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Continuity 

1. Introduction 

Example 1 
2( )f x x  is continuous on R 

 
 

Example 2 
1

( )f x
x

  is discontinuous at 0x   

 
2. Limit of a Function 

A. LIMIT OF A FUNCTION AT INFINITY 

Defintion Let ( )f x  be a function defined on R. lim ( )
x

f x l


  means that for any 

0  , there exists 0X   such that when x X , ( )f x l   . 

 

 
N.B. 

(1) lim ( )
x

f x l


  means that the difference between ( )f x  and l  can be made 

arbitrarily small when x is sufficiently large. 

(2) lim ( )
x

f x l


  means ( )f x A  as x . 

(3) Infinity,  , is a symbol but not a real value. 

There are three cases for the limit of a function when x . 
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1. ( )f x  may have a finite limit value. 

 
2. ( )f x  may approach to infinity. 

 
3. ( )f x  may oscillate or infinitely and limit value does not exist. 

 
Theorem UNIQUENESS of Limit Value 

If lim ( )
x

f x a


  and lim ( )
x

f x b


 , then a b . 

Theorem Rules of Operations on Limits 

If lim ( )
x

f x


 and lim ( )
x

g x


 exist and have finite values, then 

(a).  lim ( ) ( ) lim ( ) lim ( )
x x x

f x g x f x g x
  

    

(b). lim ( ) ( ) lim ( ) lim ( )
x x x

f x g x f x g x
  

   

(c). 
lim ( )( )

lim
( ) lim ( )

x

x

x

f xf x

g x g x







  if lim ( ) 0
x

g x


 . 

(d). For any constant k,    lim lim
x x

kf x k f x
 

    

(e). For any positive integer n, 

(I).  lim ( ) lim ( )
n

n

x x
f x f x

 

 
 

. 

(II). lim ( ) lim ( )n n
x x

f x f x
 

 . 
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N.B. 
1

lim 0
x x

  

Example 1 Evaluate 

(a) 

2

2

3 2 7
lim

5 1x

x x

x x

 

   (b).  4 2lim 1
x

x x


   

 

 

Theorem Let ( )f x  and ( )g x  be two functions defined on R. Suppose X is a 

positive real number. 

(a). If ( )f x  is bounded for x X  and lim ( ) 0
x

g x


  then lim ( ) ( ) 0
x

f x g x


 . 

(b). If ( )f x  is bounded for x X  and lim ( )
x

g x


  , then 

 lim ( ) ( )
x

f x g x


   . 

(c). If lim ( ) 0
x

f x


  and ( )f x  is non-zero for x X , and lim ( )
x

g x


  , then 

lim ( ) ( )
x

f x g x


  . 

Example 2 Evaluate 

(a). 
sin

lim
x

x

x
. (b). lim cosx

x
e x


. (c).  lim sinx

x
e x


 . 

(d). lim
1

e

x

ex

x 
. (e). 

cos
lim

1x

x x

x




. 

 

Theorem SANDWICH THEOREM FOR FUNCTIONS 

Let ( )f x , ( )g x , ( )h x  be three functions defined on R. 

If lim ( ) lim ( )
x x

f x h x a
 

   and there exists a positive real number X such that 

when x X , ( ) ( ) ( )f x g x h x  , then lim ( )
x

g x a


 . 

 
Example 3  

(a). Show that for 0x  , 
  

  
1 3

1 3 2
2

x x
x x x

x

 
    


. 

(b). Hence find   lim 1 3
x

x x x


   
 

. 

N.B. 
1

lim 1

n

n
e

n

 
  

 
 for any positive integer n. 
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Example 4 Evaluate 
1

lim 1

x

x
e

x

 
  

 
 by sandwich rule. 

 

 

Theorem  
1

0

1
lim 1 lim 1

x

y

x y
e y e

x 

 
     

 
. 

Example 5 Evaluate 

(a).  
1

0
lim 1 x

x
x


 . (b). 

2

2

2

1
lim

1

x

x

x

x

 
 

 
. (c). 

1

1

1
lim x

x
x 


. 

N.B. 1. 
1

lim 1

x

x
e

x

 
  

 
.  2.  

1

0
lim 1 x

x
x e


  . 

Exercise 

(a).  
1

0
lim 1 3 x

x
x


 .  (b). 

2
lim 1

x

x x





 
 

 
. 

(c).  
cot

lim 1 tan
x

x
x


 . (d). 

1
lim

1

x

x

x

x

 
 

 
. 

 

B. LIMIT OF A FUNCTION AT A POINT 

Definition Let ( )f x  be a function defined on R. lim ( )
x a

f x l


  means that for any 

0  , there exists 0   such that when 0 x a    , ( )f x l   . 

 
N.B. 

(1). lim ( )
x a

f x l


  means that the difference between ( )f x  and l can be made 

arbitrarily small when x is sufficiently close to a. 

(2). If ( )f x  is a polynomial, then lim ( ) ( )
x a

f x f a


 . 

(3). In general lim ( ) ( )
x a

f x f a


 . 

(4). ( )f x  may not defined x a  even through lim ( )
x a

f x


 exists. 

 

Example 6  2 2

3
lim 2 5 3 2(3) 5 8
x

x x


      , limcos cos 1
x

x





   . 
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Example 7 Let 
3 if 5

( )
1if 5

x
f x

x


 


, then 

5
lim ( ) 3
x

f x


  but (5) 1f  . 

Example 8 Consider the function 
2 1, 2

( )
4, 2

x x
f x

x

 
 


, ( )f x  is discontinuous at 

2x   since 
2 2

lim ( ) lim(2 1) 5 (2)
x x

f x x f
 

    . 

Example 9 Let 
2 4

( )
2

x
f x

x





, then 

2 2 2

( 2)( 2)
lim ( ) lim lim( 2) 4

2x x x

x x
f x x

x  

 
   


. 

But (2)f  is not defined on R. 

N.B. lim ( )
x a

f x l


  is equivalent to: 

(I).  lim ( ) 0
x a

f x l


  ; 

(II). lim ( ) 0
x a

f x l


  ; 

(III). lim ( ) lim ( )
x a x a

f x l f x
  

  ; 

(IV). 
0

lim ( )
h

f a h l


  . 

 

Theorem Rules of Operations on Limits 

Let ( )f x  and ( )g x  be two functions defined on an interval containing a , 

possibly except a. 

If lim ( )
x a

f x h


  and lim ( )
x a

g x k


 , then 

(a).  lim ( ) ( )
x a

f x g x h k


   . 

(b).  lim ( ) ( )
x a

f x g x hk


 . 

(c). 
( )

lim
( )x a

f x h

g x k
 , (if 0k  ) 

 

Example 10 Evaluate 

(a). 
3

1

1
lim

1x

x

x




.  (b). 

0

(1 ) 1
lim

n

x

x

x

 
. 

(c). 
22

2
lim

3 5x

x

x



 
. (d).  2lim

x
x x x


  . 

 

Example 11 Evaluate 

(a). 
23

1
lim

2 2x

x

x




.  (b). 

21

1
lim

2 2x

x

x




. 

(c). 
22

2
lim

2 2x

x

x



 
. (d). 

31

1
lim

1x

x

x




. 
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Example 12 (a). Prove that for ,0 0,
2 2

x
    

     
   

, 
sin tan 2

2
1 cos cos

x x

x x
 


. 

(b). Hence, deduce that 
0

sin tan
lim 2

1 cosx

x x

x



. 

 

3. Properties of Limit of a Function 

Theorem Uniqueness of Limit Value 

If lim ( )
x a

f x h


  and lim ( )
x a

f x k


 , then h k . 

Theorem Heine Theorem 

lim ( ) lim ( )n
x a n

f x l f x l
 

    where nx a  as n . 

Example 1 Prove that 
0

1
limsin
x x

 does not exist. 

 

 

Example 2 If 
3 2

1

4
lim

1x

x ax x

x

  


 exists, find the value of a  and the limit value. 

 

 

 

4. Two Important Limits 

Theorem 
0

sin
lim 1
x

x

x
  

N.B. (1). 
sin cos

lim lim
x x

x x

x x 
  . (2). 

0 0

tan
lim lim

sinx x

x x

x x 
   . 

 (3). 
0

cos
lim
x

x

x
 .   (4). 

0

1
limsin
x x

 . 

 

Example 1 Find the limits of the following functions: 

(a). 
0

tan
lim
x

x

x
.  (b). 

20

1 cos
lim
x

x

x


. 

(c). 

2

lim sec
2x

x x






 
 

 
. (d). 

0

sin 4
lim

sin5x

x

x
. 

 

Example 2 Find the limits of the following functions: 

(a). 
21

sin( 1)
lim

3 2x

x

x x



 
. (b). 

20

cos cos
lim
x

ax bx

x


. 

(c). 
30

3sin sin3
lim
x

x x

x

 




. 

 

Example 3 Let   be a real number such that 0
2


   
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By using the formula 
1 1

sin 2sin cos
2 2 2k k k

  
 

  show that 

1

2 1 1
sin 2 cos cos ...cos sin

2 2 2 2

n

n n

   
 

 
  

Hence, find the limit value 
2

lim cos cos ...cos
2 2 2nn

x x x



 
 
 

 

 

 

5. Left and Right Hand Limits 

Theorem lim ( )
x a

f x l


  if  lim
x a

f x l


  then x a ,  lim
x a

f x l


  then x a ,

lim ( ) lim ( )
x a x a

f x f x l
  

  . 

Example 1 Show that each of the following limits does not exist. 

(a). 
2

lim 2
x

x


 .  (b). 
0

lim
x

x

x
.  (c). 

1

0
lim x

x
e


. 

 

 

Example 2 By Sandwich rule, show that 
1 1

0
lim

x

x x

x
a b



 
 

 
 does not exist for 

0a b   

Solution  If 0a b   then 1
b

a
  

  If 0a b   and 0x   then 

  If 0x   then 

1
1

1 1
x

x
b

a

 
  

 
 

1 1

1 1
x xb b

a a

   
     

   
 

1
1 1

1 2

x
x

x
xx x

b
a a b a a

a

 
    

         
     

 

1
1 1

1 2

x
x

x
xx x

a
b a b b b

b

 
    

         
     

 

As 
0

lim 2 1x

x 
 , by sandwich rule, 

1 1

0
lim

x

x x

x
a b a



 
  

 
. 

As 
2

0
lim 2
x

b b

  , by sandwich rule, we have 

1 1

0
lim

x

x x

x
a b b



 
  

 
. 
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Since a b , 
1 1

0
lim

x

x x

x
a b



 
 

 
 does not exist.  (Why?). 

 

 

6. Continuous Functions 

N.B. In general lim ( ) ( )
x a

f x f a


 . 

 

Definition Let ( )f x  be a function defined on R. ( )f x  is said to be continuous at 

x a  if and only if lim ( ) ( )
x a

f x f a


 . 

N.B. This is equivalent to the definition: 

A function ( )f x  is continuous at x a , if and only if  

(a). ( )f x  is well-defined at x a ,  i.e. ( )f a  exists and ( )f a  is a finite value, 

(b). lim ( )
x a

f x


 exists and )()(lim afxf
ax




. 

Remark Sometimes, the second condition may be written as 
0

lim ( ) ( )
h

f a h f a


  . 

Example 1 Show that the function 

1
sin , 0

( )

0, 0

x x
f x x

x




 
 

 is continuous at 0x  . 

 

Definition A function is discontinuous at x a  if it is not continuous at that point 

a. 

There are four kinds of discontinuity: 

(1) Removable discontinuity: 

 
lim ( )
x a

f x


 exists but not equal to ( )f a . 

Example 2 Show that 
2 1, 2

( )
4, 2

x x
f x

x

 
 


 is discontinuous at 2x  . 

Solution Since (2) 4f   and 
2 2

lim ( ) lim(2 1) 5 (2)
x x

f x x f
 

    , 

so ( )f x  is discontinuous at 2x  . 
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Example 3 Let 2

1 cos
, 0

( )

, 0

x
x

f x x

a x




 
 

. 

(a). Find 
0

lim ( )
x

f x


. 

(b). Find a if ( )f x  is continuous at 0x  . 

 

(2) Jump discontinuity: 

 
lim ( ) lim ( )
x a x a

f x f x
  

  

 

Example 4 Show that the  ( )f x x  is discontinuous at 2. 

 

Example 5 Find the points of discontinuity of the function  ( )g x x x  . 

 

Example 6 Let 
3 2 1, 0

( )
sin , 0

x x x
f x

x x

   
 


. Show that ( )f x  is discontinuous at 

0x   
 

(3) Infinite discontinuity: 

 
lim ( )
x a

f x


   or lim ( )
x a

f x


   i.e. limit does not exist. 

 

Example 7 Show that the function 
1

( )f x
x

  is discontinuous at 0x   
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(4) At least one of the one-side limit does not exist. 

 
lim ( )
x a

f x


   or lim ( )
x a

f x


   do not exist. 

 

Example 8 Since 
1

0
lim 0x

x
e


  and 

1

0
lim x

x
e


  , so the function 

1

( ) xf x e  is 

discontinuous at 0x  . 

 

Definition 

(1). A function ( )f x  is called a continuous function in an open interval  ,a b  if 

it is continuous at every point in  ,a b . 

(2). A function ( )f x  is called a continuous function in an closed interval  ,a b  if 

it is continuous at every point in  ,a b  and lim ( ) ( )
x a

f x f a


  and lim ( ) ( )
x b

f x f b


 . 

(1) 

 
( )f x is continuous on  ,a b  

 

(2) 

   
( )f x  is continuous on  ,a b   ( )f x  is continuous on  ,a b  

N.B. 
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(1). ( )f x  is continuous at 
0

lim ( ) ( ) lim ( ) ( )
x a h

x a f x f a f a h f a
 

      . 

(2). ( )f x  is continuous at every x on 
0

lim ( ) ( )
h

R f x h f x


    for all x R . 

 

Example 9 Let ( )f x  be a real-value function such that. 

(1). ( ) ( ) ( )f x y f x f y   for all real numbers x and y, 

(2). ( )f x  is continuous at 0x   and (0) 1f  . 

Show that ( )f x  is continuous at every x R . 

 

7. Properties of Continuous Functions 

A Continuity of Elementary Functions 

 

Theorem Rules of Operations on Continuous Functions 

If ( )f x  and ( )g x  are two functions continuous at x a , then so are ( ) ( )f x g x , 

( ) ( )f x g x  and 
( )

( )

f x

g x
 provided ( ) 0g a  . 

 

Example 1 Let 
2

1 cos
( )

x
h x

x


 . Since ( ) 1 cosf x x   and 

2( )g x x  are two 

functions continuous everywhere, but (0) 0g  , so h is continuous everywhere except 

0x  . 

 

Example 2 Let 
2

1 cos
( )

1

x
h x

x





. Since ( ) 1 cosf x x   and 

2( ) 1g x x    0   

are two functions continuous everywhere, so h is continuous everywhere. 

 

Theorem Let ( )g x  be continuous at x a  and ( )f x  be continuous at ( )x g a , 

then 0f  g is continuous at x a . 

 

Example 3 sin
xe , 

sin xe  are continuous functions. 

 

Example 4 Show that 
2( ) cosf x x  is continuous at every x R . 

 

Example 5 Let f and g be two functions defined as 
| |

( )
2

x x
f x


  for all x and 

2

if 0
( )

if 0

x x
g x

x x


 


. 

For what values of x is  ( )f g x  continuous? 
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Theorem Let lim ( )
x

f x A


  and ( )g x  be an elementary function (such as sin x , 

cosx , 1sin x , xe , ln x , … , etc.) for which ( )g A  is defined, then 

 lim ( ) lim ( ) ( )
x x

g f x g f x g A
 

  
 

 

 

Example 6    
1 1

limcos tan cos lim tan 0
x x

x x
 

     

 

Example 7 Evaluate 
ln(1 )

lim
x

x

x


. 

 

Example 8 Evaluate 
0

sin
lim tan
x

x

x





 
 
 

. 

 

B. Properties of Continuous Function 

(P1) If ( )f x  is continuous on  ,a b , then ( )f x  is bounded on  ,a b . 

(P2) But ( )f x  is continuous on  ,a b  cannot imples that ( )f x  is bounded on 

 ,a b . 

(1) ( )c f x d   

 
(2) ( )f x  is not bounded on  ,a b  

 
Example 9 ( ) cotf x x  continuous on 0, , but it is not bounded on  0, . 
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(P3) If ( )f x  is continuous on  ,a b , then it will attain an absolute maximum and 

absolute minimum on  ,a b . 

i.e. If ( )f x  is continuous on  ,a b , there exist  1 ,x a b  such that 1( ) ( )f x f x  

and  2 ,x a b  such that 
2( ) ( )f x f x  for all  ,x a b . 1x  is called the absolute 

maximum of the function and 2x  is called the absolute minimum of the function. 

 
 

(P4) If ( )f x  is continuous on  ,a b  and ( ) ( ) 0f a f b  , then there exists 

 ,c a b  such  that ( ) 0f c  . 

 

Example 10 Let ( ) cos 0.6f x x   which is continuous on 0,
2

 
 
 

 and (0) 0.4f   

and 0.6
2

f
 

  
 

. Hence, there exists a real number 0,
2

c
 

  
 

 such that ( ) 0f c  . 

 

Example 11 Prove that the equation 2xx e   has at least one real root in  0,1 . 

 

Example 12 Le 
3( ) 2f x x x  . 

(a). Show that ( )f x  is a strictly increasing function. 

(b). Hence, show that the equation ( ) 0f x   has a unique real root. 
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(P5) Intermediate Value Theorem 

If ( )f x  is continuous on  ,a b , then for any real number m lying between ( )f a  

and ( )f b , there corresponds a number  ,c a b  such that ( )f c m . 

 
 

(P6) Let ( )f a c  and ( )f b d , if f is continuous and strictly increasing on 

 ,a b , then 
1f 
 is also continuous and strictly increasing on  ,c d  (or  ,d c ). 

 

Example 13 
2( )f x x  is strictly increasing and continuous on  0, 5 , so 

1( )f x x   is also strictly increasing and continuous on  0, 25 . 

 

Example 14 ( ) cosf x x  is strictly decreasing and continuous on  0, , so  

 1 1cosf x x  is also strictly decreasing and continuous on  1,1 . 

 

Example 15  

(a). Suppose that the function satisfies ( ) ( ) ( )f x y f x f y    for all real x and y 

and ( )f x  is continuous at 0x  . Show that ( )f x  is continuous at all x. 

(b). A function 

1 sin 1 sin
if 0

( )

0, if 0

x x
x

f x x

x

   


 
 

. 

Is ( )f x  continuous at 0x  ? If not, how can we redefine the value of ( )f x  at 

0x   so that it is continuous at 0x  ? 

 

Example 16 Let ( )f x  be a continuous function defined for 0x   and for any x 

0y  , ( ) ( ) ( )f xy f x f y   

(a). Find (1)f . 

(b). Let a be a positive real number. Prove that ( ) ( )rf a r f a   for any non-

negative rational number. 

(c). It is known that for all real numbers x, there exists a sequence  nx  of rational 

numbers such that lim n
x

x x


 . 

(I). Show that ( ) ( )xf a x f a   for all 0x  , where a is a positive real constant. 
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(II). Hence show that ( ) lnf x c x  for all 0x  , where c is a constant. 

 

Example 17 Let f be a real-valued continuous function defined on the set R such 

that ( ) ( ) ( )f x y f x f y    for all x, y R . 

(a). Show that 

(I). (0) 0f  . 

(II). ( ) ( )f x f x    for any x R . 

 

(b). Prove that ( ) ( )f nx nf x  for all integers n. 

Hence show that ( ) (1)f r rf  for any rational number r. 

 

(c). It is known that for all x R , there exists a sequence  na  of rational 

numbers such that lim n
n

a x


 . 

Using (b), prove that there exists a constant k such that ( )f x kx  for all x R . 

 

Example 18 Let R denote the set of all real numbers and f: R R  a continuous 

function not identically zero such that ( ) ( ) ( )f x y f x f y   for all x y R , 

(a). Show that 

(I). ( ) 0f x   for any x R . 

(II). ( ) 0f x   for any x R . 

(III). (0) 1f  . 

(IV).  
1

( ) ( )f x f x


  . 

 

(b). Prove that for any rational number r,  ( ) ( )
r

f rx f x . 

Hence prove that there exists a constant a such that ( ) xf x a  for all x R . 

 

Derivatives 

 

8. The Definition of the Derivative 

In this section we saw that the computation of the slope of a tangent line, the 

instantaneous rate of change of a function, and the instantaneous velocity of an object at 

x a  all required us to compute the following limit. 

( ) ( )
lim
x a

f x f a

x a




 

We also saw that with a small change of notation this limit could also be written 

as, 

0

( ) ( )
lim
h

f a h f a

h

 
 

This is such an important limit and it arises in so many places that we give it a 

name. We call it a derivative. Here is the official definition of the derivative. 
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Definition of the Derivative 

The derivative of ( )f x  with respect to x is the function ( )f x   and is defined as, 

0

( ) ( )
( ) lim

h

f x h f x
f x

h

 
   

Note that we replaced all the a s  in with x s  to acknowledge the fact that the 

derivative is really a function as well. We often «read» ( )f x  as «f prime of x». 

Let’s compute a couple of derivatives using the definition. 

Example 1. Find the derivative of the following function using the definition of 

the derivative. 
2( ) 2 16 35f x x x    

 

Solution 

So, all we really need to do is to plug this function into the definition of the 

derivative, and do some algebra. While, admittedly, the algebra will get somewhat 

unpleasant at times, but it’s just algebra so don’t get excited about the fact that we’re 

now computing derivatives. 

First plug the function into the definition of the derivative. 
2 2

0 0

( ) ( ) 2( ) 16( ) 35 (2 16 35)
( ) lim lim

h h

f x h f x x h x h x x
f x

h h 

        
    

Be careful and make sure that you properly deal with parenthesis when doing the 

subtracting. 

Now, we know from the previous section that we can’t just plug in 0h   since 

this will give us a division by zero error. So, we are going to have to do some work. In 

this case that means multiplying everything out and distributing the minus sign through 

on the second term. Doing this gives, 
2 2 2

0

2

0

2 4 2 16 16 35 2 16 35
( ) lim

4 2 16
lim

h

h

x xh h x h x x
f x

h

xh h h

h





       
  

 


 

Notice that every term in the numerator that didn’t have an h in it canceled out 

and we can now factor an h out of the numerator which will cancel against the h in the 

denominator. After that we can compute the limit. 

0 0

(4 2 16)
( ) lim lim4 2 16 4 16

h h

h x h
f x x h x

h 

 
        

So, the derivative is, 

( ) 4 16f x x    

 

Example 2. Find the derivative of the following function using the definition of 

the derivative. 

( )
1

t
g t

t


  
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Solution 
This one is going to be a little messier as far as the algebra goes. However, 

outside of that it will work in exactly the same manner as the previous examples. First, 

we plug the function into the definition of the derivative, 

0 0

( ) ( ) 1
( ) lim lim

1 1h h

g t h g t t h t
g t

h h t h t 

   
    

   
  

Note that we changed all the letters in the definition to match up with the given 

function. Also note that we wrote the fraction a much more compact manner to help us 

with the work.  

As with the first problem we can’t just plug in 0h  . So, we will need to simplify 

things a little. In this case we will need to combine the two terms in the numerator into a 

single rational expression as follows. 

0

2 2

0 0

1 ( )( 1) ( 1)
( ) lim

( 1)( 1)

1 ( ) 1
lim lim

( 1)( 1) ( 1)( 1)

h

h h

t h t t t h
g t

h t h t

t t th h t th t h

h t h t h f h t



 

     
   

   

        
    

       

 

Before finishing this let’s note a couple of things. First, we didn’t multiply out the 

denominator. Multiplying out the denominator will just overly complicate things so let’s 

keep it simple. Next, as with the first example, after the simplification we only have 

terms with h s  in them left in the numerator and so we can now cancel an h out. 

So, upon canceling the h we can evaluate the limit and get the derivative. 

20

1 1 1
( ) lim

( 1)( 1) ( 1)( 1) ( 1)h
g t

t h t t t t
   

     
 

The derivative is then, 

2

1
( )

( 1)
g t

t
 


 

 

Example 3. Find the derivative of the following function using the definition of 

the derivative. 

( ) 5 8R z z   
 

Solution 
First plug into the definition of the derivative as we’ve done with the previous 

two examples. 

0 0

5( ) 8 5 8( ) ( )
( ) lim lim

h h

z h zR z h R z
R z

h h 

    
    

In this problem we’re going to have to rationalize the numerator. You do 

remember rationalization from an Algebra class right? In an Algebra class you probably 

only rationalized the denominator, but you can also rationalize numerators. Remember 

that in rationalizing the numerator (in this case) we multiply both the numerator and 
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denominator by the numerator except we change the sign between the two terms. Here’s 

the rationalizing work for this problem, 

   
 

   

0

0 0

5( ) 8 5 8) 5( ) 8 5 8
( ) lim

5( ) 8 5 8

5 5 8 (5 8) 5
lim lim

5( ) 8 5 8 5( ) 8 5 8

h

h h

z h z z h z
R z

h z h z

z h z h

h z h z h z h z



 

       
  

   

   
 

       

 

Again, after the simplification we have only h s  left in the numerator. So, cancel 

the h and evaluate the limit. 

0

5
( ) lim

5( ) 8 5 8

5 5

5 8 5 8 2 5 8

h
R z

z h z

z z z


  

   

 
   

  

And so we get a derivative of, 

5
( )

2 5 8
R z

z
 


 

Let’s work one more example. This one will be a little different, but it’s got a 

point that needs to be made. 

 

Example 4. Determine (0)f   for ( )f x x  

 

Solution 
Since this problem is asking for the derivative at a specific point we’ll go ahead 

and use that in our work. It will make our life easier and that’s always a good thing. 

So, plug into the definition and simplify. 

0 0 0

0 0(0 ) (0)
(0) lim lim lim

h h h

h hf h f
f

h h h  

  
      

We saw a situation like this back when we were looking at limits at infinity. As in 

that section we can’t just cancel the h s . We will have to look at the two one sided 

limits and recall that 

if 0

if 0

h h
h

h h


 

   

0 0 0
lim lim lim( 1) 1
h h h

h h

h h    


      because 0h   in a left-hand limit. 

0 0 0
lim lim lim(1) 1
h h h

h h

h h    
     because 0h   in a right-hand limit. 

The two one-sided limits are different and so  

0
lim
h

h

h
 



22 
 

doesn’t exist. However, this is the limit that gives us the derivative that we’re 

after. 

If the limit doesn’t exist then the derivative doesn’t exist either. 

In this example we have finally seen a function for which the derivative doesn’t 

exist at a point. This is a fact of life that we’ve got to be aware of. Derivatives will not 

always exist. Note as well that this doesn’t say anything about whether or not the 

derivative exists anywhere else. In fact, the derivative of the absolute value function 

exists at every point except the one we just looked at, 0x  . 

The preceding discussion leads to the following definition. 

 

Definition 

A function is called differentiable at x a  if ( )f a  exists and ( )f x  is called 

differentiable on an interval if the derivative exists for each point in that interval.  

The next theorem shows us a very nice relationship between functions that are 

continuous and those that are differentiable. 

 

Theorem 

If ( )f x  is differentiable at x a  then ( )f x  is continuous at x a . 

Note that this theorem does not work in reverse. Consider ( )f x x  and take a 

look at, 

0 0
lim ( ) lim 0 (0)
x x

f x x f
 

    

So, is continuous at but we’ve just shown above in Example 4 that ( )f x x  is 

not differentiable at 0x  . 

 

Alternate Notation 

Next, we need to discuss some alternate notation for the derivative. The typical 

derivative notation is the «prime» notation. However, there is another notation that is 

used on occasion so let’s cover that. 

Given a function ( )y f x  all of the following are equivalent and represent the 

derivative of ( )f x  with respect to x. 

 ( ) ( ) ( )
df dy d d

f a y f x y
dx dx dx dx

       

Because we also need to evaluate derivatives on occasion we also need a notation 

for evaluating derivatives when using the fractional notation. So, if we want to evaluate 

the derivative at x a  all of the following are equivalent. 

( ) x a

x a x a

df dy
f a y

dx dx


 

     

As a final note in this section we’ll acknowledge that computing most derivatives 

directly from the definition is a fairly complex (and sometimes painful) process filled 

with opportunities to make mistakes. 

This does not mean however that it isn’t important to know the definition of the 

derivative! It is an important definition that we should always know and keep in the 
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back of our minds. It is just something that we’re not going to be working with all that 

much. 

 

9. Interpretation of the Derivative 

Let’s quickly reviewsome interpretations of the derivative. All of these 

interpretations arise from recalling how our definition of the derivative came about. The 

definition came about by noticing that all the problems that we worked in the previous 

sections required us to evaluate the same limit. 

 

Rate of Change 
The first interpretation of a derivative is rate of change. This was not the first 

problem that we looked , but it is the most important interpretation of the derivative. If 

( )f x  represents a quantity at any x then the derivative ( )f a  represents the 

instantaneous rate of change of ( )f x  at x a . 

 

Example 1. Suppose that the amount of water in a holding tank at t minutes is 

given by 
2( ) 2 16 35V t t t   . Determine each of the following. 

(a) Is the volume of water in the tank increasing or decreasing at 1t   minute? 

(b) Is the volume of water in the tank increasing or decreasing at 5t   minutes? 

(c) Is the volume of water in the tank changing faster at 1t   or 5t   minutes? 

(d) Is the volume of water in the tank ever not changing? If so, when? 

 

Solution 
In the solution to this example we will use both notations for the derivative just to 

get you familiar with the different notations. 

We are going to need the rate of change of the volume to answer these questions. 

This means that we will need the derivative of this function since that will give us a 

formula for the rate of change at any time t. Now, notice that the function giving the 

volume of water in the tank is the same function that we saw in Example 1 in the last 

section except the letters have changed. The change in letters between the function in 

this example versus the function in the example from the last section won’t affect the 

work and so we can just use the answer from that example with an appropriate change 

in letters. 

The derivative is. 

( ) 4 16V t t    or 4 16
dV

t
dt

   

Recall from our work in the first limits section that we determined that if the rate 

of change was positive then the quantity was increasing and if the rate of change was 

negative then the quantity was decreasing. 

We can now work the problem. 

 

(a) Is the volume of water in the tank increasing or decreasing at 1t   

minute? 

In this case all that we need is the rate of change of the volume at 1t   or, 
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(1) 12V     or 
1

12
t

dV

dt 

   

So, at 1t   the rate of change is negative and so the volume must be decreasing at 

this time. 

 

(b) Is the volume of water in the tank increasing or decreasing at 5t   

minutes? 

Again, we will need the rate of change at 5t  . 

(5) 4V    or 
5

4
t

dV

dt 

  

In this case the rate of change is positive and so the volume must be increasing at 

5t  . 

 

(c) Is the volume of water in the tank changing faster at 1t   or 5t   

minutes? 

To answer this question all that we look at is the size of the rate of change and we 

don’t worry about the sign of the rate of change. All that we need to know here is that 

the larger the number the faster the rate of change. So, in this case the volume is 

changing faster at 1t   than at 5t  . 

 

(d) Is the volume of water in the tank ever not changing? If so, when? 
The volume will not be changing if it has a rate of change of zero. In order to 

have a rate of change of zero this means that the derivative must be zero. So, to answer 

this question we will then need to solve 

( ) 0V t   or 0
dV

dt
  

This is easy enough to do. 

4 16 0 4t t     
So at 4t   the volume isn’t changing. Note that all this is saying is that for a brief 

instant the volume isn’t changing. It doesn’t say that at this point the volume will quit 

changing permanently. 

If we go back to our answers from parts (a) and (b) we can get an idea about what 

is going on. At 1t   the volume is decreasing and at 5t   the volume is increasing. So, 

at some point in time the volume needs to switch from decreasing to increasing. That 

time is 4t  . 

This is the time in which the volume goes from decreasing to increasing and so 

for the briefest instant in time the volume will quit changing as it changes from 

decreasing to increasing. 

Note that one of the more common mistakes that students make in these kinds of 

problems is to try and determine increasing/decreasing from the function values rather 

than the derivatives. In this case if we took the function values at 0t  , 1t   and 5t   

we would get, 
(0) 35V   (1) 21V   (5) 5V   
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Clearly as we go from 0t   to 1t   the volume has decreased. This might lead us 

to decide that AT 1t   the volume is decreasing. However, we just can’t say that. All 

we can say is that between 0t   and 1t   the volume has decreased at some point in 

time. The only way to know what is happening right at 1t   is to compute (1)V   and 

look at its sign to determine increasing/decreasing. In this case (1)V   is negative and so 

the volume really is decreasing at 1t  . 

Now, if we’d plugged into the function rather than the derivative we would have 

gotten the correct answer for 1t   even though our reasoning would have been wrong. 

It’s important to not let this give you the idea that this will always be the case. It just 

happened to work out in the case of 1t  . 

To see that this won’t always work let’s now look at 5t  . If we plug 1t   and 

5t   into the volume we can see that again as we go from 1t   to 5t   the volume has 

decreased. Again, however all this says is that the volume HAS decreased somewhere 

between 1t   and 5t  . It does NOT say that the volume is decreasing at 5t  . The 

only way to know what is going on right at 5t   is to compute (5)V   and in this case 

(5)V   is positive and so the volume is actually increasing at 5t  . 

So, be careful. When asked to determine if a function is increasing or decreasing 

at a point make sure and look at the derivative. It is the only sure way to get the correct 

answer. We are not looking to determine is the function has increased/decreased by the 

time we reach a particular point. We are looking to determine if the function is 

increasing/decreasing at that point in question. 

 

Slope of Tangent Line 

This is the next major interpretation of the derivative. The slope of the tangent 

line to ( )f x  at x a  is ( )f a . The tangent line then is given by, 

( ) ( )( )y f a f a x a    

 

Example 2. Find the tangent line to the following function at 3z  . 

( ) 5 8R z z   
 

Solution 
We first need the derivative of the function and we found that in Example 3 in the 

last section. The derivative is, 

5
( )

2 5 8
R z

z
 


 

Now all that we need is the function value and derivative (for the slope) at 3z  . 

(3) 7R   
5

(3)
2 7

m R   

The tangent line is then, 

5
7 ( 3)

2 7
y z  
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Velocity 

Recall that this can be thought of as a special case of the rate of change 

interpretation. If the position of an object is given by ( )f t  after t units of time the 

velocity of the object at t a  is given by ( )f a . 

 

Example 3. Suppose that the position of an object after t hours is given by, 

( )
1

t
g t

t



 

Answer both of the following about this object. 

(a) Is the object moving to the right or the left at 10t   hours? 

(b) Does the object ever stop moving? 

 

Solution 

Once again, we need the derivative and we found that in Example 2 in the last 

section. The derivative is, 

2

1
( )

( 1)
g t

t
 


 

 

(a) Is the object moving to the right or the left at 10t   hours? 

To determine if the object is moving to the right (velocity is positive) or left 

(velocity is negative) we need the derivative at 10t  . 

1
(10)

121
g    

So, the velocity at is positive and so the object is moving to the right at 10t  . 

 

(b) Does the object ever stop moving? 

The object will stop moving if the velocity is ever zero. However, note that the 

only way a rational expression will ever be zero is if the numerator is zero. Since the 

numerator of the derivative (and hence the speed) is a constant it can’t be zero. 

Therefore, the object will never stop moving. 

In fact, we can say a little more here. The object will always be moving to the 

right since the velocity is always positive. 

We’ve seen three major interpretations of the derivative here. You will need to 

remember these, especially the rate of change, as they will show up continually. 

Before we finish this section let’s work one more example that encompasses 

some of the ideas discussed here and is just a nice example to work. 

 

Example 4. Below is the sketch of a function ( )f x . Sketch the graph of the 

derivative of this function, ( )f x . 
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Solution 

At first glance this seems to an all but impossible task. However, if you have 

some basic knowledge of the interpretations of the derivative you can get a sketch of the 

derivative. It will not be a perfect sketch for the most part, but you should be able to get 

most of the basic features of the derivative in the sketch. 

Let’s start off with the following sketch of the function with a couple of 

additions. 

 
Notice that at 3x   , 1x   , 2x   and 4x   the tangent line to the function is 

horizontal. This means that the slope of the tangent line must be zero. Now, we know 

that the slope of the tangent line at a particular point is also the value of the derivative 

of the function at that point. Therefore, we now know that, 

( 3) 0f     ( 1) 0f     (2) 0f    (4) 0f    

This is a good starting point for us. It gives us a few points on the graph of the 

derivative. It also breaks the domain of the function up into regions where the function 

is increasing and decreasing. We know, from our discussions above, that if the function 

is increasing at a point then the derivative must be positive at that point. Likewise, we 

know that if the function is decreasing at a point then the derivative must be negative at 

that point. 

We can now give the following information about the derivative. 
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3 ( ) 0

3 1 ( ) 0

1 2 ( ) 0

2 4 ( ) 0

4 ( ) 0

x f x

x f x

x f x

x f x

x f x

  

    

   

  

 

 

Remember that we are giving the signs of the derivatives here and these are solely 

a function of whether the function is increasing or decreasing. The sign of the function 

itself is completely immaterial here and will not in any way effect the sign of the 

derivative. 

This may still seem like we don’t have enough information to get a sketch, but we 

can get a little bit more information about the derivative from the graph of the function. 

In the range 3x    we know that the derivative must be negative, however we can also 

see that the derivative needs to be increasing in this range. It is negative here until we 

reach 3x    and at this point the derivative must be zero. The only way for the 

derivative to be negative to the left of 3x    and zero at 3x    is for the derivative to 

increase as we increase x towards 3x   . 

Now, in the range 3 1x     we know that the derivative must be zero at the 

endpoints and positive in between the two endpoints. Directly to the right of 3x    the 

derivative must also be increasing (because it starts at zero and then goes positive — 

therefore it must be increasing). So, the derivative in this range must start out increasing 

and must eventually get back to zero at 1x   . So, at some point in this interval the 

derivative must start decreasing before it reaches 1x   . Now, we have to be careful 

here because this is just general behavior here at the two endpoints. We won’t know 

where the derivative goes from increasing to decreasing and it may well change 

between increasing and decreasing several times before we reach 1x   . All we can 

really say is that immediately to the right of 3x    the derivative will be increasing and 

immediately to the left of 1x    the derivative will be decreasing. 

Next, for the ranges 1 2x    and 2 4x   we know the derivative will be zero 

at the endpoints and negative in between. Also, following the type of reasoning given 

above we can see in each of these ranges that the derivative will be decreasing just to 

the right of the left-hand endpoint and increasing just to the left of the right hand 

endpoint. 

Finally, in the last region 4x   we know that the derivative is zero at 4x   and 

positive to the right of 4x  . Once again, following the reasoning above, the derivative 

must also be increasing in this range. 

Putting all of this material together (and always taking the simplest choices for 

increasing and/or decreasing information) gives us the following sketch for the 

derivative. 
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Note that this was done with the actual derivative and so is in fact accurate. Any 

sketch you do will probably not look quite the same. The «humps» in each of the 

regions may be at different places and/or different heights for example. Also, note that 

we left off the vertical scale because given the information that we’ve got at this point 

there was no real way to know this information. 

That doesn’t mean however that we can’t get some ideas of specific points on the 

derivative other than where we know the derivative to be zero. To see this let’s check 

out the following graph of the function (not the derivative, but the function). 

 
At 2x    and 3x   we’ve sketched in a couple of tangent lines. We can use the 

basic rise/run slope concept to estimate the value of the derivative at these points. 

Let’s start at 3x  . We’ve got two points on the line here. We can see that each 

seem to be about one-quarter of the way off the grid line. So, taking that into account 

and the fact that we go through one complete grid we can see that the slope of the 

tangent line, and hence the derivative, is approximately –1.5. 

At 2x    it looks like (with some heavy estimation) that the second point is 

about 6.5 grids above the first point and so the slope of the tangent line here, and hence 

the derivative, is approximately 6.5. 

Here is the sketch of the derivative with the vertical scale included and from this 

we can see that in fact our estimates are pretty close to reality. 
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Note that this idea of estimating values of derivatives can be a tricky process and 

does require a fair amount of (possible bad) approximations so while it can be used, you 

need to be careful with it. 

We’ll close out this section by noting that while we’re not going to include an 

example here we could also use the graph of the derivative to give us a sketch of the 

function itself. 


