

Тернопільський національний технічний університет імені Івана Пулюя

Кафедра автоматизації технологічних процесів і виробництв

Лабораторна робота № R05

з курсу "Мікропроцесорні та програмні засоби автоматизації"

Робота з послідовним інтерфейсом I2C за допомогою WiringPi

Тернопіль 2021

Методичні вказівки до лабораторної роботи № R05 "Робота з послідовним інтерфейсом I2C за допомогою WiringPi" з курсу "Мікропроцесорні та програмні засоби автоматизації". Медвідь В.Р., Пісьціо В.П., Тернопіль: ТНТУ, 20211 - 7 с.

Для студентів напряму підготовки: 151 "Автоматизація та комп'ютерно-інтегровані технології"

Автори: Медвідь В.Р., Пісьціо В.П..

Тема роботи

Робота з послідовним інтерфейсом I2C за допомогою WiringPi

Мета роботи

Ознайомитись з можливостями та роботою із послідовними інтерфейсами Raspberry Pi за допомогою бібліотеки WiringPi.

Інтерфейс І2С

WiringPi включає бібліотеку, яка може полегшити використання інтерфейсу I2C у Raspberry Pi. Перш ніж використовувати інтерфейс I2C, можливо, вам доведеться скористатисяутилітою дріо для завантаження драйверів I2C в ядро:

gpio load i2c

Якщо вам потрібна швидкість передачі даних, яка відрізняється від стандартних 100 Кбіт / с, тоді ви можете поставити це в командному рядку:

gpio load i2c 1000

встановить швидкість передачі даних в 1000Kbps - тобто. 1000000 bps. Для використання бібліотеки I2C вам потрібно:

#include <wiringPiI2C.h>

у вашій програмі. Програми повинні бути пов'язані з -lwiringPi, статично. Ви все ще можете використовувати стандартні системні команди для перевірки пристроїв I2C, і я рекомендую зробити це - наприклад, програма i2cdetect . Пам'ятайте лише, що на Rev 1 Raspberry pi - це пристрій 0, а на Rev. 2 - це пристрій 1. Наприклад

i2cdetect -y 0 # Rev 1

i2cdetect -y 1 # Rev 2

Зверніть увагу, що ви можете використовувати GPIO команду для запуску команди i2cdetect для вас з правильними параметрами для вашої ревізії плати:

gpio i2cdetect

int wiringPiI2CSetup (int devId) ; ініціалізує шину I2C з вашим заданим ідентифікатором пристрою. Ідентифікатор - номер I2C пристрою, і ви можете використовувати програму i2cdetect, щоб дізнатися його. wiringPiI2CSetup () розробить, яка редакція Raspberry Pi у вас ϵ , і відкриє відповідний пристрій в / dev. Повернене значення - це стандартний дескрипор файла Linux, або -1, якщо є помилка - у такому випадку ви можете звернутися до еггпо, як завжди.

Наприклад, популярним розширювачем GPIO MCP23017 зазвичай є Іd пристрою 0х20, тому це число, яке ви переведете в wiringPiI2CSetup (). Для всіх наступних функцій, якщо значення повернення від'ємне, сталася помилка, і вам слід звернутися до Еггоо.

int wiringPiI2CRead (int fd); Просте зчитування пристрою. Деякі пристрої представляють дані, коли ви їх читаєте, не здійснюючи жодних реєстраційних операцій.

int wiringPiI2CWrite (int fd, int дані); простий запис пристрою. Деякі пристрої приймають дані таким чином, не потребуючи доступу до жодних внутрішніх регістрів.

int wiringPiI2CWriteReg8 (int fd, int reg, int дані);

int wiringPiI2CWriteReg16 (int fd, int reg, int дані); функції записують 8 або 16-бітове значення даних у зазначений реєстр пристроїв.

int wiringPiI2CReadReg8 (int fd, int reg);

int wiringPiI2CReadReg16 (int fd, int reg); функції читають 8 або 16-бітове значення із зазначеного реєстру пристроїв.

Робота із годинником реального часу

Для роботи із годинником реального часу PCF8563 необхідно використовувати плату ARPI600.

1 Переконатись, що джампер 17 встановлений у вірну позицію, так як показано на вібповідному рисунку.

2. Відкрити термінал і у ньому запустити програму

i2cdetect -y 1

3 Переконатись, що PCF8563 з котрою відбувається зв'язок знаходиться за адресою 51. Що можна проконтроолювати за появою коду 51 у виводі програми i2cdetect.

pi@raspberrypi					i2cdetect -y 1											
-	Ō	1	2	3	4	5	6	7	8	9	a	Ъ	с	d	е	-f
00:														_		
10:											-	-				
20:									No. of Concession, Name							
30:							-					UU				
40:				Contract of												
50:		51														
60:																
70:																

Рис. 1. Вивід програми i2cdetect

Якщо все працює, за допомогою термінала запустіть програму читання часу із годинника реального часу, що виводить дані на термінал

modprobei2c-dev

echo pcf8563 0x51 > /sys/class/i2c-adapter/i2c-1/new_device hwclock -r

Має з'явитись час з PCF8563, що може відрізнятись від часу на Raspbian Pi. Для встановлення часу у годиннику реального часу можна скористатись командою

hwclock -w (Write the time of the Raspbian into PCF8563) hwclock -r

Для встановлення часу у Raspberry Pi на основі годинника реального часу має бути виконана команда

hwclock -s

Якщо необхідно встановити модуль RTC у якості модуля, що буде доступний без додаткових дій у подальшому можна додати у файл

/boot/config.txt, стрічку (без лапок) "dtoverlay=i2c-rtc,param=pcf8563"

Приклад програми роботи із інтерфейсом I2C

Мікросхема годинника реального часу PCF8563 підключена до інтерфейса I2C із номером 1. Приклад простої програми, яка читає регістри годинника реального часу і виводить їх стан у термінал показана нижче.

```
#include <wiringPi.h>
#include <wiringPiI2C.h>
#include <stdio.h>
#define SEC
                 0 \times 02
#define MIN
                 0 \times 03
#define HOUR
                 0 \times 04
#define DAY
                 0 \times 05
#define WEEK
                 0x06
#define MONTH
                 0 \times 07
#define YEAR
                 0 \times 08
#define PCF8563 Address 0x51
#define reg 0x02
//seconds,minutes,hours,days,weekdays,months,yeas
      buf[] = \{0x00, 0x47, 0x11, 0x19, 0x05, 0x06, 0x15\};
char
char
      *str[] ={"SUN", "Mon", "Tues", "Wed", "Thur", "Fri", "Sat"};
int fd,i;
void pcf8563SetTime()
   for(i = 0; i < 7; i++)
    wiringPiI2CWriteReg8(fd,reg + i,buf[i]);
}
void pcf8563ReadTime()
    for(i = 0; i < 7; i++)
{
```

```
buf[i] = (char)wiringPiI2CReadReg8(fd,reg + i);
}
int main()
{ if (wiringPiSetup() < 0)return 1;</pre>
  fd = wiringPiI2CSetup(PCF8563 Address);
   printf("PCF8564 Test Program ... \n");
    // pcf8563SetTime();
    while(1)
      pcf8563ReadTime();
    {
       buf[0] = buf[0] \& 0x7F; //sec
       buf[1] = buf[1] \& 0x7F; //min
       buf[2] = buf[2] \& 0x3F; //hour
       buf[3] = buf[3] \& 0x3F; //day
       buf[4] = buf[4] \& 0x07; //week
       buf[5] = buf[5] \& 0x1F; //mouth
       //year/month/day
       printf("20%02x/%02x ",buf[6],buf[5],buf[3]);
       /hour:minute/second
       printf("%02x:%02x:%02x ",buf[2],buf[1],buf[0]);
       //weekday
       printf("%s\n",str[(unsigned char)buf[4]]);
       delay(1000);
    }
```

```
}
```

Карта регістрів мікросхеми показана на наступному рисунку.

Address	Register name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
00h	control_status_1	TEST1	0	STOP	0	TESTC	0	0	0			
01h	control_status_2	0	0	0	TI_TP	AF	TF	AIE	TIE			
02h	VL_seconds	VL	<seconds 00="" 59="" bcd="" coded="" in="" to=""></seconds>									
03h	minutes	х	<minutes 00="" 59="" bcd="" coded="" in="" to=""></minutes>									
04h	hours	х	х	<hours 00="" 23="" bcd="" coded="" in="" to=""></hours>								
05h	days	х	х	<days 01="" 31="" bcd="" coded="" in="" to=""></days>								
06h	weekdays	х	х	х	x x <weekdays 0="" 6="" bcd="" in="" to=""></weekdays>							
07h	century_months	С	х	x <months 01="" 12="" bcd="" coded="" in="" to=""></months>								
08h	years		<years 00="" 99="" bcd="" coded="" in="" to=""></years>									
09h	minute_alarm	AE	<minute 00="" 59="" alarm="" bcd="" coded="" in="" to=""></minute>									
0Ah	hour_alarm	AE	х	<hour 00="" 23="" alarm="" bcd="" coded="" in="" to=""></hour>								
0Bh	day_alarm	AE	х	<day 01="" 31="" alarm="" bcd="" coded="" in="" to=""></day>								
0Ch	weekday_alarm	AE	х	х	x x <weekday 0="" 6="" alarm="" bcd="" in="" to=""></weekday>							
0Dh	CLKOUT_control	FE	х	х	х	х	х	FD1	FD0			
0Eh	timer_control	TE	х	х	х	x	х	TD1	TD0			
0Fh	timer	<timer countdown="" value=""></timer>										

Рис. 2.Карта регістрів мікросхеми РСF8563.

Завдання

1 Завантажити та зібрати програму, наведену у прикладі.

2 Модифікувати програму таким чином, щоб зчитувались і виводились значення не байтів, котрі містить мікросхема, а дату та час.

3 Створити і запустити власну програму, що читає дані із регістрів мікросхеми і виводить їх у зручному вигляді.

4 Складіть звіт з лабораторної роботи.

Контрольні запитання

1. Які функції для роботи із інтерфейсом І2С ви знаете?

2. Які дії виконує функція wiringPiI2CReadReg8?

3. Опишить дані, що зберігає РСF8563.

4. Яке призначення програми i2cdetect ?

Література

1. Иго Т. Arduino, датчики и сети для связи устройств: Пер. с англ. -СПб.: БХВ-Петербург, 2016. - 544 с.

2. Петин В.А. Arduino и Raspberry Рі в проектах Internet of Things. -СПб.: БХВ-Петербург, 2016.-464 с.

3. Петин В.А. Микрокомпьютеры Raspberry Pi.Практическое руководство. СПб.: БХВ-Петербург, 2015. -240 с.

Зміст

Тема роботи	3
Мета роботи	3
Інтерфейс І2С	3
Робота із годинником реального часу	3
Приклад програми роботи із інтерфейсом І2С	4
Завдання	5
Контрольні запитання	5
Література	6