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ELLIPTIC CURVE POINTS CALCULATION METHOD WITH THE
RADEMACHER-KRESTENSON’S BASES

Summary. The method of calculation for increasing the speed of performance of the basic operation on
the elliptic curves, has been proposed. Calculation models using the Rademacher- Krestenson’s bases of
specially selected points on the elliptic curves, have been presented. The concept of functioning of elliptic curve
GF(P) points adder is based on the calculations realized within the Krestenson'’s bases and parallel summing.
FPGA (valve matrix programmed by the user) for the performance of operstions on the elliptic curves the
Krestenson’s bases and their testing, has been presented.
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JlitaBa I.

Jeporcasna euwa mexuiuna wxona 6 Hosomy Conui, Ilonvwya

METO/J OBUUCJIEHHS TOYOK EJIIINITUYHOI KPUBOI
3 BABUCOM PAJJEMAXEPA-KPECTEHCOHA

Pe3tome. 3anpononosarno memoo 30inbulenHs W8UOKOCMI GUKOHAHHSA OCHOBHUX ONEpayiil 8 elinmuyHUX
kpusux. Haeedeno mooeni obuucnenv i3 euxopucmanusam 6azucy Pademaxepa-Kpecmencona cneyianoho
nidibpanux mouok Ha eainmuynux xpueux. Kowyenyis ¢ynkyionyeanns cymamopa mouoxk eninmuyHoi Kpueoi
GF(p) tpynmyemocs Ha obuuciennsx, saxi peanizylomvcs 6 6asuci KpecmeHncona i napaienvHum cymy8anHsim.
Taxoorc npedcmagneno [IKBM (npoepamosana Kopucmysawem enmuibHa mampuys) 0isi GUKOHAHHS onepayitl
Ha eninmuYHUX KpUsux i3 euxopucmanuam éasucy Kpecmencona ma euceimaeno tio2o mecmy8aHHs..

Knrwuosi cnosa: erinmuuna kpusa, GF(p), 6asuc Pademaxepa-Kpecmencona, IIKJIM, nepemuodcysau

3a Mooynem, 000A8AHHS MOYOK.
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Problem formulation. Over the recent years cipher algorithms relying on elliptic
curves have become more and more popular while a rising safety demand still requires longer
keys. Growing length of keys calls for more efficient methods and faster calculations on
elliptic curves.

Evaluation of recent publications in the explored issue. Available scientific
publications suggest various ways to obtain higher calculation rates within elliptic curves
operations. Thesis [1] is one notable example. In order to speed up the process of point
summation a mixed representation were used. Normal bases were used for representing
elements in field GF(2m). Multiplication of elements was based on a multiplication matrix
which, in FPGA systems, allowed a completely parallel multiplier, which further on resulted
in obtaining a product in one clock cycle. A detailed description of this procedure may be
found in thesis [1]. Article [2] describes three algorithms for increasing the pace of basic
operations on elliptic curves based on Hybrid Binary-Ternary Number System (HBTNS)
invented by Dimitrov and Cooklev in 1995 and described in thesis [3]. A further work
published recently is article [4] whose authors are O. Al-Khaleel, Ch.Papachristou, F. Wolff z
Case Western Reserve University Cleveland Ohio and K. Pekmestzi of the National
Technical University Greece. The system, presented by them, carries out operations on
elliptic curves over a field of higher order GF(p). For the summing operations points were
represented in projective coordinates which allowed to abandon inverse calculations. Huge
numbers operations rely on module addition, subtraction and multiplication.

Short formulation of paper’s purpose. Development of elliptic curve points
calculation method with Rademacher-Krestenson’s bases.

Description of proposed method (algorithm); implementation and testing.

Increase the speed perform basic operations on elliptic curves. In order to make
use of calculation method relying on Krestenson’s bases it is required to create a point adder
in the first place. Elliptic curve point addition or point doubling are basic calculations for this
type of cryptography. In the further work we will present a model of an elliptic point adder
exploiting projective or mixed coordinates as well as performance summary [5], [6] of such a
device in a programmable FPGA unit. The process of adding two points on an elliptic curve
GF(p) represented in a mixed [5] way comprises the following array of steps described in
table 1.

Table 1. The sequence operations summation points in the mixed coordinate.

A =XZ; A, =4+X,
Ay =24, - X, Ae=A,+7,
Ay =YZ, Zy =27,

Ao =4y =1, X, =4 - A4

dy = A2 22X,
Y, = (A4, — 4,22)/2
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Very important in this case is the speed of these operations. Therefore, further work
will devote part of the issue increase the speed of these operations through the use of
calculations in the Rademacher-Krestenson’s bases.

GF(p) curve point adder model. A model of an elliptic point adder, theoretically,
could be made of 11 independent multipliers, 2 adders and 5 subtractors, which may turn out
impossible for example in reprogrammable structures as it would most probably lack the
necessary logical part. The other way exploits a logical unit controlling the sequence of
processes realization. It is important to bear in mind the fundamental assumption that he adder
and multiplier are independent systems working on their own. The model of such elliptic
point adder is outlined in the picture fig. 1.

P Q

Multiplier numbers
in Krestenson's

database LA 4
A A
Control
: logic
Parallel subtractor b2 cycle
in the modulo number [« - calculations
s P+0=R
Y Y [ Calculated: |
shr1, shiimodn

Parallel adder
modulo number

Figure 1. General model summation points on the elliptic curve GF (p).

The adder is derived from foundation developed in thesis [7] with some modifications
allowing multiple numbers addition necessary for construction of a multiplier model based on
Krestenson’s bases. It is assumed that the numbers are fed to the adder in the form of binary
sequence. The main task of the model is splitting huge integers into words of specified length
m in base &=p” in this case p=2 according to X =x,8" +x, 0" +...+x,0" +x,. While

n-1
adding two words X+Y=Z, added are two words x;+y; represented by integers, where
(x, + yi)modé' remains on position i and (xi +y.)divSis passed into the older word z;; .

Thanks to the fact that the basis of the division is 2 a binary sequence form of numbers allows
an uncomplicated div and mod operations. The summing process is carried out along with
calculation of modulus of the summing result Z mod n. In our discussion numbers X i Y are
smaller than modulus n so X+Y <2n. Thus the calculation of modulus Z being sum of X and ¥
comes down to checking whether Z > n and further, if the condition is true than it is enough to
calculate subtraction Z-n. Modulus calculation is carried out along with calculation of each
word z;. Numbers subtraction is also carried out simultaneously. Realization of the mentioned
above adding model in FPGA system allows to obtain a modulus of sum of 2 numbers in 7
clock ticks. The subtractor’s operations are analogical to adder’s and need not be described.
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A model of huge integers modulo multiplier based on Rademecher-Krestenson’s
bases and its functioning in programmable structures. A multiplier model based on
Krestenson’s remaining classes allows multiplication modulo of extremely huge natural
numbers without traditional multiplication [8]. Exploiting Krestenson’s remaining classes
allows a matrix form of multiplied numbers. Finding the product comes down to summing
specific elements of the matrix.

Assume two numbers X and Y and modulus #:

Z=X*Y mod n. (1)

In the multiplier model X and Y are represented as binary sequences

X=x_2"+x_,2"7+x2" +...+x2" +x,2°
Y=y,,27 4+ 9,,27 +y,2" +.. 4+ y2 4+ ,2° @

In order to find multiplication result of the above a matrix, shown in table 2, where

m; =2"//modn , is constructed.

Table 2. Krestenson’s matrix.

21‘-1
(2modn | ... 2
v | ]
2" Hmodn | ... |2
20
2t e 2! 2°
The product of the numbers, that is coordinates X i1 Y is calculated according to the
formula:
r—1
X -Ymodn = stk modn (3)
s,k=1

where x_, y, =1, that means M lies at the intersection of column and row for
which respectful x; i y, equal 1.

Numbers put in the table are smaller than the given modulus n. The sum of numbers
within one row or a column, minding the prime assumptions, is smaller than a double
modulus, therefore modulo calculations only require comparison and subtracting activities.

Calculation sequence takes the following shape:

1. Generation of Krestenson’s matrix according to table 2 and putting it into a 3-
dimentional table, where the third dimension depends on the number of words into which

numbers were divided, fig. 2.
jzrl
2. Summing modulo n rows of Krestenson’s Matrix according to stk modn -
i;j=1

The row summing processes are executed parallel, each of i rows are summed simultaneously.
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Figure 2. Krestenson’s matrix in the model.
Picture 4 explains the idea of matrix rows summing with a resulting vector of size

equal -1 sums respectful rows. The vector shown in fig. 3
m,=(2")ymodn

" Y _A(2")modn),, 1 ;
. 4 _A(2")moda),, ‘ L2 ) ‘ 4
: {(2")modn), ! !
_A(2")modn), ! 1 [ 1
[ V%, Q’&/
2 2
e 0 0 &/

Figure 3. Sum of rows in the Krestenson’s matrix.
1. The summing of vector from fig. 4 is executed similarly to the rows summing
presented in picture 4. As a result of this operation a product of X and ¥ modulo 7 is obtained.
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Figure 4. Summing of columns in the Krestenson’s matrix.

In order to calculate product of two numbers divided into w words k£ = 4w - 2 steps
The above described multiplying algorithm in FPGA system allows obtaining product
of two numbers in 4w + 1 clock ticks. Table 3 shows performance rates of an adder for
numbers of various size.
Table 3. The rate of multiplication for the model-based hardware FPGA for the numbers of different

sizes.

Number (bit) 6 1 1 1 1

9 92 15 38 61 84

Number of 3 25 2 1 1 1
multiplications / s 538462 88235 047619 | 640000 | 379310 181818

The concept of functioning of elliptic curve GF(P) point adder based on
calculations realized within Krestenson’s bases and parallel summing. In agreement with
prior assumption each of the four calculations may be executed in the same time
independently as far as the point summing algorithm structure allows it, see table 1. The
whole point summing operation done by the mixed method may be completed in eleven steps.
A procedure of calculation sequence choice is presented in table 4.

Table 4. The realization of the calculation summation in two points.

Step | Multiplication | Addition | Subtraction Shift
1 Z:
2 X,Z;
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3 223 A+ X, A —-X,
4 1z,
5 /ﬁ A+ 1, A=Y,
6 2 A
2
A
7 : £
s 5
2
8 2 2R (’177%)
9 &;{é (l7ﬂ’§)_X3
2 2
A
10 =4
2
A
11 22/13 ?9/16 _%/ﬁ

Simple as it is, a point summing process comes down to execution of operations from
table 1. Table 4 shows a way of process grouping so that the operations are executed in the
most optimal way. A sensible process grouping together with a right calculation sequence will
allow adding two points on an elliptic curve GF(p) in eleven steps. The size of numbers does
not influence the number of steps needed to complete the point summing process. The sum of
two points on an elliptic curve will be achieved after k=(4w-2)-11, where k — number of steps,
w number of words resulting from the division of the original.

The results obtained for implementation in FPGA. Implementation of an elliptic
curve GF(p) point summing unit in FPGA system Stratix III EP3SL150F115214SL allowed
clock frequency 44MHz for 92bit size and furthermore yielded effectiveness of 234 000

summing operations per second. Effectiveness for other tested sizes is presented in table 5.
Table 5. The speed of the cumulated points GF (p) model for FPGA-based hardware for the numbers of different
sizes.

Elliptic Curve
69 92 115 138 161 184
GF(p)
Number of
) 3194444 | 234042,6 185344,8 148550,7 125000 | 107142,86
summation / s

Conclusions. The presented calculation models utilizing Rademacher—Krestenson’s
bases along with specific representations of points on elliptic curves resulted in a higher pace
of basic calculations. Furthermore, real and functioning FPGA systems, operating in
accordance with the described theoretical models, proved actual increase in elliptic curve
calculation pace. Practical tests outlined possibilities of implementing these calculation
models in FPGA systems. Other structures where these models might be implemented are
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processors of nVidia video cards supported by CUDA technology or ATI Stream equipped
with numerous cores, for example Femi with its 512 cores. Our further research will focus on

implementation of the presented models in the mentioned video cards.
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