [allbll + aiZbZl a21b11 + a‘22b21j
allbIZ + a12b22 a21b12 + a22b22
Then find the matrix product BT A" to see that (AB)' =BT A

BT AT — (bll b21 j(all a21} — [b.llail + b21a12 bllaZl + b21a22 J
b12 b22 a12 a‘22 blZail + b22a12 b12 a21 + b22 a'22

1 -1
3)  Let f(x)=2x—x"+1and A:(o 2j.Find f(A).

Solution: The matrix-analogue of number 1 is the identity matrix | . Therefore,

rw-2a-ra=2 o 10 e 2o o)
(6 7o T U6 3

13



2. Determinants

The determinant of a matrix is a number that is specially defined only for square matrices.
Determinants are mathematical objects that are very useful in the analysis and solution of systems of linear
equations. Determinants also have wide applications in engineering, science, economics and social science
as well. Let’s now study about the determinant of a matrix.

2.1. General Definition

To every square matrix A we can associate a number called determinant of the matrix. It is denoted
by |A| or detA. Let A:{aij} be a square matrix of the order n. By removing the i-th row and j-th

column, we obtain a submatrix of A, having the order (n—1). The determinant of that submatrix is called

the minor of the element a;,

which is denoted by M;;.

The cofactor of the element a; is defined as the minor M;, with the sign (—1)i”. It is denoted by
the symbol A;:

A; =(_1)i+j M.

The determinant of a matrix A equals the sum of the products of elements of any row (or column)
of A and the corresponding cofactors. For example:

det A= a'ilAl +ai2A2 +"'+ainAn = ZaijAj .
=

The last formula is known as the expansion of the determinant according to its i-th row. If we will
use j-th column we will have different expansion

det A=a, A, +a,,A, +..+aA =D a A .
i=1

However these different formulas will give us the same result.

The determinant is very important characteristic of the matrix. As a rule, it is important only
whether the determinant of a given matrix equals zero or not. For instance, the inverse matrix of A exists
if and only if det A=0.

Do not confuse the determinant of a matrix with the matrix itself! While a numerical matrix A is
an array of numbers, det A is some single number but not an array of numbers.

Particular cases
1. A matrix of the first order contains only one element. The determinant of that matrix is

equal to the matrix element itself: det{a,,} =a,, .

2. Let A be asquare matrix of the second order: A= (a“ a“j .

a21 a22

1+2

detA=a,A, +a,A,, where A, =(-1)"a, =a,, and A, =(-1)""a,, = —a,. So, the determinant

of A:
a; &
azi azz = a8, —a,ay.
3. If a matrix has the third order then we will have:

det A= auAu + alZALZ + a13Al3n , Where
14
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a23

a a
An = (_1)“1 ? = 8,833 — A3y, A12 = (_1)1+21 “ = _(a21a33 - azsas1) = 8,385 — 8,85

as; aas a; Ay
& Ayl
:(_1)l+3 21
A13 aSl 832 21a32 22a31
Therefore,
a, 4, a;
a21 a22 a‘23 = a11a'22a33 + a12a23a31 + a133‘218‘32 -
Q3 4y Ay

81838, — 8185833 — 38558 -
To remember this formula, apply the Sarrus Rule which is shown in the figure below.

aH QLGU a?g;g.}’{,g" 3
as !\B as, a5, é;
+a!faf2af3 LR
Ta,,a,,0;; ~0510,5,0)3
Ta,a,,a;; =d;;d;,d;;

2.2. Properties of Determinants

1. The determinant of the transpose of A is equal to the determinant of the given
matrix A:
det A" =det A.

2.  Multiplying any row or column of a determinant by a number A, multiplies the
determinant by that number:

A, A, . & . 4y Q; 8, . A& .. B
a‘21 a22 e a'2j e aZn a‘21 a'22 e a‘2 ] e a2n
=A| :
Ay Aa, .. Ay .. Ay, & &, . .. @
&y &, e Ay . Ay &y &y, e Ay e Ay

3.  The determinant changes the sign, if two rows (or columns) of a matrix are
interchanged:

4.  If amatrix has a zero-row or zero-column, then the determinant is equal to zero:

15



i3 in
0O 0 O 0(=0
aJl aj2 aJ3 ajn

5.  If amatrix has two equal rows (or columns) then the determinant is equal to zero:

a, a, a; .. §

6. If two rows (or columns) of a matrix are proportional to each other then the
determinant is equal to zero:

7. If each element of a row (column) of a determinant is the sum of two entries then

a, a, I a,
Q, t+ bkl a,t bk2 a,+ bks TR bkn =
anl an2 a‘n3 ann

Q; @, & . Q| |y 8, 8y .. &,

=g &, Fgo e akn+bk1 bk2 bk3 bk

nl:

a, a, dz ... Ayl [y A Q5 ... &

nn

8. A determinant holds its value, if a row (column) is multiplied by a number and then
is added to another one:

16



a, a, a, a,

a,+Cq; 4, +Cq, q4+Cay; ... aq,+Cq,

9. Let A and B be square matrices of the same order. Then the determinant of their
product is equal to the product of the determinants:

det(AB):detA-detB.

10. The determinant of a triangular matrix is equal to the product of the elements on the
principle diagonal:

8 &, 83 .. &,
0 a, a, .. a,

0 0 Qg3 e Ay | = 3858558, -

0 0 0 .. a

nn

In particular, the determinant of an identity matrix | equals the unity.

Examples:
sinX  COSX .
1) Let Az[ . ] Find det A.
—COoSX Sinx
Solution:
sinx cosx ., )
det A= ) =sin“ x+cos“ x=1.
—COoSX Ssinx

b
2) Let A=(il d]' Verify that det A=det A" .

Solution:
a

C
1 2 3

3) Evaluate |4 5 6.
7 8 9

Solution:
1 2 3

45 6:[r2—>r2—2r1J:
7 8 9 r,— -3

det A=

b
—ad-bc and detAT:a C:ad—bc.
d b d

=0.

A DN P
N RN
O O w
I
N
N N P
)
o O w

50 7 1
4) Let A= and B= . Verify that det AB =det A-detB.
1 2 3 2
Solution:

5
det A=
1

0 7 1
=10, detB= =11,
2 3 2

det A-detB=110.

17



5 0)(7 1) (35 5
AB = = ,
1 2){3 2) 13 5
35 5 [35 1
det AB = =5 = 5(35-13) =110.
13 5 [13 1

31
5) Evaluate det A*?, if Az(2 J.

Solution: Note that
det A" = (det A)looo.

Then

1

det A=
2

3
‘ =3-2=1 = det A0 =110 —1

= =

2 3 4
6) LetA=|0 1 5

0 0 -1
Calculate: @) det A; b) det A’; c) det(2A); d) det(-3A); e) det(A-2I).

Solution: a) The determinant of a matrix in the triangular form equals the product of
the principle diagonal elements. Therefore,

2 3 4
A=[0 1 5|=2.1(-1)=-2.
00 -

b) The determinant of the product of matrices is equal to the product of their
determinants, and so

det A = (det A)* =(-2)" =8,
c) Let I be the identity matrix of the third order. Then
det(2A)=det(21)-det A=2°-(-2)=-16.
d) Likewise,
det(~3A) =det(-31)-det A=(-3)’-(-2) =54,
e) Simplify the matrix

2 3 4 2 00 0 3 14
A-21=0 1 5|-|0 2 0|=|0 -1 5
0 0 -1) (00 2 0 0 -3
The determinant of this matrix equals zero: det(A—21)=0.
2 -5 3
7) Calculate the determinant |1 4 0|, by its expansion according to the first row and the
-3 7 5

second column.
Solution: The expansion by the first row yields

2 53
4 0 1 0 |1 4
1 4 0=2 —(-5) +3 =
75 -3 5 |37
-3 7 5

=2(20-0)+5(5-0)+3(7+12)=122.

Now expand the determinant according to the second column:
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2 -5 3
1 4 O:—(—S)

1 0 2 3 _[2 3
+4 -7

-3 5 |35 |10
-3 7 5
=5(5-0)+4(10+9)-7(0-3)=122.
8) Evaluate the determinant of the matrix
15 -2 0
31 6 -1
A= .
70 1 3
4 5 2 1

Solution: First, transform the first row via elementary column operations.

Keeping the first and last columns, subtract the first column multiplied by 5 from the
second one, and add the first column multiplied by 2 to the third one:

15 -2 0 1 0 0 O
31 6 - c,—>¢C,—-5c ) 3 -14 12 -1
detA= =2 "7 = .
70 1 3 c,—>cC,+2c ) |7 =35 15 3
4 5 2 1 4 -15 10 1

Then expand the determinant by the first row:

-14 12 -
detA=|-35 15 3|.
-15 10 1

Transform the third column by adding the third row to the first one and subtracting the
third row multiplied by 3 from the second row:

-14 12 - -29 22 0
Lo>h+r

-35 15 3|= =10 -15 Q).
r,—>r,-3r

-15 10 1 -15 10 1

Expand the determinant by the third column:

-29 22
det A= .
10 -15
We can still take out the common factor 5 from the last row:

22

det A= 5‘_29 =5(-29-(-3)-22-2)=215.
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3. Inverse Matrices

Let A be asquare matrix.
A matrix A™ is called an inverse matrix of A if
ATA=AAT =1,
where | is an identity matrix.
If the determinant of a matrix is equal to zero, then the matrix is called singular; otherwise, if
det A= 0, the matrix A is called regular.

If each element of a square matrix A is replaced by its cofactor, then the transpose of the matrix
obtained is called the adjoint matrix of A:

Ac A e A (A Ay A
A Py B | A Ay A

adjA=
Ay A, o A, A, A, o A,
3.1. Three Lemmas

Lemma 1: Given a square matrix A of the order n, the sum of the products of the elements of any
row (or column) and the cofactors of another row (column) is equal to zero:

Zn:aikAjk:O, (i=1) 1)
and
i—akiAkao, (i=]). (2)

Proof: To prove (1), consider an auxiliary matrix A that is obtained from the matrix A by
replacing the j -th row with the i -th one:

Expand det A by the j -th row:

n

det A= kZajkAjk =Y a, A, .
=1

k=1
The only difference between matrices A and A is the j-th row. However, the cofactors Ajk do

not depend on the elements on the j -th row, and so Ajk = A, , Which implies
detA=>a,A, .
k=1
On the other hand, the matrix A has two equal rows. Therefore, by the properties of determinants,
detA=>"a,A, =0, (i=]).
k=1
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Statement (2) can be proven in a similar way.
Lemma 2: The matrix products A-adj A and adj A- A are diagonal matrices, that is,

(A-adj A), =0 (i=]),

(adjA-A) =0 (i£]).

ji
Proof: If i # j then, by Lemma 1,
YaA=0 = >a,A=0 = (AadjA) =0,
k=1 k=1
and
D aA =0 = > A, =0 = (adjA-A) =0.
k=L k=1
Lemma 3: The diagonal elements of the matrices A-adjA and adjA-A are equal to the
determinant of the matrix A:
(A-adj A), =(adj A-A). =detA.

Proof: By the theorem of expansion of determinants according to a row,
det A= Zn:aikA1k = Zn:aikAJi =(A-adjA). .
k=1 k=1
Likewise, the theorem of expansion determinants by a column yields
det A= Zn:aikA1k = Zn:Ai{aki =(adj A-A). .
k=1 k=1

Hence, the lemma.

3.2.  Theorem of Inverse Matrix
For any regular matrix A there exists the unique inverse matrix:

Any singular matrix has no an inverse matrix.
Proof:
1) Assume that there exists an inverse of matrix A.Then
AA =1 = detA-detA’=1,
and hence det A=0.
Therefore, singular matrices have no inverse matrices.
2) Assume that each of the matrices, A™" and B, is an inverse of A:
AAT=A"'A=1 and AB'=B*A=1.

Then

B'=B'I=B'AA'=(B'A)A'=IAT=A"
Therefore, there exists the unique inverse of A.
3) Find the inverse of matrix A.
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By the Lemma 2, (A-adjA). =0, if i=]j.

ij

1 )
By the Lemma3, —— (A-adj A) =1.
y detA( ) )“
Combining the above equalities, we obtain
1 )
—— (A-adj A
detA( ) )

where the delta symbol &; denotes the matrix elements of an identity matrix.

5,

i

Therefore,

A-i adjA=1.
det A

Likewise, [L adj Aj-Az I, and hence, Lt adj A= A",
det A det A

3 4
Example 1: Given the matrix A= (1 2}, find the inverse of A.
Solution: First, calculate the determinant:
3 4
det A= =6-4=2.
1 2

Next, find the cofactors of all elements:
A-l :(_1)1+12:21 A-z :(_1)l+21:_1’

Au=(-"4=-4, A =(-1773-3

Then, find the adjoint matrix of A:

T
A, A,) -4 3) (-1 3
L2 -4y 12 -4 12
_M(—l 3]_5[—1 3)‘ R
2 2
AA‘1=E(3 4}[2 —4j=£[2 OJ=(1 OJ
2l1 2l-1 3) 200 2) (o 1
and
AlA:;(z _4J{3 4)23[2 OJ:(l Oj
2l-1 3 )l 2) 2l0 2) lo 1

. Find the inverse of A.

Finally, obtain

Verification:

Example 2: Let A=

S Ny
o U1 N
© o w
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Solution: Calculate the determinant:

1 2 3 11
detA=4 5 6|=4
78 9 3 3 3 3 3 3

Therefore, the given matrix is singular, and so it has no the inverse of A.

1 -2 3
Example 3: Let A=|0 4 -1/|. Find the inverse of matrix A.
5 0 1

Solution:

1) To calculate the determinant of A, add the first row doubled to the second row. Then
expand the determinant by the second column.

1 -2 3 1 -2 3
1+2 2 5
detA=|0 4 -U=(r,>r,+2r)=2 0 5=-2-(-1) c 1‘:—46.
5 0 1 5 0 1
2) Find the cofactors of the elements of the matrix.
+ 4 -1 1+2 0 -1 143 0 4
= (-1 =4, A,=(-1 =5, A,=(-1 =20,
+ _2 3 2+2 1 3 2+3 1 _2
_ _121 =2, =(-1 =-14, =(-1 =-10,
&1()01‘ Azz()“‘ Azg()so‘
+ -2 3 3+2 1 3
=(-1)™ --10, =(-1 ~1,
A31 ( ) 4 _l‘ A32 ( ) O _JJ
1 -2
—(-1 3+3 — 4.
3) Write down the adjoint matrix of A.
4 5 20 (4 2 -10
adjA=| 2 -14 -10| =| -5 -14 1
-10 1 4 -20 -10 4
4) The inverse of matrix A is
4 2 -10
A’lz—i -5 -14 1
46
-20 -10 4
5) Verification:
11—2342—10 1—4600 100
AA'=——|0 4 -1|| 5 -14 1 |=——| 0 -46 0 |=|0 1 0|=I
46 46
5 0 1){-20 -10 4 0 0 -46 0 01

Likewise,
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-46 0 0 1 00
A1A=—4—16 0O -46 0 |=|0 1 O|=I
0 0 -46 0 01
3 5 4 1 . .
Example 4: Let A:[l 2] and B= 3 1] . Solve for X the matrix equation

XA=B.
i 3 5 . . . :
Solution: Note that det A= 1 2 =1=0, thatis, A is a regular matrix. Therefore, there exists the

inverse of A:
X =BA™.
Find the inverse of matrix A.

2 1)y (2 -5 2 -5
adj A= = :A‘Eiade: .
5 3 -1 3 det A 1 3

Thus,

Verification:

x
>
Il
I/
o1 N
|
=
N~
N
/N
w
o1
-
Il
R
w b
=
NI
Il
o

1 2

3.3.  Calculation of Inverse Matrices by Elementary Transformations

Let A be aregular matrix.

The inverse of A can be found by means of the elementary transformations of the following
extended matrix

a;, .. a,/1 .. 0

(A)=] o o ]

a, .. a,0 .. 1

where | is the identity matrix of the corresponding order.
By making use of elementary row operations we have to transform the extended matrix to the
form (1|B). Then B= A",
The following elementary transformations (involving only rows) can be applied:

1)Multiplying a row by a nonzero number.
2)Adding a row to another row.

3 4
Example: Let A:(l 2). Find the inverse of A.

3 4

Solution: Consider the extended matrix (A|I ) :[1 ,

1 0

0 1)

Multiply the second row by the number 2 and then subtract the result from the first row:
24



3 41 0 1 01 -2
- .
1 210 1 1 20 1

Subtract the first row from the second one:
1 01 -2 1 0/1 -2
- )
1 20 1 0 2-1 3

1 0/1 -2 101_2
—> .
0 2-1 3 01_12

The desired form is obtained and hence,

At=| 1 _32 _ife
= 2| 2l-1 3 )
2 2

Divide the second row by 2:
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4. Systems of Linear Equations
4.1. Matrix Rank

An mxn matrix A is said to be the matrix of rank r, if
— there exists at least one regular submatrix of order r;
— every submatrix of a higher order is singular.

According to the definition,
rank A<min{m,n} .

The rank of a matrix can be evaluated by applying just those elementary row and column
operations which are used to simplify determinants, that is,

1. Interchanging two rows or columns.
2. Multiplying a row (column) by a nonzero number.

3. Multiplying a row (column) by a number and adding the result to another row
(column).

If a row or column consists of zeros then it can be omitted.
These operations are said to be elementary transformations of a matrix.

Theorem: If amatrix A is obtained from A by elementary transformations then rank A=rank A.

Proof: Interchanging two rows or two columns of a matrix changes the sign of the determinant.
Multiplying a row (column) by a nonzero number multiplies the determinant by that number.
Adding a row (column) to another one holds the magnitude of the determinant.

Therefore, all singular submatrices are transformed into singular submatrices, and regular
submatrices are transformed into regular submatrices. Hence, the theorem.

By elementary transformations of a matrix we try to obtain as many zeros as possible to reduce the
matrix to the echelon form:

For instance,
2 7 -2 0 1
A=|0 6 1 -3 3
00 -1 4 2
is the matrix of the reduced row echelon form.
The number of the rows gives the rank of A: rank A=3.

Examples:
4 -1 5 2
1 0 -3 3
1) Let A=
7 -2 13 1
3 -1 8 =2

Find the rank of A.
Solution: Subtract the first and fourth rows from the third one:

4 -1 5 2 4 -1 5 2
A=1 0 =33 —>(r—>r—r—r)—>l 0 =33
7 2 13 1 oo 0 0 0 1
3 -1 8 -2 3 -1 8 -2

Add the third row multiplied by suitable numbers to the other rows:
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4 -1 5 2 4 -1 5 0
n—r-2r
1 0 -3 3 1 0 30
—=>|nL—->nL-3; > .
0 0 0 1 0 0 0 1
r, —>r,+2r,
3 -1 8 -2 3 -1 8 0
Subtracting the first row from the fourth row and then adding the second row to the fourth one we
obtain
4 -1 5 0 4 -1 5 0
1 0 -3 0—>(r—>r+r)—>l 0 30
0 0 0 1 v 00 0 1
-1 0 3 0 0 0 0 O

Any further transformations are not necessary, because the determinant of the order 4 is equal to
zero, but there is a submatrix of the third order the determinant of which is nonzero:

-1 5 0
0 -3 0 :—1~(—3)-1:3.
0 0 1

Hence, rank A=3.
4.2.  Main Definitions
Consider a system of m linear equations with n unknowns:
a, X, +a,X, +..+a,Xx, =h,
A, X 85X, +.+ Ay, X, =D, )

X +a,,X +..+a,X =b..

Here a; are numerical coefficients; b, are constants (i=1,2,..,m) and x; are unknowns
(i=12,..,n).

A solution of system (1) is a set of values of the unknowns x; that reduces all equations (1) to
identities. If there exists a solution of simultaneous equations then the system is called consistent;
otherwise, the system is inconsistent.

Using matrix multiplications, system of equations (1) can be represented by a single matrix
equation

AX =B,

where A is the coefficient matrix consisting of a; ; the column matrix B ={b,} is called the non-

ij

homogeneous term; X is the column matrix, whose elements are the unknowns X; :

&; &, . &, X by

a, a, .. a X b
A — 21 22 2n , X — 2 , B — 2

aml a‘m2 amn Xn bm

If the non-homogeneous term B is equal to zero, then the linear system is called the homogeneous
system:
AX =0.
Two linear systems are called equivalent, if they have the same solution set.
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Elementary transformations of the linear system is the process of obtaining an equivalent linear
system from the given system by the following operations:

1) Interchange of two equations.

2) Multiplication of an equation by a nonzero number.

3) Addition of an equation multiplied by a constant to another equation.

Each of the above operations generates an equivalent linear system.

Two linear systems of equations are equivalent if one of them can be obtained from another by
the elementary transformations.

Applying the linear transformations we try to find an equivalent system which can be easier solved.

4.3. Gaussian Elimination

Consider the augmented matrix of system (1):

&; &, . (b
(A|B): aZl a‘22 a2n b2

a |b

mn m

There is one-to-one correspondence between the elementary transformations of the linear system
and linear row operations on the augmented matrix. Indeed:
— Interchanging two equations of the system corresponds to interchanging the rows of the

augmented matrix.
— Multiplication of an equation by a nonzero number corresponds to multiplication of the row by

that number.
Addition of two equations of the system corresponds to addition of the rows of the matrix.

The main idea is the following.
First, transform the augmented matrix to the upper triangle form or row echelon form:

.2';0_1

o EQJI :
R -
£
O
w N

1]

ay
0
0

(AlB)=

to

o

o

o
o
O

Then write down the linear system corresponding to the augmented matrix in the triangle form or
reduced row echelon form. This system is equivalent to the given system but it has a simpler form.

Finally, solve the system obtained by the method of back substitution. If it is necessary, assign
parametric values to some unknowns.

This systematic procedure of solving systems of linear equations by elementary row operations is
known as Gaussian elimination.

Examples:
1) Solve the system below by Gaussian elimination:
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2X, — X, + 5%, =10,
X, + X, = 3%, =2,
2X, +4X, + %, =1.

Solution: Reduce the augmented matrix to a triangle form:

2 -1 5110 2 -1 5]10
r,—>r,—r,
1 1 3-2|>(npb->2r)—>2 2 -64 —>( J—)
r,—>r, -,
2 4 111 2 4 1|1
2 -1 5|10 2 -1 5|10
—|0 3 -11-14|>(r,—>3r)—>|0 3 -11-14|->
0 2 7|5 0 6 21|15
2 -1 5110 2 -1 5110
S(n>rn-2r)—>|0 3 -11/-14 —>(r3—>4r—;j—> 0 3 -11]-14].
0 0 43|43 0 0 1)1

The later matrix corresponds to the system
2%, — X, + 5%, =10,
3X, —11x, =14,
X, =1.
which is equivalent to the initial system.
Now the solution can be easily found:
3%, =-14+11x, =-3 =X, =-1,

2x, =10+X,-5x =4 = x =2.

X, 2
Thus we obtain the solution X =| x, |=| —1| of the given system.
X, 1

It is not difficult to verify the values of the unknowns satisfy all the given equations:
2%, — X, +5%, =2-2—(-1)+5-1=10,
X, +X, —3%; =2+(-1)-3-1=-2,
2X, + 4%, + X, =2-2+4-(-1)+1=1.

2) Find all solutions of the system of equations via Gaussian elimination
X, +X,—X; =0,
2X, — X, — X3 =2,
4%, + X, —3%; =5.

Solution: The system can be represented by the augmented matrix. Apply the linear row
operations:
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form:

r r,—2r
1 -3l5 G C - T
1 1 -10
—>(rL—>r+r)—>|0 -3 1|-2|.

0O 0 0|7
The third row corresponds to the equation
0-x+0-x,+0-%, =7,
which evidently has no solutions.
Therefore, the given system is inconsistent.
3) Use Gaussian elimination to solve the system of equations.

X, + X, =X, —2X%, =0,
2X + X, = X3 + X, =2,
=X + X, =3%,+ X, =4.

Solution: By elementary transformations, the augmented matrix can be reduced to the row echelon

1 1 -1 2|0 1 1 -1 -2/0
2 1 1 1|2 —>[r3_”3+r1 ]—> 0 1 1 52|
113 1la) BT g 5, 4 s
1 1 -1 -2|0
—>(Lb>r+2r,)>0 -1 1 5|2/
0 0 -2 9|0
The reduced matrix has the rank 3 and corresponds to the following system of linear equations:
X, +X, —X; —2X, =0,
—X, + X, +5X, =2,
—2X%,+9x, =0.

The variable x, is considered to be an arbitrary parameter c, regardless of the value of which the

remaining values of x,X,, and x, reduce all equations of the given system to identities.

From the last equation we find

9 9
X4 :C, X3 :EX4 =§C.

Then we obtain

X, =2+ X, +5X, =2+%x4+5x4:2+%x4:2+?c,

X, = X3 — X, +2X, :§X4—%X4—2+2X4 =-2-3x,=-2-3C.
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-2-3c
2+Bc
The general solution of the system X = 2 depends on the arbitrary parameter c. Any

particular value of ¢ gives a particular solution of the system. Assigning, for instance, the zero values to
-2

the parameter c, we obtain a particular solution X, =

-8
. . . . 21
Setting ¢ =2 we obtain another particular solution X, = .

2

Conclusion: The given system has an infinite number of solutions.
Solution check: Let us verify that the set of values

X, =—2-3C, x2=2+%c, xgzgc, X, =C

satisfies the given system of equations:

—2—3c+2+gc—gc—2c:0,

X, + X, —X; —2X, =0, 129 S 0=0,
2X + X, =X+ X, =2, = _4_6C+2+?C_EC+C:_2’ = -2=-2,
—X, + X, —3X, + X, =4, 4=4.
2+3c+2+%c—2?7c+C:4,

That is true.

4.4. Homogeneous Systems of Linear Equations
A homogeneous system of linear equations has the following form

AX =0, )
where A is the coefficient matrix, and X is the column matrix of the unknowns.
0
Evidently, any homogeneous system has the particular solution X =| ... | which is called the trivial
0
solution.

Theorem: If X, and X, are solutions of a homogeneous system then a linear combinations of the
solutions

Clxl +C2X2
is also a solution of the system.
Proof: By the conditions of the theorem,
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AX,;=0 and AX,=0.

For any constants ¢, and c,

C,AX, =0 = A(c,X,)=0,

c,AX, =0 = A(c,X,)=0.

Adding together the above identities we obtain
A(c,X;)+A(c,X,)=0,

which implies

A(c,X,+¢,X,)=0.

Hence, the theorem.

Examples
1) Use Gaussian elimination to solve the following homogeneous system of equations.

X, — X, —X; + 3%, =0,
X, +X, —2X, +X, =0,
4% —2X, +4%; + X, =0.
Solution: By elementary transformations, the coefficient matrix can be reduced to the row echelon
form

1 -1 -1 3 1 -1 -1 3
r,L—>r—r
11—21—)( j—>02—1—2—>
rL—r-4r
4 -2 4 1 0 2 8 -11
1 -1 -1 3
—->(rL->r-r)—>0 2 -1 -2
0O 0 9 -9

The rank of this matrix equals 3, and so the system with four unknowns has an infinite number of
solutions depending on one free variable. If we choose X, as the free variable and set X, =c, then the

leading unknowns, x,X, and X,, are expressed through the parameter c. The above matrix corresponds to
the following homogeneous system
X, —X, =X, +3c =0,
2X, =%, —2¢ =0,
9x, —9c =0.

The last equation implies X, =c.

Using the method of back substitution we obtain

2X, =% +2c=3Cc = xzzgc,

3 1
=X, +X,—3c=—Cc+Cc—-3c=——cC.
X1 2 3 2 2

Therefore, the general solution of the system is
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1 1

__C —_—

2 2

X = §C =C 3
|2 B 2
C 1

C 1

To obtain a particular solution X, we have to assign some numerical value to the parameter c. If
we set ¢ =4, then

-2

Solution check: The set of values of the unknowns
1 3
Xlz—EC, XZZEC, X;=C, X,=C

reduces equations of the given linear system to the identities:

—lc—§c—c+3c=0,
2 2 0=0,
—lc+§c—2c+c:0, =410=0,
2 2 0=0
—ﬂc—§c+4c+3:0.
2 2
1 -1 -1 1
2) Let A=|2 -2 1 1]
5 -5 -2 4
Find the solution of the homogeneous system of linear equations
AX =0.
Solution: Transform the coefficient matrix to the row echelon form:
1 -1 -11 1 -1 -1 1
r,—>r,—-2r
2—211—>( j—)OOB—l;
r,L—>rn-2r,—r
5 -5 -2 4 0 0 3 1
1 -1 -1 1 1 -1 -1 1
0 3 -1|»(L>r+r,)—>|0 0 3 -1
0 0 -3 1 0 0 0 O

Since rank A=2, we have to choose two unknowns as the leading unknowns and to assign
parametric values to the remaining unknowns. Setting X, =c, and X, =c, we obtain the following linear
system:

2X,—C,—C, +Xx, =0,
3c,—x, =0.
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Therefore,
1 1
x,=3c, and x1=§(cl+cz—302)=§cl—c2.

Thus, the given system has the following general solution:
1

Ecl_CZ

3c,

In view of the matrix properties, the general solution can be also expressed as the linear
combination of particular solutions:

1

Ecl —C, % -1
0 0
X=| ¢ |+ =¢,|1|+c,
0| | 0 1
0 3¢, 0 3
: 1
2 0
The particular solutions X,=|1| and X,= L form the system of solutions which is called
0
0
the fundamental set of solutions.
Thus,
X =¢ X, +C,X,.
-1 1 -1
3) Let A= 3 -1 -1].
2 1 -3

I. Solve the following homogeneous system of linear equations AX =0.
Il. Explain why there are no solutions, an infinite number of solutions, or exactly one solution.

Solution: Note that any homogeneous system is consistent and has at least the trivial solution.
Transform the coefficient matrix to the triangular or row echelon form.

-1 1 -1 -1 1 -1 -1 1 -1
r,—>r,+31

3 -1 -1|-> -0 2 3|>(por-2r,)>| 0 2 -3|.
rL—n+2r

2 1 -3 0O 4 -5 0 0 1

The rank of A equals 3. Therefore, there are no free variables and the system
=X + X, =X, =0,
2X, —3%, =0,
X; =0

has the trivial solution x, =X, =%, =0, only.
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45. Cramer’s Rule

There is a particular case when the solution of a system of linear equations can be written in the
explicit form. The corresponding theorem is known as Cramer’s Rule whose importance is determined by
its applications in theoretical investigations.

Cramer’s Rule: Let
AX =B (3)

be a system of n linear equations with n unknowns.
If the coefficient matrix A is regular, then the system is consistent and has a unique solution set
{X., %,,...,X,} Which is represented by the formula:

D .
x=—-, 1=12,..,n, 4
5 4)

where D=detA; D, is the determinant of the matrix obtained by replacing the i-th column of A
with the column matrix B :

&y e Ay By, oA,
D =|..

I
a, .. a,, b a a

n ni+1 nn

Proof: We have to prove the following statements:
1) asolution is unique;

2) formulas (4) follow from system (3);

3) formulas (4) yield system (3).

Since det A= 0, there exists the inverse of A. Therefore, matrix equality (3) implies
X =A"B. (5)
By the theorem of inverse matrix, for any regular matrix A there exists a unique inverse matrix
At= L adj A
det A
that proves the uniqueness of solution (5).

The i-th row of adj A is formed by cofactors A;, A,,..., A, of the elements in the i-th column of
the matrix A. The equality (5) implies

by

b, n
XiZ(A_lB)iZ%(Aﬂ Ay e An) =%;Akibk'

b

n

The sum on the right side is the expansion of the determinant D, in terms of the elements in the
i -th column. Hence, we have obtained the desired formula:

D,
X =—.
D

Now prove that the set {X, X,,.... X, }, with X, = %ZA“ b, , implies system (3).
k=1
Multiply both sides of this equality by Da; and then sum the result over i:
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n n

D_Zn:ajixi => > Aab,.

i=1 k=1

Interchange the order of summation in the expression on the right side.

D_Zn:ajixi = " bkzn:Akiaji . (6)

k=1 i=1

In view of the theorem of inverse matrix,
n

> A =6, detA,

i=1

where g, is the Kronecker delta.

The Kronecker delta takes away the summation over k in expression (6):
D> a;x =D) b, =Db,.

i=1 k=1
Hence, we have the desired linear system of equations:

n a;x =b, (i=12,..,n).
i=1

The theorem is proven.

Example: Use Cramer’s Rule to solve the following system of linear equations.

2X, — X, +5%; =10,

X, + X, —3X; =2,
2X +4X, + %, =1.
Solution:
2 -1 5 0 -3 11
nL—n-2r -3 11
D=1 1 -3= =1 1 =3=- =43,
L—>L-n 5 -4
2 4 1 0O 5 4
10 -1 5 0 4 -10
L —r+5r, 4 -10
D=2 1 -3= =0 9 -1|= =86,
r,—>r+2r 9 -1
1 4 1 1 4 1
2 10 5 0 9 4
D<ft 2 3" 5 |l o go P Y- a3
2 = - 9| — _ - L - I}
r,L—rn-2rn 5 7
1 1 0 5 7
2 -1 10 0 5 9
nL—r—2r -5 9
D=1 1 -2|= =1 1 =-2/=- =43,
rL—orL-r 2 5
2 4 1 0 2 5
Therefore,
zzz@zzl Xzzﬁziﬁ:—l’ 3=&=£=1_
D 43 D 43 D 43

Compare this solution with that obtained by Gaussian elimination in Example 1, p. 44.
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VECTOR ALGEBRA

5. Vectors
5.1. Basic Definitions

A three-dimensional vector in some coordinate system is an ordered triplet of numbers that obeys
certain rules of addition and multiplication, and that are transformed under rotation of a coordinate system

just as the coordinates of a point.

The members of the triplet are called the coordinates of the vector.

Likewise, one can define an n-dimensional vector.
Usually, vectors are denoted by boldface letters: d,b,c,.... The notation

a={a,a,,a,}

—

means that the numbers a,,a, and a, are the coordinates of the vector & in a three-dimensional
coordinate system.

Two vectors, d={a,a,,a,} and b={b,b, b}, are equal, if their coordinates are respectively

equal, that is,
) 2, =b,
a=b < 4Ja,=b,
a, =h,.

Note that a vector equality is equivalent to the system of three scalar equalities for the coordinates of
the vector.

Linear vector operations include the multiplication of a vector by a scalar quantity and the addition
of vectors.

If a vector d={a,,a,,a,} is multiplied by a scalar 1, then b = 24 is the vector such that

b, =4a,
b, = Aa,,
b, = 1a,.

The sum of two vectors &= {a,,a,,a,} and b ={b,b,,b,} is the vector

C=d+b={a +b, a +b, a+b}.

The difference between two vectors is defined in terms of addition:

Therefore,

c=d-b < c=a-b,c,=a,-b,, c;=a,-b,.
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5.2. Vectors in Three-Dimensional Space
Consider a rectangular coordinate system.
Let a={a,a,,a,} bea given vector, and P, and P, be two points with the coordinates (X, Y;,z,)

and (x,,Y,,2,), respectively.

The points P,(x, Y;,z,) and P,(x,,Y,,2,) can be selected so as to satisfy conditions

aQ=X—X, ,=Y,~ Y, &=7,-17.

Therefore, vector d can be interpreted as the directed line segment P,P, from P, to P,:

r/@_’é“uz
A

The coordinates of @ are equal to the differences between the corresponding coordinates of the

points P, (X,,Y,.2,) and B (X, Y;,2):

I31':)2 :{XZ_Xi’yz_yl’ZZ_Zl}'

The point P, is the base of PP, and P, is the head. The base of a vector is also called the vector tail
or the origin of the vector.

The length of a vector @ is defined as the length of the line segment joining P, and P,.

Note that a vector is a quantity possessing both magnitude and direction at once. The boldface letter
d represents a vector quantity, while a =|a| is the magnitude of the vector &, that is, a is a scalar quantity

entirely defined by a numerical value.

If a vector joins the origin of the coordinate system with a point P(x,y,z), then it is called the
radius-vector of the point P and denoted as r .

5.3.  Linear Vector Operations
Equality of Vectors

By parallel translation, equal vectors should coincide with each other:
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= ﬁ —> —>
B AD = C B AB=DC c
: = é////ﬂ""""";;;;;}f
A D AT
Scalar Multiplication
The length of the vector b =28 is b= 4[a].
If 1>0 then b is a vector of the same direction as &:
a )
b=2a .
If <0 then vector b = Aa has the opposite direction with respect to a:
_’
a Y
= -
, b=-2a
The opposite vector of AB is the vector BA=—AB.
A A
. . . _a
The length of a unit vector equals unity. If & is a non-zero vector then G =—
a

the direction of a.

The Sum of Two Vectors

Triangle Rule Parallelogram Rule

nl
Il
al
+
=

oy

rl

1A
oy

&)

The Difference Between Two Vectors

In order to subtract a vector b from &, add the opposite of b to &:

6:5—b=é+@b)

is the unit vector in

Thus, the difference between two vectors d and b is the vector ¢ =a—b suchthat ¢+b =4.
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al

> _. A
b c=a-b -b
Projection of a Vector in a Given Direction
Let @ be an angle between two vectors, & and b .
The quantity
Proj.a =acos & 1)
is called the projection of & on b .
If @ is an acute angle then the projection is positive.
If @ is an obtuse angle then the projection is negative.
E <43 . b
Projzd > 0 Projzd < 0

One can easily prove that Proj (&+¢) = Proj.a + Proj.C .

>

- C
a -
Z:. E b

If the direction is determined by the x-axis, then the projection of @ onto the x-axis equals the
difference between the coordinates of the endpoints of the vector:

d=AB, Projd=x,—X,.

B

=)

W

Properties of Linear Vector Operations

All the below formulated properties are based on the properties of real numbers, and they are result
of the definitions of linear vector operations. Proofs can be easily performed by the reader.

1)The commutative law for addition:
d+b=b+a.
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&)
o)
I
&) >4
+
ol
2t}
1
ol
+
=}
=y

2)The associative law for addition:
é+(5+6):(é+5)+6:§+5+6.

-
C

=4

R

a
3)The distributive laws for multiplication over addition:
A(d+b)=2a+ab, (A+u)d=2a+pd.

-b_A—Br E _
a=a2 c Ad=AD
b-5t_ /('\ -
a+b:AC A(&'_,’_b):A_E}

A B D

5.4. Rectangular Orthogonal Basis

1) Let i={1,0,0} be the unit vector in the positive direction of the x-axis. Any vector

a=1{a,,0,0} can be expressed as
d={a,00}=a,{10,0}=a,i .
The vector i is said to be a basis in an one-dimensional space of vectors.

a

LY

-
-

i o

I
LY 1
1 adx

e - -

2) Let i ={1,0,0} and j={0,1,0} be two unit vectors in the positive directions of the x-axis and
y -axis, respectively.

Any vector a={a,,a,,0} can be expressed as

a={a,a,,0/=2,{10,0}+a {010} =ai+aj.
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They say that i and ] are the basis vectors in a two-dimensional space of vectors.
3) Let i ={1,0,0}, j={0,1,0} and k={0,0,1} be three mutually orthogonal unit vectors in the
positive directions of the Cartesian coordinate axes.

AV
Ayt
.
. d
o
A I
I
J I
- |
i a Y
0) > e
1 /
- - 1 ¢
A k o
I’.l'z &

Any vector a = {ax,ay,az} can be expressed as the linear combination of the vectors i, j and k :

a={a,a,a,}=a,{100}+a {0,10}+a,{0,01}.

x1 Py r ¥y
Therefore, we obtain the resolution of arbitrary vector a

d=ai+a,j+ak )

over the orthogonal basis of vectors, where quantities a,,a, and a, are called the coordinates of the vector
a with respect to this basis.

5.5.  Linear Dependence of Vectors

Let 4,,d,,...,d, be any vectorsand A, 4,,...,4, be numbers.
The expression of the form
Ad +A48, +..+ 448,
is called a linear combination of the vectors &,,4,,...,a,.
If there exists a non-trivial solution of the homogeneous vector equation
A8, + 4,8, +..+ 4,8, =0 3)

with respectto 4, 4,,...,4,, then it is said that {&,,4,,...,d,} is the set of linear dependent vectors.
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Otherwise, if equation (3) has only the trivial solution

A=Ay =n=1 =0,

then {&,,4,,...,d,} is called the set of linear independent vectors.

In other words, the set of vectors is linear dependent, if one of the vectors can be expressed as a
linear combination of the other vectors of the set.

For instance, if 4 #0, then

_ 1, . ~
a, = —Z(/lzaz +o. A8, ).
Theorem:

1) Any two non-zero vectors are linear dependent, if and only if they are collinear.
2) Any three non-zero vectors are linear dependent, if and only if they are coplanar.

3) Any four vectors in a three-dimensional space are linear dependent.

Important note: The theorem states that two non-collinear vectors are linear independent, and three
non-coplanar vectors are linear independent.

Proof:
1)Two vectors, &, and &,, are linear dependent, if the equation

A8 +4,8,=0

has a non-zero solution with respectto 4, and 4, .

In this case, 4,4, is the opposite vector of 4,4, thatis, & and &, are collinear vectors.

Hence, any two collinear vectors are linear dependent, and any two non- collinear vectors are linear
independent.

2) Consider a set of three vectors {&,,d,,d,} . In the coordinate form, the vector equation

A48 + 4,8, + 2,8, =0
can be expressed as the homogeneous system of the following linear equations:
A3y, + Aa, + A3 =0,

/11312 + /Lzazz +ﬂeasz =0,
/11813 + ﬂ'zazs +13a33 =0.

At first, let us assume that the vectors & ={a,;,a,,,a;}, @, ={a,,a,,,8,;} and & ={ay, a,,,a,;} are
coplanar.

Then there exists a coordinate system in which

a13:a23:a33=0.
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Therefore, the above homogeneous system is reduced to the system of two linear equations with
three unknowns 4, 4, and 4,, and hence, has a non-zero solution.

Thus, a set of three coplanar vectors is linear dependent.

Assume now that vectors &, a,,and &, are non-coplanar.

A linear combination of vectors &, and 4, is a vector lying in the same plane as &, and d,. Hence,
a, cannot be expressed as a linear combination of & and &,, and so a set of three non-coplanar
vectors is linear independent.

3) In case of four vectors, the equation
A8, + 48, + 48 + 4,8, =0,

is equivalent to the homogeneous system of three linear equations with four unknowns 4, 4,, 4, and

A, . Such system has an infinite number of solutions. Hence, any set of four vectors is linear dependent.

A set of n linear independent vectors is called a basis in the n-dimension space of vectors.
Therefore, any three non-coplanar vectors form the basis in the three-dimensional space of vectors, that is,

any vector d can be expressed as a linear combination of the basis vectors:
d=d,a +d,a,+d.a,.
This formula generalizes the concept of the rectangular vector basis {T, T,IZ} to an arbitrary set

{4,,d,,8,} of non-coplanar vectors in a three-dimensional space. The numbers d,,d, and d, are called the

coordinates of d in the basis of vectors & 4,, and &,.

5.6.  Vector Bases

Let {4,,8,,d,} and {&],&},d;} be two different bases in a three-dimensional space of vectors. By the

theorem of linear independent vectors,

d =d,d +d,a, +d,a, (4)
and
d =d/a +d;a, +d.a; (5)

for an arbitrary vector d.

In order to find relations between the coordinates of d in these bases, we need to resolve vectors
g;,d, and &, into the basis vectors &,,d, and &, :

a =a,8, +a,8, +a,d,,
d, = 8,3, +8,38, +8,3;,
d; = 85,8, + 85,8, +ayd,.
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Coefficients a; of the linear combinations are the coordinates of the vectors & in the basis of

vectors &,4d, and &,.

Substituting these expressions in equality (5) and combining the similar terms we obtain

d=> (a,d/+a,d, +a,d;)d, .

3
k=1

In view of equality (4), we get the transformation formulas of the coordinates of a vector from one

basis to another:

dl = andlr + a21d2' + a31d3:’
dz = aizd1, + azzdé + a3zde:!
ds = a13d1' + a23d2' + a33d3,-

A transformation of a rectangular basis by rotation of the coordinate system is considered in section
5.7.

Example: Let be given the vector resolution d=4i+7j+k and the basis vectors
a =(3;0;-5),a,=(11-8) and &, =(7;-2;0).

~! X!

To find the coordinates of d in the basis of &,a, and &,, we have to solve the system of linear
equations:

4=3d/+d}+7d],
7=0d; +d; —2d;, =  d/=5d,=3and d}=-2.
1=5d, —8d} +0d|

5.7.  Scalar Product of Vectors
Assume that vectors & and b are given by their coordinates in a rectangular coordinate system:

a=(a,.a,a,) and b=(b,b,b,).

The scalar product a-b is a number that equals the sum of the products of the corresponding
coordinates:

a-b=apb +ab +ab,. (6)
The scalar product is also known as inner or dot product. It is also denoted as (é, 5) .

Theorem: If 6 is the angle between vectors & and b then
a-b=abcos, 7)

where a and b are the lengths of the vectors.
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Proof: Let us choose a rectangular coordinate system such that
—both vectors, & and b, lie in the x, y -plane;
—the x-axis is directed along the vector a.

N y -b.-
byt -2
! -»>
40 | a x
0 b, a >

Since a, =a, a,=a, =0 and b, =bcos&, we obtain the desired result.
The theorem states that

a-b =aProj,b =bProj.a,

a b . . . - ~ .
, Where — and y are the unit vectors in the directions of & and b, correspondingly.
a

cosd =

o |
o | T}

If aLb then cosd= cos% =0, which implies the following orthogonality condition of the vectors
a=(a,.a,.a,) and b=(b,,b,b,):

a,b, +ab +ab, =0.

If b=4 then =0, cos®=1, and so

= 2 2 2 2
d-a=4a’=a;+a,+a;.

Therefore, the length of the vector & is expressed as

a=.a’+a;+a’.
Applying formulas (6) and (7) we find the cosine of the angle between vectors & and b :

X

cosH:a b _ a,b, +ab, +ab, |
ab [aZ+a+al bl +b? +b]

The most important applications of the scalar product are related with finding the angle between
vectors. The below properties are based on the definition of the scalar product. They can be easily proved by
the reader.

1) The scalar product iscommutative:

2) The scalar product is distributive:
(a+b)c=a-c+b-c.
3) If the scalar product of two non-zero vectors equals zero, then the vectors are perpendicular;
and vice versa, if two vectors are perpendicular then their scalar product equals zero:
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Example 1: Let i =(1,0,0), j=(0,1,0), and k =(0,0,1) be three basis vectors in a rectangular
Cartesian coordinate system. Then

Il
—
—

Il

~i
=~

Il

[N

g

~|

0.

ij=i
Example 2: If =(2,-1,3), b =(5,7,4) and & is the angle between vectors & and b, then

d-b=2.5+(-1)-7+3-4=15,

(A ~EE 2 (1] +F T, b= [5[ 5 57+ & BT 445

cosd = a-b 15 3%.

Jo| a4y 56

Example 3: Find the angle between two vectors & =(3,4,~5) and b =(1,3,3).

Solution:

d-b=31+4.3+(-5)-3=0.

Since the scalar product is equal to zero, the vectors are orthogonal.

Example 4: Let p=a+b and G =4a—b. Simplify the scalar product of the vectors p and §.
Solution:

p-G=(a+b)-(a-b)=a*-a-b+b-a-b*=a*-b>.

Example 5: Given two sides AB and AC of the triangle ABC and the angle & between these side,
find the third side of the triangle.

Solution: Let us denote &= AB, b =CB. Then

c=a-b 352:(5—6)2252—25-6+62 — c?=a’+b?—2abcosd, c=~/c?.



5.8. Direction Cosines

Let ¢, 8 and y be the angles between a unit vector U and the axes of a rectangular coordinate

system. The cosines of these angles are called the direction cosines.
Theorem: In a rectangular coordinate system, the coordinates u,,u,, and u, of a unit vector

G =(u,.u,,u,) are equal to the direction cosines.
The theorem follows from the definition of the scalar product. The scalar product of the unit vectors

G =(u,.u,,u,) and i =(1,0,0) can be written as

G-i=u, and a-i=|d|-|[i|cosa=cosa,

and so u, =cos« .

Likewise,
G-j=u,=cosp and - ,
which required to be proved.

By the definition of a unit vector,
|U] =uZ +uj +u? =1,

Therefore,

cos” o +¢0s” B+cos” y=1.
The direction cosines of an arbitrary vector a can be expressed as

ax ay z
cosa=—=*, cosp=—L, cosy=-L.
a a a

5.9. Vector Product

Given the vectors a=(a,,a,,a,) and b=(h,.b,,b,) in a rectangular coordinate system, the vector

product &xb is the vector, which is defined by the formula

(8)

i kK
dxb=la, a, a,,
b, b, b,
where T, I and k are the unit vectors of the rectangular coordinate basis.

The vector product is also known as cross product. It is also denoted as [é, 5].

Expanding the determinant by the first row we obtain
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axb=(ab,—ab, )i +(ab,-ab,)j+(ab —ab)k.
Theorem: Let & and b be two non-parallel vectors. Then
l. the vector ¢ =axb is orthogonal to both & and b ;

Il. the length of C is expressed by the formula
Cc =absinég,

where @ is the angle between & and b ;
lll. the set of vectors {é, 5,6} is a right-handed triplet as it is shown in the figure below.

- -
c=axb

Proof: Let the rectangular coordinate system be chosen such that both vectors & and b lie in the
X, Y -plane, and the x-axis is directed along 4.

Ay -
b2
1
|

0 b, a

Then @=(2,0,0) and b =(bcosé,bsin6,0).

Therefore,

i i ok
C=daxb=| a 0 0O|=absingk.
bcos@ bsin@ 0

Therefore, |c|=absiné and ¢ is directed along the z -axis which is perpendicular to the x, y -plane.

Hence, the theorem.

Properties of the Vector Product:

1) The vector product is anti-commutative:
dxb=-bxa.
2) The vector product is distributive:
(a+b)xc=axc+bxc.
3) The length of the vector ¢ =axb is equal to the area of the parallelogram with adjacent
sides @ and b .
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b
A =absmd
()

a

Corollary: The area of the triangle with adjacent sides & and b is given by formula

AAzl\aXB\.
2

b

-

a

4) The vector product of two collinear vectors equals zero.
Properties 1) and 2) follow from the properties of determinants. Indeed,

i J Kk i ] ok
dxb=la, a, al|=-|b, b, b|=-bxd,
b, b, b, a, a, a,
i j k i J k| [T J kK
(a+b)xc=|a,+b, a,+b, a+b|=|a, a, a|+b, b, b|=axc+
) , , . C Gl | ¢ ¢

Property 3) follows from the theorem of vector product.

Property 4) is quite evident.

Examples:

oy
X
Ol

1) Let i =(1,0,0), j=(0,1,0) and k =(0,0,1) be three basis vectors of the rectangular Cartesian

coordinate system. By the definition of the vector product,

ik i jk ik
ixj=[1 0 0|=k, kxi=|0 0 1|=j, jxk=[0 1 0|=i
010 1 0 0 001
That is,
ixj=k, kxi=], jxk=i

2) Let p=4a+b and g=a—b. Simplify the vector product of the vectors p and §.

Solution:



3) Let ABC be a triangle with the vertices at the points A(1,0,—2), B(1,5,0) and C(0,4,-1). Find
the area A of the triangle.

Solution: Consider the vectors &= AB =(0,5,2) and b = AC =(-1,4,1).

By the properties of the vector product,

A=Zlaxb|.

2
i ]k

Find the vector product: axb={0 5 2|=-3i -2]+5kK.
-1 4 1

Therefore, A:%\/(—3)2 +(_2)2 152 = @

5.10. Scalar Triple Product

The scalar product and the vector product may be combined into the scalar triple product (or mixed
product):

([a,B],e):(aXB).é.

Theorem: Given three vectors a=(a,a,a,), b=(b,b,b,) and ¢=(c,c,c,) in some

x1 My 1Mz

rectangular coordinate system, the scalar triple product is defined by the formula

ax y az
(axb)-c=|b, b, b,|. 9)
¢ ¢ ¢

Proof: Carrying out the scalar product of the vectors
axb=(ab,—ab, )i +(ab,-ab,)j+(ab, —ab )k
and

C=c,i+c, j+c,k

we obtain

(axl:?)-é:(aybz—azby)cx+(asz—axbz)cy+(axby—aybx)cZ = bX ",
c, ¢ ¢

X y z

X y z|*
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Geometric Interpretation. The absolute value of the number (éxﬁ)-é is the volume of a

parallelepiped formed by the vectors &,b and € as it is shown in the figure below.

Indeed, the volume of the parallelepiped is equal to the product of the area of the base and the height.

By the theorem of scalar product,
(éxB)-é=‘§x6‘-|6|c05¢.

The quantity ‘éxB‘ equals the area of the parallelogram, and the product |¢|cos¢ equals the height

of the parallelepiped.
Corollary 1: If three vectors are coplanar then the scalar triple product is equal to zero.

Corollary 2: Four points A B,C and D lie in the same plane, if the scalar triple product
(ﬁxﬁ)ﬁ is equal to zero.

Properties of the Scalar Triple Product:

Consider the scalar triple product a- (5 X 6) :

1) By the properties of the scalar product, é-(Bxé) = (Bxé)-é .

2) In view of the properties of determinants,

a, a, ]| |b, b, b,
bx b y bz =% y z
¢ ¢ ¢| |a a a

Therefore,
a-(Bxé)z(aXB)-é.

Since the order of the dot and cross symbols is meaningless, the product é-(Bxé) is simply denoted
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Using the properties of determinants it is not difficult to see that

aX
abc =|b, b, b,j=la, a, a|=|c, ¢, ¢c,|.
C, c

Therefore,

abc = ¢ab =bca .

Likewise,
a, a, a, b b, b, a, a, a,
abc=b, b, b|=-la, a, a|=-[c, ¢, ¢
¢ C ¢ ¢ C ¢ b, b, b,
and so

abc = —bac = —ach .
In view of the theorem of linear dependent vectors, any three linear dependent vectors are coplanar.
Hence, the triple product of non-zero vectors equals zero, if and only if the vectors are linear dependent.

Examples:
1) Determine whether the points A(-1,2,2),B(3,3,4),C(2,-2,10), and D(0,2,2) lie on the same

plane.
Solution: Join the point A with the other points to obtain the vectors

d=AB=(412), b=AC=(34,8), and ¢=AD=(10,0).

Find the scalar triple product:

_‘1 2

=0.
4 8‘

S 0N

4 1
abc =3 4
1 0

Therefore, the vectors lie in a plane, that means the given points lie in the same plane.
2) Find the wvolume V of the tetrahedron with the vertices at

A(10,2),B(3,-1,4),C(152),and D(4,4,4).

Solution: Consider a parallelepiped whose adjacent vertices are at the given points.

the points

The volume V of the parallelepiped is equal to the absolute value of the triple scalar product of the
vectors AB,AC,and AD.

The volume of the tetrahedron is given by the formula V = gvp .
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Since

AB=(2,-12), AC=(0,50), and AD=(34,2),

we obtain
2 -1 2

S 2 2

ABACAD=|0 5 0=5‘3 4‘:10.
3 4 2

Therefore,

v=190_5

6 3

3) The tetrahedron is given by the vertices A(1,0,2),B(3,—-1,4),C(15,2),and D(4,4,4).

Find the height from the point D to the base ABC.

D

Solution: In view of the formula
v=ls.h,
3

where h is the height from the point D, we need to know the volume V of the tetrahedron and the
area S of the base ABC to find h.

According to Example 2, the volume of the tetrahedron equals %
The area of the triangle ABC can be found just in a similar way as in Example 2, section 1.5.2:
AZE‘EXA—C‘,
2
i J kK
ABxAC =2 -1 2|=10i 10k, |ABxAC|=10V2.
0 5 0

Therefore,

h: = = —
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ANALYTICAL GEOMETRY

6. Straight Lines
6.1. Equations of Lines

A direction vector of a straight line is a vector parallel to the line.

According to the postulates of geometry, a point M, and a direction vector ¢ determine the straight
line L.

Let M be an arbitrary point on the line. The difference r—r, between the radius-vectors of the
points M and M, is a vector in the line, that is,

r-nllg.
Two parallel vectors are proportional:
F—1, =tg. (1)

This vector equality is called the vector equation of the line. An arbitrary number t is said to be a
parameter.

0

Assume that a rectangular Cartesian coordinate system is chosen. Then equation (1) can be written in
the coordinate form as the system of three linear equations

X=Xy +0,t,
y:y0+qyt! (2)
Z=12,+(q,t,

where X,y and z are running coordinates of a point on the line. Vectors 1,1, and ¢ are represented
by their coordinates:

F—T=(X=X0,Y=Yo.2-2),
G=(ay:a,:9,).
Equations of a line in coordinate form (2) are called the parametric equations of a line.

Solving system (2) by elimination of the parameter t, we obtain the canonical equations of a line:

X=X _ Y=Y _2Z-1%

Ox ay a;

(3)
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If Mg (Xo: Yoi20) and M, (x,;yy;2,) are two given points on a line then the vector

G=0% %Y1= Yo:21~2)
joining these points serves as a direction vector of the line.

Therefore, we get the following equations of a line passing through two given points:

X—Xp _ Y=Y _ Z—1 . (4)
X=X Y1 Yo 4%

Examples:

1) Let L be a line passing through the points M, (1;,0;2) and M, (3;1,—-2).
Check whether the point A(7;3;10) lie on line L.

Solution: Using (4) we get the equations of L:

x-1_y_z2-2
2 1 '

The coordinates of the point A satisfy the equation:

7-1 3 -10-2
2

1 -4

and so A is a point of the line L.

2) Write down the canonical equations of the line passing through the point A(2;3;4) and being
parallel to the vector G =(5;0;-1).

Solution: By equation (3), we obtain

X-2 y-3 z1-4
5 o -1

Note that a symbolical notation yT_?’ means the equation y =3.

6.2. Lines in a Plane

On the x, y-plane, a line is described by the linear equation
Ax+By+C=0. (5)

If My (Xo:Yo) is apoint on the line then

AX, + By, +C =0. (6)
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Subtracting identity (6) from equation (5) we obtain the equation of a line passing through the point
Mo (%3 ¥o):

A(x=X,)+B(y—Y,)=0. (6a)

The expression on the left hand side has a form of the scalar product of the vectors fi =(A;B) and

F—FO=(X—X0,y—y0)Z

Therefore, the coefficients A and B can be interpreted geometrically as the coordinates of a vector
in the X, y-plane, being perpendicular to the line.

AY
\“_r—ro A={4 B)
r
. r-r, L #
lrlO
X
0 ~ 7

where G = (qx;qy) is a direction vector of the line.

In the x,y-plane, an equation of a line passing through two given points, Mg(Xy;Y,) and

M, (XY, ), is written as follows

X=X _ Y=Y
X=X Y1=Yo

Sometimes it is helpful to express a straight-line equation in the x, y -plane as
Xy Yo 7)
a

In this case, y=0 implies x=a, and x=0 implies y=Db.
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Therefore, the quantities a and b are, respectively, the x-intercept and the y -intercept of a graph
of the line. Equation (7) is called an equation of a line in the intercept form.

A line on the x, y -plane may be also given by the equation in the slope-intercept form
y=kx+b,
where b is the y -intercept of a graph of the line, and k is the slope of the line.
If M (Xo;Y) is apoint of the line, that is y, =kx, +b, then the point-slope equation of the line is
y— Yo =K(X—Xg).
Examples:

1) A line on the x, y -plane is given by the equation
2x—3y+24=0.
Find: a) any two points on the line; b) the slope of the line; ¢) the x-and vy -intercepts.

Solution:
a) Setting x =0 we obtain y=8.

If x=3 then y=10.
Therefore, the points P(0;8) and Q(3;10) lie on the line.

b) 2x-3y+24=0 = y=§x+8.

Therefore, the slope of the line is k = %

c) The vy -intercept equals 8. The x-intercept is the solution of the equation y =0, that is, x=-12.

2) In the x,y-plane, find the equation of the line passing through the point M, (5;3) and being

perpendicular to the vector i =(2;-1).

Solution: Using equation (6a) we obtain
2(x-5)—(y—-3)=0 = y=2x-7.
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3) Let M, (-2;4) and M, (16) be the points on a line.
Which of the following points, A(-3;1),B(1;3) and C(1;6), are the points on the line?

Solution: In view of the equation of a line passing through two given points, we have

X+2 y-4 X+2 y-4
= - =
1+2 6-4 3 2

2x—-3y+16=0.

Substituting the coordinates of the points we obtain that A(-3;1) is not a point on the line, since
2:(-3)-3-1+16=7#0;

B(1;3) is not a point on the line, since

2-1-3-3+16=9=0;

C(16) isa point on the line, since

2:1-3-6+16=0=0.

6.3. Angle Between Two Lines

The angle between two lines is the angle between direction vectors of the lines.

If ﬁ:(px; py; pz) and qz(qx;qy;qz) are direction vectors of lines, then the cosine of the angle

between the lines is given by the following formula:

pq _ pqu + pyqy + quZ
BLlal o2+ p}+p2 \Ja? + +a2

cos(9=|

If two lines are perpendicular to each other then their direction vectors are also perpendicular. This
means that the scalar product of the direction vectors is equal to zero:

ﬁ'q: Py + pyqy+ P4, =0.

If two lines are parallel then their direction vectors are proportional:

p=cq,
where ¢ is a number.

In the coordinate form, this condition looks like

P _Py_ P
d. g O,

We need direction vectors of lines to find the angle between the lines.
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Consider a few particular cases.

1) Let a line be given by two points M, (X; ¥;;z,) and M, (X,;Y,;2,). Than

ﬁ:(xz_xl;)@_yl;zz_zl)

is a direction vector of the line.

2) If aline in the x, y-plane is given by the equation
Ax+By+C=0,

then we can easily find two points on the line. For instance, Ml(o;—%j and MZE—%;OJ are

two points on the line.

If two lines in the X, y-plane are given by the equations
Ax+By+C =0 and AXx+B,y+C,=0

then the angle between the lines is equal to the angle between perpendicular vectors i, =(A;B,) and

A, =(A,;B,) to the lines:

ik

|
N

=1

cos0 =

=]

o

Note that a perpendicular vector to a line is also called a normal vector to the line.
3) Ifaline in the X, y-plane is given by the equation

§+X:11
a b

then M, (0;b) and M, (a;0) are two points on the line, and so p=(a;—b) is a direction vector of

the line.

4) If two lines in the X, y -plane are given by the equations in the slope-intercept form
y=kx+b and y=Kk,x+b,,

and 0 is the angle between the lines, then

tan0 = % .
The lines are parallel, if
ky =k;
The lines are perpendicular, if
kk, =-1.

Examples:
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1) Find the angle 6 between two lines in the x, y -plane, if they are given by the following equations:
3x—-4y+1=0 and 2x+y-5=0.

Solution: Normal vectors to the lines are, respectively, fi, =(3;—4) and f, =(2;1). Therefore,

3-2+(-4)- 25

cos0 = .
|n1| Inzl «/ \/22+12 5f 25

2) Find the angle 6 between two lines in the x,y-plane, if they are given by the equations in the
slope-intercept form:

NE]

y:—\/§x+1 and y:?x+5.

o5

Solution: We have k; =—/3 and k, =

Since

the lines are orthogonal: 0 = g

3) Let A(2;-1), B(4;4) and C(9;7) be the vertices of a triangle. Find the equation of the altitude

from the vertex A, and write down the equation in the intercept form.
Solution: If D(x;y) is an arbitrary point on the altitude from the vertex A, then the vectors

E:(x—z; y+1) and ?C:(S;S) are orthogonal. Therefore, the scalar product of AD and BC is equal to

zero, and we obtain the desired equation:
AD-BC =5(x-2)+3(y+1)=0;

5x+3y—-7=0;

=1.

ENE
+
W<

6.4. Distance From a Point to a Line
Consider a line in the x, y -plane.

Let fi be a normal vector to the line and M (X,;Y,) be any point on the line. Then the distance d

from a point P not on the line is equal to the absolute value of the projection of PM on fi:
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v,

0

In particular, if the line is given by the equation

Ax+By+C =0,
and the coordinates of the point P are x, and y,, that s,
Ai=(A;B) and PM =(X—%:¥—Yo).

then the distance from the point P(x;y;) to the line is calculated according to the following

formula;

A(Xl_xo)"‘B(yl—YO)‘

o

JAZ +B? '
Since M (Xo; Y, ) is a point on the line,
AX, +By,+C =0.
Therefore, we obtain
g :|Ax1+By1+C| |

VA? + B2
Example: Let ABC be a triangle in x, y -plane with the vertices at the points A(2;-1), B(4;4) and
C(9:7).
Find the altitude from the vertex A.

Solution: The altitude from the vertex A equals the distance d from the point A to the line passing
through the points B and C.

Find the equation of the line BC:

=2 ¥+l gy _ay-12-0.
2 5

Therefore, a normal vector to the line BC is fi=(5;-2).

Since AC = (7;8) we finally obtain
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\AC i 7.5+8(-2) 19 _19V29

[l JF_____ J29 29

6.5. Relative Position of Lines

Let two lines, L, and L,, be given by their equations, e.g., in the canonical form:

N o R
L Lo A
Py Py P,

L. XX _ Y-y, 2177
2+ = =
Ox ay a,

where p=(p,;p,;p,)and g=(q,:q,;q,) are direction vectors of the lines.

In order to determine the relative position of the lines, it is necessary to consider the equations of
both lines as a system of linear equations. Each lines is described by two linear equations, and so we have
the following system of four linear equations with three unknowns x, y and z:

(x=x)/p=(y=y1)/pPy.
(X_Xl)/px (Z )/pz’ (1)
(x=x%;)/ax =(y-¥2)/ay,
(x=%)/a,=(2-12,)/q,.

Let us analyze all possible cases.

1) Assume that system (1) is inconsistent. Then the lines are either parallel or skew. If the
coordinates of the direction vectors p and ¢ are proportional, that is,

P_Py_ P
A d, G,

then the lines are parallel; otherwise, they are skew.

2) Suppose that system (1) is consistent, and the rank of the coefficient matrix equals 3. Then L,
and L, are intersecting lines, that is, they have exactly one point of intersection.

3) If system (1) is consistent, and the rank of the coefficient matrix equals 2, then the lines coincide
with each other.
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7. Planes
7.1. General Equation of a Plane
A normal vector to a plane is a perpendicular vector to the plane. According to geometrical

postulates,

- A point and a vector determine a plane.

- Three points determine a plane.
The general equation of a plane in a rectangular Cartesian coordinate system has the following form:

Ax+By+Cz+D=0, 1)

where x,y and z are running coordinates of a point in the plane.

Let M (X;Y;;Z) be a point in the plane, that is,
Ax +By, +Cz +D=0. )

Subtracting identity (2) from equation (1) we obtain another form of the general equation of a plane:
A(x—x)+B(y—-y,)+C(z-2z)=0. (3)

Assume that A,B and C are the coordinates of some vector 1.

Then the left hand side of equation (3) is the scalar product of the vectors [ and

F-f=(X=x:y-¥1;2-2)

(F-F)-fi=0. (3a)

—

By the properties of the scalar product this equality implies that the vector i is perpendicular to the

vector r —r;. Since r —1 is an arbitrary vector in the plane P .

z

Thus, equation (3) describes a plane that passes through the point M, (x;;y,;z ). The coefficients

A,B and C can be interpreted as the coordinates of a normal vector to the plane.

Consider a few particular cases of equation (1).
1) If D=0 then the plane

Ax+By+Cz=0
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passes through the origin.
2) If C =0 then the plane

AX+By+D=0
is parallel to the z -axis, that is, it extends along the x-axis.

3) If B =0 then the plane

Ax+Cz+D=0
is parallel to the y -axis.
4) If A=0 then the plane
By+Cz+D=0
is parallel to the x-—axis.
5) If A=B =0 then the plane
Cz+D=0

is parallel to the x, y -plane, that is, the plane is perpendicular to the z -axis.

Examples:

1) Let M, (1;,—2;3) be a point in a plane, and fi =(4;5;—6) be a normal vector to the plane. Then the

plane is described by the following equation
4(x-1)+5(y+2)-6(z—-3)=0 = 4x+5y—6z+24=0.

2) A plane is given by the equation
X—2y+3z-6=0.

Find a unit normal vector U to the plane and find any two points in the plane.

Solution: Since fi = (1,—2;3) and |fi| = 1> +(-2)° +3? =+/14 , then

T—2}+3IZ).

| =1

0= :i(
Vi

Setting x=y =0, we obtain z=2.

=]

Likewise, if x=z=0 then y=-3.

Therefore, M, (0;0;2) and M, (0;-3;0) are the points in the given plane.
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7.2. Equation of a Plane Passing Through Three Points

Let My(X;Vi;2), My(X5Y,;2,) and My (xg;Ys;23) be three given points in a plane P, and
M (x;y;z) be an arbitrary point in P.

Consider three vectors,

MM =7 =1 =(X=X;Y=Y1;2=2), MM, =16, =1 = (% =% ¥, ~ Y132, = 24)

and

MM, =61 = (%=X Y3 = Y1323 2) .-
They all lie in the plane P, and so their scalar triple product is equal to zero:

X=X Y—Y1 Z—74
(F—Fl)(FZ—Fl)(@—fl):O: X=X Yo=Y Z,-73|=0. (4)
X3=X% Ys=— Y1 Z3—74

Equation (4) describes a plane passing through three given points.
Example: Let M, (2;5;—-1), M,(2;—3;3) and M;(4;5;0) be points in a plane.
Find an equation of that plane.

Solution: By equation (4), we have

Xx—2 y-5 z+ Xx=2 y-5 z+1
0 8 4|=0=|0 2 -1|=0=2(x-2)-2(y-5)-4(z+1)=0;
2 0 1 2 0 1

2X—2y—4z+2=0 or x—y—-2z+1=0.

7.3. Other Forms of Equations of a Plane

1) Let p=(p:p,ip,) and G=(q,:0,:0,) be to vectors that are parallel to a plane P, and
M, (%; ¥;;2,) beapointin P.

If ¥F=(x;y;z) is the radius-vector of an arbitrary point in the plane P, then three vectors

F—f=(x-x;y-y;;z—2), p and g, are coplanar, and so the scalar triple product is equal to zero:
(F-%)pd=0.

This equality expresses an equation of a plane in the vector form. It can also be written in the
coordinate form as follows:
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Px Py P |=0. ()

—+%+E=1. (6)

Therefore, the quantities a,b and c are, respectively, the x-intercept,

y -intercept and z -intercept of the plane. Equation (6) is called the equation
of a plane in the intercept form.

5 For instance, the equation

¢

describes the plane with the x-, y -, z -intercepts equal 2,—5 and 4, respectively.

7.4. Angle Between Two Planes
The angle 6 between two planes equals the angle between their normal vectors i and m:

A -
||

=1

cos0 =

=]

If the planes are given by equations in the general form

Ax+By+Cz+D, =0,and Ax+B,y+C,z+D, =0,

AA, +BB, +CC, (7)
JAZ+B2+C2 A2 +BZ+C2

If two planes are perpendicular to each other then their normal vectors are also perpendicular:
n-m=AA +BB,+CC,=0.

If two planes are parallel then the normal vectors are proportional:

then cos0 =




Note that the vector product of two non-parallel vectors in a plane gives a normal vector to the plane.
In particular, if a plane is given by three points M, (x;V;;2), M, (Xp;Y,:2,) and Mg(Xs;Ys:25), then a

normal vector to the plane is

i i K
N=MM,xM M3 =\X%-X Y,—V; Z,—7. (8)

X=X Ys—Y1 Z3—4

Example: Find the angle between two planes P, and P,, if B, passes through the points

M,(-2;2;2), M, (0;5;3) and M;(-2;3;4), and P, is given by the equation
3X—-4y+z+5=0.

Solution: A normal vector to the plane P, is determined by

51 —4] + 2k .

=1l

Il
o N —
R W —
N P X

Il

A normal vector to theplane P, is i =(3;—4;1). Therefore, the cosine of the angle between the given
planes is
5-3+(—4)-(-4)+1-2 i
VB +(4) +12\[52 +(—4) +22 V130

Ccos0O =

7.5. Distance From a Point To a Plane
Assume that a plane P is determined by the equation in the general form:

Ax+By+Cz+D=0. €)]

Let Q(X;Y;;2) be a given point not in the plane, and M (x;y;z)

be an arbitrary point in P. Then the distance d between the point Q and
d - O the plane P is equal to the absolute value of the projection of Q—M on

" fi=(AB;C).

Therefore,

J_ |A(x=%)+B(y-¥,)+C(z-2)
JA2 1B24C?

By equality (9),
Ax+By+Cz=-D,
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and so the distance between point Q(x,;y;;z) and plane (9) is given by the following formula:

q :|Ax1+By1+Czl+D| |
JAZ +B%2+C?

Example: Let the plane be given by the equation

2X+3y—4z+5=0.

The distance from the point Q(8;—7;1) to the plane is

d:\2-8+3~(—7)—4~1+5\_ 4 4

\/22+32+(—4)2 V29 29@.

7.6. Relative Position of Planes

Let two planes, P, and P,, be given by their general equations
B: Ax+By+Cz+D, =0,
P: AXx+B,y+C,z+D,=0.

Consider the system of two linear equations

(10)

Ax+By+Ciz+D =0,
Ax+B,y+C,z+D, =0.

1) If system (10) is inconsistent, then the planes are
parallel, and so the coordinates of the normal vectors

n,=(A;B;;C,) and i, =(A,;B,;C,) are proportional:

2) If system (10) is consistent and the equations are
proportional to each other, then P, is just the same plane as P, :

A_B_C_D
D2

AZ BZ C2

3) If system (10) is consistent, and the rank of the coefficient matrix equals 2, then B, and P, are

intersecting planes. The locus of these distinct intersecting planes is exactly one line L. The vector product
of normal vectors to the planes P, and P, is the vector, which is perpendicular to the normal vectors, and so

it lies in the both planes. Therefore, fi, xfi, is a direction vector I of the intersection line L :
In a similar way we can consider the relative position of any number of planes. The only difference is
the number of possible cases.
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7.7. Relative Position of a Plane and a Line
Let a plane P be given by the equation in the general form

Ax+By+Cz+ D=0,

and a line L be determined by the system of two linear equations

Ax+By+Ciz+D, =0,
Ax+B,y+C,z+D, =0.

To investigate the relative positions of the line and the plane, consider the integrated system of
equations:

Ax+By+Cz+ D=0,
Ax+By+C;z+D, =0, (11)
Ax+B,y+C,z+D, =0.

There are three possible cases.

1) If the rank of the coefficient matrix equals 3, then the system is consistent and has a unique
solution (Xy; Yo:Zo) - It means that Mg (Xo; Yo;Z0) is the point of intersection of the plane and the line.

2) If system (11) is consistent, and the rank of the coefficient matrix equals 2, then the line L lies in
the plane P.

3) If system (11) is inconsistent then the line L is parallel to the plane P .

The Angle Between a Plane and a Line

Let o be the angle between a normal vectors fi to a plane and a direction vector | of a line, and B
be the angle between the plane and the line.

Then o and 3 are complementary angles shown in the figure below.

\

5l
-l

Therefore, sinf=cosa =

=]

it}
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8. Quadratic Curves
8.1. Circles

A circle is a set of points in a plane that are equidistant from a

(4 fixed point. The fixed point is called the center. A line segment that
yp--- A= M(x.y) joins the center with any point of the circle is called the radius.
y|--4----- In the x, y -plane, the distance between two points M (x;y) and

0

My (Xo; Yo ) €quals
X
0 X, X - 2 2
0 \/(x—xo) +(Y—Yo)

and so the circle is described by the equation

2 2
(x=%)" +(y=¥o) =R", (1)
where x, and Yy, are the coordinates of the center, and R is the radius.
Equation of a circle centered at the origin
2

X% +y? =R? (2)

is known as the canonical equation of the circle.

i X = Rcost, ) _
AV If t is a real parameter, then { Rsint are the parametric equations of
y=Rsl
- the circle centered at the origin with radius R. By elimination of the parameter
R ! x t, we return to canonical equation (2):
o
2 2 2
X° =R*cos°t,
., L, = X+y’=R%
y“=R“sin“t,
Likewise,

X =X, + Rcost,
y =Y, +Rsint

are the parametric equations of the circle centered at the point M, (X,; Y,) with radius R.

Examples:

1) The circle is given by the equation

X2 —4x+y? +6y=12.

Find the radius and the coordinates of the center.

Solution: Transform the quadratic polynomial on the left-hand side of the equation by adding and

subtracting the corresponding constants to complete the perfect squares:
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x2—4x:(x2 —4x+4)—4=(x_2)2_4;

y? +6y=(y* +6y+9)-9=(y+3)"-9.

Then the given equation is reduced to the form

(x—2)° +(y+3)° =5,

which describes the circle centered at the point M (2;-3) with radius 5.
2) Let

X% +2x+y? -8y +17=0.

Find the canonical equation of the circle.

Solution:

X2 +2x+y? -8y +17=0 = (x2+2x+1)+(y2—8y+16):0 =

(x+1)*+(y-4)° =0,
The radius of the circle equals zero, that means the given equation corresponds to a null point circle.
3) The equation
X2 +2x+Yy?+5=0
can be reduced to the form
2 2
(x+1)" +y°=—4,

which has no solutions. In this case they say that the equation describes an imaginary circle.

8.2. Ellipses

An ellipse is a plane curve, which is represented by the equation

X2 2
—2+;’—2=1 3)

o]

in some Cartesian coordinate system.
N

Equation (3) is called the canonical equation of an ellipse, or
b the equation of an ellipse in the canonical system of coordinates. The

-a positive quantities 2a and 2b are called the axes of the ellipse. One of

'\I':H

4
!by“ them is said to be the major axis, while the other is the minor axis.
5 In the canonical system, the coordinate axes are the axes of
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symmetry, that means if a point (x;y) belongs to the ellipse, then the points (-x;y), (x;—y) and (—x;—y)
also belong to the ellipse.

The intersection points of the ellipse with the axes of symmetry are called the vertices of the ellipse.
Hence, the points (+a;0) and (0;%b) are the vertices of ellipse (3).

If a=b=R then equation (3) is reduced to equation (2) of a circle. Thus, one can consider a circle as
a specific ellipse.

The parametric equations of the ellipse have the following form:

X = acost,
y =bsint.

One can easily eliminate the parameter t to obtain the canonical equation of the ellipse:

2
2 — —2+b—2:1
a
E)IZ =sin’t,

The equation

2 2
(%) (y=%)
a b

corresponds to the ellipse with the center at the point Mg (Xy;Y,). The axes of symmetry of this
ellipse pass through M, being parallel to the coordinate axes.

Properties of Ellipses:

AY Consider an ellipse, which is given by equation (3) with the
b Mix.y) major axis 2a. Two fixed points, F,(-c;0) and F,(c;0), are called the
&7“ focuses of the ellipse, if equality ¢? =a® —b? is satisfied.
-af - cla X
F 0 F,

Correspondingly, the distances r, and r, from any point
-b

M (x;y) of the ellipse to the points F, and F, are called the focal
distances.

The ratio — =¢ is called the eccentricity of ellipse.
a

Note that 0 <e<1.
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1) Let x be the abscissa of a point of ellipse (3). Then the focal distances of the point can be
expressed as follows:

L =a+Xe, (4a)
r,=a—Xe. (4b)
Proof: By the definition, the distance between two points, M (x;y) and F, (-c;0), is

= (x+c)2+y2 .

Consider the expression under the sign of the radical.

By substituting

yz :(az_xz)z_i,

c=asg and b®>=a%-c? :az(l—sz)

in 2, we obtain

2
K2 =(x+c) +y? =x"+2cx+C% +y* =

=x? + 2axe + a’¢? +(a2 —XZ)(l—sz) ,

which results in

r? =a® + 2axe + x%? = (a+xe)".

Likewise,

=y(x—c)’+y? = r?=a?-2axe+x%%=(a—xe) .

Since a*xe >0, the above formulas give the desired statement.

2) For any point of ellipse (3), the sum of the focal distances is the constant quantity 2a:
nL+r,=2a. (%)

This property follows from formulas (4a) and (4b).

- : . a . . :
Two symmetric lines passing at the distance — from the center of an ellipse and being perpendicular
€

to the major axis are called the directrices.

3) For any point of ellipse (3), the ratio of the focal distance to the distance from the corresponding
directrix is equal to the eccentricity of the ellipse:

74



Example: Reduce the equation

'
‘ =
v,

——=—*=g, (6)

Proof: By Property 1 and in view of the fact that

a a : .
d, =—+x and d, =——x, we obtain the desired results.
€ €

4) Assume that the curve of an ellipse has the mirror
reflection property. If a point light source is located at a focus of
the ellipse, then rays of light meet at the other focus after being
reflected. In other words, at any point of an ellipse, the tangent
line forms equal angles with the focal radiuses.

5) The orbital path of a planet around the sun is an
ellipse such that the sun is located at a focus.

2x? +4x+3y? —12y =1

to the canonical form. Give the detailed description of the curve.

Solution: Complete the perfect squares.

2x2 +4x+3y* 12y =1; :>2(x2+2x+1)+3(y2—4y+4)=15; = 2(x+1)° +3(y-2)* =15, =

() (-2,
1% 5

Thus, the given equation describes the ellipse with the center at the point (-1;2).

The major-axis equals \/% and the minor semi-axis is /5. The focuses are located on the

horizontal line y=2. The distance between each focus and the center is

The eccentricity equals

22 p2= [R5 [2_N0
2 2 2
c_C_ N5 _ 1 A3
a 15 3 3°



8.3. Hyperbolas

A hyperbola is a plane curve, which can be represented in some Cartesian coordinate system by one
of the below equations

a? b? a? b?
J\y .h.y
b
X X
—a a i >
-b

Equations (7) are called the canonical equations of a hyperbola. The corresponding coordinate
system is said to be the canonical system. In this coordinate system, the coordinate axes are axes of

symmetry, that is, if a point (x;y) belongs to the hyperbola then the points (—x;y), (x;—y) and (=x;—y)
also belong to the hyperbola.

The intersection points of the hyperbola with the axis of symmetry are called the vertices of the
hyperbola. Any hyperbola has two vertices.

If a=Db then the hyperbola is called an equilateral hyperbola.

The equations

(%) _(y=%) _,

a® b?

describe hyperbolas with the center at the point M, (X,; Y, ). The axes of symmetry of the hyperbolas pass

through M, being parallel to the coordinate axes.
Consider a hyperbola, which is given by the equation

X2 2
L 8)

Q
O

Two fixed points, F (—c;0) and F,(c;0), are called the focuses of the hyperbola, if the equality

c? =a? +b? is satisfied.

Correspondingly, the distances r, and r, from any point M (x;y) of the hyperbola to the points F

and F, are called the focal distances.
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The ratio < =¢ is called the eccentricity of hyperbola. Note that € >1.
a

Properties of Hyperbolas:

1) Let x be the abscissa of a point of hyperbola (8). Then the focal distances of the point are the
following:

nL=+(xe+a), (9a)
r,=%(xe—a). (9b)

In the above formulas we have to apply the sign “+” for the points on the right half-hyperbola, while
the sign “—" is used for the points on the left half-hyperbola.

This property is similar to the corresponding one of ellipses.

The distance between two points M (x;y) and F (—c;0) is

rlz,/(x+c)2+y2,

where
2
y? :(x2 —az)—z, c=ae and b?=c?-a? :az(a2 —1).
a
Therefore,
2
2 =(x+c¢) +y® =x*+2cx+c% +y? =x* + 2axe + 2%’ +(x2 —az)(g2 —1)=
2
=x%¢* +2axe+a’ =(xe+a)".
Likewise,

r=y(x—c)’ +y? = r2=(xe-a)’.

Since xexa >0 for the points of the right half-hyperbola, and xet+a <0 for points of the left half-
hyperbola, we have got the desired results.
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2) For any point of hyperbola (8), the difference between the focal distances is the constant quantity (

+2a):

nL—r,=*2a.

(10)

The sign depends on whether the point lies on the right or left half-hyperbola.

The proof is straightforward. We only need to apply Property 1.

The directrices of hyperbola (8) are two vertical lines x = J_rE :

€

3) For any point of hyperbola (8) the ratio of the focal distance to the distance from the
corresponding directrix is equal to the eccentricity of the hyperbola.

4) Two straight lines y:iE are the
a
asymptotes of hyperbola (8).

Proof: Express the variable y from equality
(8) in the explicit form.

2 2 2
Xy 2 2 .2
—2——2—13 Yy —¥<X —a ) =

= y:J_rE\/XZ—a2 .
a

o))
(o

If x approaches infinity, then constant a? is

a negligible quantity, that is, y —>igx. Hence, the

property.

5) Assume that the curve of a hyperbola has the mirror reflection property. If a point light source is
located at a focus of the hyperbola, then the other focus is the image source of rays that being reflected. The
drawing illustrates that reflected rays form a divergent beam.

Example: Reduce the equation

x? —6x—2y> -8y —-7=0

to the canonical form. Give the detailed description of the curve.

Solution: Complete the perfect squares.

X2 —6x—2y> -8y =7; x2—6x—2(y2+4y):7; x2—6x+9—2(y2+4y+4):8;

(x=3)° —2(y+2)° =8.
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Dividing both sides by 8 we obtain the equation

(x=3)° _(y+2)

8 4

2

1,

which describes the hyperbola with the center at the point (3;—2). The focuses are located on the

horizontal line y =—-2. The distance between each focus and the center of the hyperbola is

C:'\'a2+b2 :\’8"'4:'\/]3:3'\/5

The eccentricity of the hyperbola equals

8.4. Parabolas

AY A parabola is the locus of points, which are equidistant from a
given point F and line L. The point F is called the focus. The line L is
P called the directrix of the parabola.
: '
o F i’ Let the focus be on the x -axis and the directrix be parallel to the y -
I axis at the distance p from the focus as it is shown in the figure below.
“; Then the focal distance of apoint M (x;y) is
Vi 2
= p 2
-£ (£,0) 2
L and the distance from M to the directrix is
d=x+2.
2

Therefore, due to the transformations
2 2 2
r=d = (x—g) +y? =x+§ = (X_Ej +y? :(x+£j ,

we obtain the following equation of a parabola: y? =2px .

If the focus is located on the left of the directrix, then we obtain y? =—-2px.
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ﬁ\_\ AY
L
Some more cases are shown in the drawings below.
S AY
x“=2p
AY 2y I x
FII
FII \x
L 1 r
x*=2py

Parabola properties:
e  Any parabola has the axis of symmetry, which passes through the vertex of the parabola, being
perpendicular to the directrix.
. Let a parabola be the mirror reflection curve. If a point light source is located at a focus of the
parabola, then rays of light are parallel after being reflected.

The equations

(Y=Yo)" =£2p(x=%),

Fd
T\\c
&3

Cd

S e
describe parabolas with the vertex at the point Mg (Xo; Yo ) -

Example: Reduce the equation
X2 +4x—-3y+9=0
to the canonical form. Give the detailed description of the curve.

Solution:

X2 +4x—-3y+9=0;
(x+2)2=3(y—§j.

This equation describes the parabola with the vertex at the point M, (—2;2) . The axis of symmetry

is a line x=-2 which is parallel to the y -axis.
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8.5. Summary

Let F be a point (focus) and L be a line (directrix) of a quadric curve. Consider the locus of points
such that the ratio of the distances to the focus and to the directrix is a constant quantity (eccentricity),

5=8. (12)

If 0 <e <1 then equation (12) describes anellipse.
If £=1 then equation (12) describes a parabola.

If £€>1 then (12) is the equation of a hyperbola.
Thus, the curves of the second order can be classified by the value of the eccentricity.

From the algebraic point of view, the equation
ax? +bx+a,y? +b,y+azxy+c=0
describes a curve of the second order in the x,y-plane, provided that at least one of the leading

coefficients is non-zero.
The presence of the term xy means that the axes of symmetry of the curve are rotated with respect

to the coordinate axes.
The linear term x (or y) means that the center (or vertex) of the curve is shifted along the

corresponding axis.

Examples:
1) The equation

Xy = const
describes a hyperbola, whose axes of symmetry are rotated on the angle 45° with respect to the

coordinate axes.
2) If c—0, then a hyperbola

X“—y“=cC
collapses to the pair of the lines y =+£x.
3) The equation

X2 +2y?=-1

has no solutions and corresponds to an imaginary ellipse.
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