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6. Physics of atoms and molecules 
 

Radiation of isolated atoms in 
visible part of electromagnetic wave 
spectrum consists of individual lines. In 
first approximation the molecular 
spectrum of gases consists on strips. 
Solids have continuous spectra. 
 
6.1 Spectrum of Hydrogen atom. 
Frank-Hertz experiment 
 
  First of all it was noticed that the 
atom’s spectrum lines are situated in definite order or series. 
  The hydrogen atom is an ideal system for performing precise comparisons of theory with 
experiment. The emission spectrum of hydrogen includes four prominent lines that occur at 
visible wavelengths of 656.3 nm, 486.1 nm, 434.1 nm, and 410.2 nm, respectively. In 1885 
Johann Balmer  found that the wavelengths of these and less prominent lines can be described by 
the simple empirical equation: 
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where  is angular frequency, R is Rydberg constant (R=1.071016 s-1), m=3,4,5. The first line of 
the Balmer series, with wavelength 656.3 nm, corresponds to m=3 in the above equation. The 
line at 486.1 nm corresponds to m= 4, and so on. Later, in addition to the Balmer series of 
spectral lines, a series in far ultraviolet  and infrared regions were  subsequently discovered 
,described by  similar equations. 
Angular frequencies of every hydrogen spectrum line can be calculated from equation: 
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 here n is an integer number equal or greater than 1, m is an integer greater than n.  
 

It should also be noted, that each line in the absorption spectrum of a given element 
coincides with a line in the emission spectrum of the element. 
 
6.2 Rutherford’s model of atom  
 

In 1911 Ernest Rutherford (1871–1937) and his students Hans Geiger and Ernest 
Marsden performed a critical experiment which led to formulation of the planetary model of an 
atom. In this experiment, a beam of positively charged alpha particles was projected against a 
thin metal foil, as shown in Figure 6.1. 

The results of the experiment were astounding. Most of the alpha particles passed through 
the foil as if it were empty space, but a few particles deflected from their original direction of 
travel were scattered through large angles. Some particles were even deflected backwards, 
reversing their direction of travel. Such large deflections were not expected on the basis of 
Thomson’s model, used earlier. Rutherford explained these results by assuming that the positive 
charge in an atom was concentrated in a region that is small relative to the size of the atom. He 
called this concentration of positive charge the nucleus of the atom. Any electrons belonging to 
the atom were assumed to be in the relatively large volume outside the nucleus.  

In order to explain why electrons in this outer region of the atom were not pulled into the 
nucleus, Rutherford viewed them as moving in orbits about the positively charged nucleus in the 
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same way that planets orbit the Sun. Alpha particles themselves were later identified as the 
nuclei of helium atoms. 

There are two basic difficulties with Rutherford’s planetary model.  
1. An atom emits waves of certain discrete characteristic frequencies of electromagnetic 
radiation and no others; the Rutherford model is unable to explain this phenomenon.  
2. The electrons in Rutherford’s model undergo a centripetal acceleration as they orbit a nucleus. 
According to Maxwell’s theory of electromagnetism, centripetally accelerated charges revolving 
with frequency ν should radiate electromagnetic waves of the same frequency. Unfortunately, 
this classical model leads to disaster when applied to the atom. As the electron radiates energy, 
the radius of its orbit steadily decreases and its frequency of revolution increases. This leads to 
an ever-increasing frequency of emitted radiation and a rapid collapse of the atom as the electron 
spirals into the nucleus. 
 
6.3 Bohr’s postulates. Frank-Hertz experiment 
 

In 1913 Bohr developed a model of the simplest atom, hydrogen, in an attempt to explain 
why the atom was stable and why do atoms of a given element emit only certain spectral lines. 
His model of the hydrogen atom contains some classical features, as well as some revolutionary 
postulates that could not be justified within the framework of classical physics. 
The postulates of Bor’s theory are following 
1. Only certain electron orbits are stable. These are orbits in which atom doesn’t emit energy in 
the form of electromagnetic radiation. The size of the allowed electron orbits is determined by a 
condition imposed on the electron’s orbital angular momentum:  

nrmL nn   . 
 The allowed orbits are those for which the electron’s orbital angular momentum L about the 

nucleus is proportional to   (pronounced “h bar”), where 
2
h

  (Plank’s constant h over 2), 

n is number of orbit, r is radius of orbit, n -electron’s velocity on orbit of number n. 
2. Radiation is emitted by the hydrogen atom when the electron “jumps” from a more energetic 
initial state to a less energetic state. The “jump” can’t be visualized or treated classically. In 
particular, the frequency ν of the radiation emitted in the jump is related to the change in the 
atom’s energy and is independent of the frequency of the electron’s orbital motion. The angular 
frequency of the emitted radiation is given by formula: 
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where Em is energy of initial state on  mth level and  En is energy of final state  on nth level. 
 Existence of discrete energetic levels was confirmed by Frank-Hertz’s experiment.(Fig.6.2) 

 
The tube with mercury vapor (the pressure in the tube was about 1mm Hg) has three electrodes-
cathode C, positively charged grid, anode A (collecting electrons). As is shown on Fig. 6.3, the 
current I in anode-cathode circuit increase with increasing the voltage U until it reaches U=4.9V. 
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Then it drops sharply and begin to increase again. The repeated current maxima take place at U= 
9.8V , 14.7 V, etc. Such regularity is explained by the fact that atoms can absorb energy only by 
portion Е=Е2-Е1, Е is the difference of between stationary levels Е2 and Е1. 
 
6.4 Bor’s model of Hydrogen 
 
 With these assumptions, we can calculate the allowed energies and emission angular frequency 
(wavelengths) of the hydrogen atom. 
 
1)  We know from the first postulate that orbital angular moment nrmL nn   . 
 
2) Energy of the atom remains constant, and classical mechanics can be used to describe the 
electron’s motion. From Newton’s second law for the electron on a stable orbit  we obtain 
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4) after substitution of  , we find radius r and energy E of hydrogen atom on level number n 
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Difference between energies Em and En  of levels m and n is 
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This equation and Bohr postulate show that if the electron jumps from one orbit with 
quantum number m  to a second orbit with quantum number m , it emits a photon angular 
frequency 
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Comparing this formula and Balmer’s formula we see that Rydberg’s constant 
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 6.5 Merits and demerits of Bohr theory 
 

Bohr’s theory successfully predicts the wavelengths of all the observed spectral lines of 
hydrogen and hydrogen-like atoms, which has one electron, rotating around nucleus. But 
attempts to extend the Bohr theory to more complex, multi-electron atoms,were unsuccessful. 

Bohr’s theory was not able to explain why the angular momentum of the electron was 
restricted to these discrete values. Ten years later, de Broglie, one of quantum mechanics creator, 
gave a direct physical way of interpreting this condition. He assumed that an electron orbit 
would be stable (allowed) only if it contained an integral number of electron wavelengths. 

Quantum mechanics is in agreement with classical physics when the energy 
differences between quantized levels are very small. This principle, first formulated by Bohr, 
is called the correspondence  principle. 
 
Problem 
During bombardement of hydrogen atom by electrons only one line in hydrogen spectrum is 
observed.  Find the energy range for these electrons  
Strategy. 



Angular frequencies of every hydrogen spectrum line can be calculated from Balmer’s formula 

for series of spectral lines: 
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Solution 
1) Energy, which is needed to transfer atom of hydrogen to the first excited state (n=1, m=2): 

                                            





  22 2

1
1
1

 R =10.2 eV. 

2) Energy, which is needed to transfer atom of hydrogen to the second excited state (n=1, m=3)   
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Hence, atom of hydrogen will have only one spectrum line if bombarding electrons will have 
energy W in range: 10.2 eV W12.1 eV. 
 
 
7. Elements of quantum mechanics 
 
7.1. De Broglie hypothesis 
 
Light has dual (wave-particle) properties and can be described by equations derived in previous 
section: 


 chph    – photon energy 


 h
c

p ph 
  – photon  linear momentum. 

To explain Bohr’s postulates, in 1924 de Broglie suggested, that if the photons have wave and 
particle characteristics, then all forms of matter have dual (particle-wave) nature. He 
hypothesised that all material particles with momentum p should have a characteristic 
wavelength λ=h/p in analogy to photon wavelength. As the momentum of a particle of mass m 
and speed 


 is 

 mp  , de Broglie wavelength of a particle is 
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According to de Broglie, electrons, just like light, have a dual particle–wave nature. 
 
Experiments performed in 1927 by Davisson and Germer (Fig. 7.1.a), Thomson and 
independently by Tartakovsky (Fig. 7.1.b) confirmed the wave properties of electrons.  
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Davisson and Germer performed extensive diffraction measurements (experimental setup is 
shown in the left panel of Fig.7.1a) on electrons reflected from single-crystal Ni targets. 
Measuring the current through the galvanometer G they obtained information on the intensity of 
electron reflection, which appeared to have maxima at some values of incidence angle, which are 
characteristic for wave diffraction. This result proved the wave nature of electrons and confirmed 
de Broglie relation λ=h/p. The same year, G.P. Thomson and P.S. Tartakovsky also observed 
electron diffraction patterns by passing electrons through very thin gold foils F (Fig.7.1b, left 
panel) and result was similar to the result of X-ray diffraction. Diffraction patterns have since 
been observed for helium atoms, hydrogen atoms, and neutrons. Hence, the universal nature of 
matter waves has been established.  
A practical devices that relies on the wave characteristics of electrons are the electron 
microscope, the semiconductor electronics (electronic chips, etc). 
 
7.2. Heisenberg uncertainty principle 
 

In classical mechanics there is no fundamental barrier to a refinement of the apparatus or 
experimental procedures and to improve the experimental precision thus eliminating uncertainty 
of the measured quantity. In other words, classical mechanics, in principle, allows making a 
measurement with arbitrarily small uncertainty. Quantum theory predicts, however, that 
uncertainties can not be eliminated in principle. In 1927, Werner Heisenberg introduced this 
notion, which is now known as the uncertainty principle: 

If a measurement of the particle’s position  is made with precision x and a 
simultaneous measurement of linear momentum is made with precision px, then the 
product of the two uncertainties can never be smaller than ħ/2: 

x px  ħ/2. 
Another form of the uncertainty relationship sets a limit on the accuracy with which the energy E 
of a system can be measured in a finite time interval t: 

Et  ħ/2. 
It can be inferred from this relationship that the energy of a particle in a stationary state cannot 
have a definite value but has a finite energy width inversely proportional to lifetime during 



which an electron resides in this state. In spectroscopy this results in a finite natural linewidth of 
atomic spectra which can not be explained within Bohr’s theory.  

When an electron is viewed as a particle, the uncertainty principle tells us that (a) its 
position and velocity cannot both be known precisely at the same time and (b) its energy can be 
uncertain for a period given by t= ħ /E 

The meaning of Heisenberg uncertainty principle is clarified by the next example (see 
figure7.2). If the particle is dissipated on a slit with the width х, additional linear momentum 
component рх can appear and the particle can be deflected from its original direction of motion. 

Then: 
1) sinppx   (as result of diffraction on slit) 
2)  sinx   (The first minimum or the edge of the 
first maximum) 

3)   sin
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p
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x
   (after substitution step 3 into step 

2) 
5) As result we have: hxp x   

The last formula is in accordance with formulation of the Heisenberg uncertainty principle for 
momentum and position. Thus, the notion of particle’s trajectory has limited application. At 
some circumstances the motion of particle can be viewed as particle follows defined trajectory. 
Example of such situation is electron’s path in cathode ray tube.  
 
 
 
7.3 Wave function. Shroedinger equation 
 

The Schrödinger wave equation represents a key element in quantum mechanics. It’s as 
important in quantum mechanics as Newton’s laws in classical mechanics. Each particle is 
represented by a wave function that depends both on position and on time. 
In general case the Shroedinger’s equation is written in form:  
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The Shroedinger’s equation for stationary (time independent) case has the following form:  
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  is Laplacian differential operator; x, y, z 

are coordinates of micro particle;  is the wave function; E is energy of the particle, U is 
potential energy of the particle, 1i . 
The above equations are the differential equations of second order. Solving Schrödinger’s 
equation (this mathematical procedure is beyond the scope of this course) determines the wave 
function . The wave function and derivative of wave function are finite, one valued, 
continuous. 

Once a quantity   is found, 2 can be calculated. The value of 2 gives information on 
the probability (per unit volume) of finding the particle in any given region dV . Probability 

dVdP || 2 . The condition of probability normalization follows from definition of wave 
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dV* . Here * is the function conjugated to . This condition shows that 

presence of particle somewhere in space is reliable event and it’s probability have to be equal 
one. 
 

To understand the sense of quantity 2, we return to experiment involving coherent light 
passing through a double slit. 
1. First, recall that the intensity of a light beam is proportional to the square of the electric field 
strength E associated with the beam: I E 2. According to the wave model of light, there are 
certain points on the viewing screen where the net electric field is zero as a result of destructive 
interference of waves from the two slits. Because E is zero at these points, the intensity is also 
zero, and the screen is dark there. Likewise, at points on the screen at which constructive 
interference occurs, E is large, as is the intensity; hence, these locations are bright. 
2. Consider the same experiment when light is viewed as having a particle nature. The number of 
photons reaching a point on the screen per second increases as the intensity (brightness) 
increases. Consequently, the number of photons that strike a unit area on the screen each second 
is proportional to the square of the electric field, or N  E 2. From a probabilistic point of view, a 
photon has a high probability of striking the screen at a point at which the intensity (and E 2) is 
high and a low probability of striking the screen where the intensity is low.  

When describing particles rather than photons,   rather than E plays the role of the 
amplitude. Using an analogy with the description of light, we make the following interpretation 
of     for particles: If    is a wave function used to describe a single particle, the value of  2 
at some location at a given time is proportional to the probability per unit volume of finding the 
particle at that location at that time. Adding up all the values of 2 in a given region gives the 
probability of finding the particle in that region. 
 
7.4. Hydrogen atoms in quantum mechanics 
  

One of the first great achievements of quantum mechanics was the solution of the wave 
equation for the hydrogen atom.  In case of hydrogen atom it has the following form: 
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where r is coordinate of electron in hydrogen atom and  potential energy of electron in the field 

of nucleus is 
r

eU
2

 . The details of the solution are far beyond the scope of this course, but 

we’ll describe its properties and implications for atomic structure. 
According to quantum mechanics, the energies of the allowed states are in exact 

agreement with the values obtained by the Bohr theory , when the allowed energies depend only 
on the principal quantum number n: 
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The wave function found from the Shroedinger’s equation for Hydrogen atom appears to depend 
not only on the principal quantum number n but also on quantum numbers l and m: =nlm The 
quantum number l is called the orbital quantum number, and m is called the orbital magnetic 
quantum number. 
    The value of n (general quantum number) is integer. 
    The value of l (orbital quantum number) can range from 0 to n - 1 in integer steps. 
     The value of m (magnetic quantum number) can range from -l to +l in integer steps. 
From these rules, it can be seen that for a given value of n, there are n possible values of l while 
for a given value of l there are 2l+1 possible values of m. For example, if n= 1, there is only 1 



value of l: l= 0.  For l=0 one has  2l + 1 = 1 and there is only one value of m, which is m= 0. If 
n= 2, the value of m may be 0 or 1; if l=0, then m= 0, but if l = 1, then m may be 1, 0, or - 1.  
 
7.5. Pauli exclusion principle  
   
  To explain an unusual results obtained in Stern–Gerlach experiment with Ag atom in 
inhomogeneous magnetic field (the separation of atomic flow in two parts only), the spin 
magnetic quantum number s, has to be introduced. The results of this experiment indicates that 
spin angular momentum s has two opposite directions and magnitude equal to  +1/2 or -1/2.  
   The Stern–Gerlach experiment involves sending a beam of particles through magnetic field and 
observing their deflection (Fig.7.3) in homogenious (H0, dH/dz=0) and inhomogeneous 
magnetic field (H0 , dH/dz  0) from the direction of beam without magnetic field (H=0). 
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Thus, there are four quantum numbers, which are characteristics of electron state in atom. 
And in general, for a given value of n there are 2n2 states with distinct values of l and m and s.  

The question, how many electrons in an atom can have a particular set of quantum 
numbers was answered by Pauli in 1925 in a powerful statement known as the Pauli 
exclusion principle: 
No two electrons in an atom can ever have the same set of values for the set of 
quantum numbers n, l, m and s.  

The Pauli exclusion principle explains the electronic structure of complex atoms as a 
succession of filled levels with different quantum numbers increasing in energy, where the 
outermost electrons (so called valence electrons) are primarily responsible for the chemical 
properties of the element.  

If this principle weren’t valid, every electron would end up in the lowest energy state of 
the atom and the chemical behaviour of the elements would be grossly different.  

Totality of electrons with the same number n forms the shell of electrons (it is denoted K, 
L, M, N…), which subdivides into subshells (denoted s, p,d,f…). Subshells differs by the 
number l.  

As a general rule, the order of filling an atom’s subshell by electrons is as follows: once 
one subshell is filled, the next electron goes into the vacant subshell that is lowest in energy. 
If the atom were not in the lowest energy state available to it, it would radiate energy until 
it reached that state. A subshell is filled when it contains 2(2l+ 1) electrons (Figure 7.4). 



As result one gets periodic system of elements.  
  The first element in the periodic table, Hydrogen has 
only one electron, which, in its ground state, can be 
described by either of two sets of quantum numbers: 
1, 0, 0, + 1/2  or 1, 0, 0, -1/2 . The electronic 
configuration of this atom is often designated as 1s.1 
The notation  1s.1 refers to a state for which n = 1 and 
l= 0, and the superscript indicates that one electron is 

present in this level. 
Neutral helium has two electrons. In the ground state, the quantum numbers for these two 

electrons are 1, 0, 0, +1/2 and 1, 0, 0, -1/2. No other possible combinations of quantum numbers 
exist for this level, and we say that the K shell is filled. The helium electronic configuration is 
designated as 1s 2. 
Neutral lithium has three electrons. In the ground state, two of these are in the 1s subshell and the 
third is in the 2s subshell, because the latter is lower in energy than the 2p subshell. Hence, the 
electronic configuration for lithium is 1s 2 2s1 

The eleventh element, Na has completely filled shells K and L and one electron in 
subshell 3s. It electron configuration is: 1s22s22p63s. The outer 3s electron is weakly connected 
with other electrons. So the properties of Na are similar to the properties of Li with configuration 
1s 2 2s1. 

 

7.6. Molecular spectra 
Cohession (chemical bonding) between atoms in molecules may be homeopolar or heteropolar. It 
depends on electron configuration in molecule. Chemical bonding of first type can be covalent or 
atomic. Chemical bonding of second type is ionic. Ionic molecules are created as result of 
transformation of interacting atoms into ions with opposite electrical charge. Typical ionic 
molecules are NaCl (Na+Cl-), CsCl (Cs+Cl-). Homeopolar bonding is created by electron pairs 
with antiparallel spins. 
The most simple of such molecules is molecule of Hydrogen. It was shown that at 
rapprochement of atoms with anti parallel spins molecule energy increases  at rr0 (Fig. 7.5). At 
rapprochement of atoms with antiparallel spins molecule energy decreases and such joining up is 
profitable. 
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From quantum mechanics it is known that energy of vibrational motion  
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 is vibrational quantum number (=1, 2, 3…) and energy of rotational motion 
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 , where I is moment inertia of molecule,  is atom’s angular velocity 

around rotation center of molecule; L=I is molecula’s angular momentum. Spectrum of 
molecule is shown on Fig.7.6. Molecular spectra are composed from groups of closely spaced 
energy levels 

er EEE    . 
The nearest levels correspond to rotational degrees of freedom. Vibrational motions require 
larger amounts of energy to be given to molecula. 
 
Problem. 
Consider behaviour of electron in potential one-dimentional box (Figure 7.7), if potential box has 
rectangular walls and motion of electron is limited by the walls of box at x=0 and x=l. The 
potential energy U=0 for 0xl and U= for 0>x>l. Find  he wave function , the energy 
spectrum E, difference E between energies Em and En of levels m and n . 

      U  
 
 
 
 
 
 
        0                      l             x  
 

F ig u re  7 .7  

 
Strategy. 
As the potential energy U=0 for 0xl and U= for 0>x>l, the electron can not get outside box’s 
borders and so on the borders of box (0)=0  and (l)=0. Write and solve one-dimensional 
Shroedinger’s equation for stationary (time independent) case. 
 
Solution 
1) One-dimensional Shroedinger’s equation for stationary (time independent) case, if U=0 has 
the form: 
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3) From the theory of oscillation solution of  such equation is well known and can be expressed 
by formula:    xsin0 . 
4) If (0)=0  =0    and   00  lsinl   , then has to be l=n 
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6) As  result we obtain the energy of n-level: 2
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7) Difference E between energy levels Em and En  is nm EEE   



8) After substitution  one finds:      n
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9) The wave function  x
l
n

l
x

l
nx 

 sin2sinsin 00    for three values of n are shown 

on figure 7.8. 
l
2

0   due to normalizing condition for the wave function (see Sect.7.3). 
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F igu re 7 .8   
Conclusions 
 Results of solution: 
1. Energy of electron is quantized and depends on dimensions of box, mass of particle, number n 
(principal quantum number). 
2. Wave function and square of wave function depend on dimensions of box, coordinate x and 
number n. One can see from fig. 7.8 that the probability distribution of finding the particle in 
particular position is non-uniform. 
 
 
8. Absorption, spontaneous and induced radiation 

8.1. Spontaneous and induced radiation. Principle of detailed equilibrium 
 
The processes of light absorption are stimulated processes in all cases. As was predicted by 
Einstein, the processes of radiation may be either spontaneous or stimulated (induced). 

An atom will emit radiation only at certain frequencies that 
correspond to the energy separation between the various 
allowed states. Consider an atom with many allowed energy 
states, labeled E1, En, Em, as shown in figure 8.1. 
1. When light is incident on the atom, only those photons can be 
absorbed by the atom whose energy ħω equals the energy 
separation E between two levels. A schematic diagram 
representing this stimulated absorption process is shown in 
figure 8.1. At ordinary temperatures, most of the atoms in a 
sample are in the ground state. If a body  containing many 

atoms is illuminated with a light beam containing all possible photon frequencies (that is, a 
continuous spectrum), only those photons of energies E2 - E1, E3 - E1, E 4 -E1, and so on, can be 
absorbed.  
2. As a result of this absorption, some atoms are raised to various allowed higher energy levels, 
called excited states. Once an atom is in an excited state, there is a constant probability that it 
will jump back to a lower level by emitting a photon, as shown in Figure 8.1. This process is 
known as spontaneous emission. Typically, an atom will remain in an excited state for only 
about 10-8 s. 
3. From the thermodynamic principle of detailed equilibrium  a third process that take place 
in  lasers is important. It is stimulated emission. Suppose an atom is in the excited state E2, and 
a photon with energy ħω =E2 -E1 is incident on it. The incoming photon increases the probability 
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that the excited atom will return to the ground state and thereby emit a second photon having the 
same energy ħω. 

The two identical photons result from stimulated emission: the incident photon and the 
emitted photon. The emitted photon is exactly in phase with the incident photon. These photons 
can stimulate other atoms to emit photons in a chain of similar processes. The many photons 
produced in this fashion are the source of the intense, coherent (in phase),monochromatic 
radiation in a laser. 
Stimulated emission has following features: 

1. Frequency of stimulated emission coincides with induced radiation frequency. 
2. Direction of stimulated emission and its polarization are the same as induced radiation. 
3. Probability Рmn of stimulated emission transitions from energy level m to the energy level 

n is proportional to the flow of induced radiation, u: uBP mnmn  , here Bmn is called 
Einstein coefficient. 

      4. It follows from equilibrium of transitions probability nm and mn ,that: 
nmmn PP  . 

       Number of stimulated transitions N st is : 
 

mmnmmn
st

mn NuBNPN )(  

nnmnnm
st

nm NuBNPN )(  
      The two processes are equally probable. When light is incident on a system of atoms, there is 
usually a net absorption of energy, because when the system is in thermal equilibrium, there are 
many more atoms in the ground state than in excited states. 
      If the situation can be inverted so that there are more atoms in an excited state than in the 
ground state, a net emission of photons can result. This is one of conditions to create the such 
type of light source as Laser. 
 
 8.2. Lasers  
 Lasers (an acronym for light amplification by stimulated emission of radiation) are modern 
devices, which are used in different areas of science, industry, medicine. 
To produce the laser’s radiation it is necessary: 
1. to create a material with special system of energy levels, one of which is to be metastable 

energy level; 
2. to create population inversion of energy levels in material (medium of radiation), the 

fundamental principle involved in the operation of a laser; 
3. to ensure the situation, when absorption coefficient of medium 

<0. 
  One of the first solid state lasers that exhibits stimulated emission 
of radiation is ruby laser.  Figure 8.2 is an energy-level diagram for 
the Cr+++ atom in ruby crystal.  

The amplification corresponds to a creation of photons in the 
system. To ensure the amplification, the system must be in a state of 
population inversion, that is, more atoms in an excited state than in the 
ground state. The excited state of the system must be a metastable state, which means its lifetime 
must be long (τm  10-3 s) compared with the otherwise usually short lifetimes of excited states 
(τe  10-8 s). When that is the case, stimulated emission will occur before spontaneous emission. 

The scheme of laser head is shown on Figure 8.3. The emitted photons must be confined 
within the system long enough to allow them to stimulate further emission from other excited 
atoms. This is achieved by the use of reflecting mirrors at the ends of the system. One end is 
totally reflecting, and the other is slightly transparent to allow the laser beam to escape. 
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 The tube emits the light and it raise atom of Cr+++ in ruby to 
excited states. Atoms are excited to state 3 from the ground 
state 1 (see fig. 8.2). When atom makes a transition to 
metastable state 2, it stimulates emission by excited atoms. 
This results in the production of coherent light with a 
wavelength of 693.4 nm. Figure 8.2 summarizes the steps in 
the production of a laser beam and figure 8.4 shows the block-
scheme of laser technological automatic setting. 
                           Here :                                                  

1. is laser head, 
2,3 are power units, 
4 is indication system of laser radiation 
parameters, 
5 is system of laser beam control, 
6 is object of laser treatment, 
7 is two coordinate table, 
Efficiency of the first solid state lasers 
was about 0,5%. Modern semi-
conducting lasers have the greatest 
efficiency which can reach 35%. 
 
 

General applications of lasers are: medicine, biology, technology of material treatment (laser 
heat treatment and laser shock wave treatment), measurements of distances between objects and 
object’s dimensions, laser’s communications , holograms (based on interference and diffraction, 
the principles are shown in fig.8.4).  

In future lasers will serve as sources of power energy to initiate nuclear fusion processes (called 
laser nuclear synthesis). 

 
 
9. Solid state physics 
 
9.1. Chemical bonding and internal structure of solids  
 
Solids maintain constant form and volume. 
 Principal types of chemical bonding and forces of interaction between atoms are: 
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F igure  8.4 a. Recording a hologram: 1 –  laser, 2 – mirro r,   
3 – object, 4 – photographic pla te. A hologram is made by 
splitting a laser beam into two  beams (R-reference bea m, 
O-object beam) and then reuniting  them on the film  
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Fig.8 .4b  Recovery of  object’s image from photografic plate 4  



1. ionic,  2. covalent (homopolar),  3. metallic, 4.Van der Vaals bonding.  
The ionic and covalent bonds are ”strong” ones. In comparison with this type of bond the 
metallic bond is weak. The Van der Vaals is the weaker bond. The nature of bond is determined 
by type of interaction between electrons and nuclei in substance. 

There are two types of solid substances: crystals and amorphous substance. 
Crystals have regular external form and periodical disposition of its particles. The periodical 
disposition of particles (atoms) is called crystal lattice, particles equilibrium positions are called 
sites. The distance between sites is called period of crystal lattice. There is a special 
classification of lattice types, called syngonies, which differ one from another by number of 
symmetry elements. Some examples (rotation around axis, reflection in plane, etc) are shown in 
figure 9.1. 

The most perfect syngony is cubic, which has the greatest number of symmetry elements. 
Solid crystals are distinguished by the sort of atoms and types of chemical bonding as well as 
forces of interaction between atoms.  

Symmetry is ability of figure to be self dual after some operations of 
spatial displacement. The cubic syngony is the most perfect one. 
The smallest element of crystal lattice is elementary cell. Any crystal 
can be constructed by translation of elementary cell. 
The main peculiarity of physical properties of crystals is anisotropy (its 
properties are different in different directions). 

Ideal crystals would exhibit a perfect periodicity of atoms in crystal 
lattice. Real crystals, however, have some amount of crystallographic 
defects which are deviations from regular pattern in atomic distribution. 

One distinguishes between point defects, which are vacancies, interstitial atoms or impurity 
atoms, and line defects, which are edge dislocation and screw dislocations. Planar and bulk 
defects are also possible in real crystals. Vacancy is a lattice site unoccupied by atom. It causes a 
distortion of crystal field as the neighboring atoms are shifted towards the vacancy. Interstitial 
defect occurs when atom occupies position not in the lattice site but in between the atoms in their 
lattice sites. Interstitial defects and vacancies can be created in pair when an atom jumps out its 
site. During the crystal growth, atoms of the different chemical nature can be incorporated into 
the lattice. As different atoms have different radii, this also produces a local distortion, being a 
substitutional defect. Edge dislocations are the imperfect atomic planes terminated inside crystal 
and screw dislocations can be visualised as a displacement of atoms, at which one can move 
from one atomic plane to another along the helical path around the dislocation line without 
jumping to other plane but as if going up the stairs. 

The presence of crystallographic defects greatly influences mechanical, electrical and 
optical properties of crystals. To avoid creation of defects, special conditions have to be 
maintained during the crystal growth which can be assured only in scientific or industrial 
laboratory with controlled temperature, pressure and chemical composition of the medium. 
Growth from the liquid phase and vapour phase epitaxy are the modern methods used for 
creating crystals with 99.9999% purity and perfectness or to introduce, if needed, the desired 
impurity in predetermined proportion. 
 
 

9.2. Fundamentals of quantum theory of specific heat. Phonons  

 9.2.1 Heat capacity of ideal gas and solids in classical physics. 
For ideal gas molar specific heats of gases at constant pressure RCC Vp   , here СV  is 

molar specific heat of gases at constant  volume, R  is universal gas constant. 
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It follows from thermodynamics that the molar specific heat at constant volume can be 

calculated from the internal energy function as 
V

V T
UC 









 . From classical physics for one 

kilomole of any solid molar capacity C= RCC Vp 3  (Dulong-Petit law). This law is valid at 
relatively high temperatures (ТD, D  is characteristic Debye temperature ). 
At low temperature the heat capacity decreases with temperature decreasing and approach to 
zero at 0 K. Classical physics is unable to explain this experimental fact. 
  
9.2.2 Quantum theory of specific heat. Phonons 
 

According to the quantum theory of heat capacity suggested by Einstein a crystal is the 
system of 3N oscillators, which have the same angular frequency of oscillations . N is number 
of atoms in this crystal. 

In quantum mechanics the oscillator’s energy is equal  





 

2
1n  , n=0,1,2,3… 

Considering the distribution of oscillation by energy states and Einstein’s simplifications one can 
get the following formula for internal energy of crystal: 
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Let us discuss two cases: 
1) High temperature  (when kT ). 
 

Using series expansion, ( xe x 1  - Maclaurin’s formula, 
kT

x 
 ) we obtain from the above 

formula  the impression of heat capacity at high temperature  
,13
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 which yields, after crossing  
NkC 3 . 

 For one kilomole: 
RkNC Akmol 331  . 

 
Thus we come to Dulong-Petit law again. The Dulong –Petit law is hold true ,when temperature  
T>θ  and  kmax  
 
2) low temperature  (when kT ). 

In that case it follows from the initial formula for molar specific heat that kTe
kT

NC
   2

223 . 

An exponent multiplier changes faster than Т2. So when the temperature approaches zero, 
expression tends to zero by the exponential law. This is in qualitative agreement  with well 
known experiments.  



Limitation of Einstein theory of heat capacitance is in quantitative discrepancy of C(T) 
dependence with the experiments, when T<θ. This discrepancy was explained by Debye, who 
improved Einstein’s theory. 
 
9.2.3 Phonons 
 
The oscillations of crystal lattice can be represented as gas of special particles – phonons. 
This is in analogy with electromagnetic radiation, which are treated as special particles – 
photons. 
In contrast to the particle of light (photon), the phonon is quasi-particle, because it exists only in 
crystal. It’s energy sph   , where s is angular frequency of sound wave .Linear pulse of 

phonon  
s

ph c
p 

 . сs is velocity of sound in crystal. Wavelength of the sound wave 



 s
s

с2
 . 

Concept of phonons is used in description of crystal properties, such as heat conductivity, heat 
capacity, thermo-e.m.f. 
 
 
9.3. Energy bands in crystals 
 

One of the most important theories of solid state physics is band theory. It explains 
different physical properties of materials, such as conductivity and superconductivity, behavior 
of semiconductors at doping, temperature dependence of conductivity of semiconductors, 
principle of p-n junction rectification, etc. 
The fundamentals of band theory are formation mechanism and arrangement of energy bands, 
energy distribution of electrons in solids, notion of Fermi level. 
 
9.3.1. Energy bands in crystals and classification of solids on metals, semiconductors and 
insulators. 
 
If identical atoms are very far apart, they do not interact, and their electronic energy levels can be 
considered to be those of isolated atoms. Hence, the energy levels are exactly the same. As the 
atoms come close together, they essentially become one quantum system, and the Pauli exclusion 
principle demands that the electrons be in different quantum states for this single system. 

The exclusion principle manifests itself as a changing or splitting of electron energy 
levels (see Fig. 9.2) that were identical in the widely separated atoms, and in solids with very 

large number of atoms we obtain a large number of levels so 
closely spaced that they may be regarded as a continuous 
band of energy levels, as in Figure 9.3. An electron can 
have any energy within an allowed energy band, but cannot 
have an energy in the band gap ΔE, or the region between 
allowed bands. In practice we are only interested in the band 
structure of a solid at some equilibrium separation of its 
atoms R, and so we remove the distance scale on the x-axis 
and simply plot the allowed energy bands of a solid as a 
series of horizontal bands, as shown in Figure 9.3 
It is possible to gain a qualitative understanding of whether 
a solid is a conductor, an insulator, or a semiconductor by 
considering only the structure of the upper or upper two 

energy bands and whether they are occupied by electrons. 
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Depending on band filling, all materials are classified as metals, semiconductors and insulators 

(dielectrics). Important case is that shown in Figure 9.3 a where the highest energy band is 
partially filled only. The other important case, where the highest occupied band is completely 
filled, is shown in Figure 9.3 b. Notice that this figure the highest filled band (called the valence 
band) is shown also and the next higher band (called the conduction band) is empty. The 
energy band gap (forbidden band), which varies with the material of solid, is also indicated as 
the energy difference Eg between the top of the valence band and the bottom of the conduction 
band. 

A conductor has a highest-energy occupied band which is partially filled, and in an 
insulator, has a highest-energy occupied band which is completely filled with a large energy 
gap between the valence and conduction bands. Semiconductors have smaller value of energy 
gap than dielectrics (<3 eV) .At some conditions, when temperature T>0 the electrons can jump 
into the empty conduction band and produce current carriers. 
 
9.3.2. Electrons in metals. Fermi level  
 
In quantum physics the description of particle state differs from the classical one considerably.  
In solid state theory the quantum statistics are used to determine number of micro particles N per 
quantum state. If the total number of quantum states is G and G>>N then the classical statistics 
(Boltzmann’s distribution) can be used. When number  of micro particles in solid N is 
approximately equal number  of states G quantum statistics is used. In such case the states of 
micro particles are discrete. Two types of quantum statistics are known, namely Bose-Einstein 
and Fermi-Dirac statistics. Electrons are the micro particles with half-integer spin. They are 
described in metals by Fermi-Dirac quantum statistics and electrons (as other particles with half-
integer spin) are called fermions. For fermions the distribution function of particles by energy 
states f(ε) is determined from formula 
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Here )(f  is Fermi-Dirac function; ЕF is Fermi energy, 
)(
)()(

Eg
EnEf  ; )(En is the 

concentration of electrons with energy E; )(Eg  is the density of states in unit interval of energy. 
The definition of Fermi-Dirac function: 
  Fermi Dirac function is average concentration of micro particles with energy E in unit state 
for interval of energy [Е, Е+dЕ]. 
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In figure 9.4  Fermi-Dirac function is shown for temperatures Т=0 К (figure 9.4 a) and 
T>0 К (figure 9.4 b). 

 
 When the temperature   T=0 K   then the distribution function takes one of two values 
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This means that all levels with energies up to EF are filled by electrons and  
 

Fermi energy is maximum energy which electron has at temperature 0 K. 
 
When the temperature increases electrons jumps onto higher energy levels and their distribution 
on energy states is changed (Fig.9.4b). Function fF “spreads” and a “tail” of occupied states 
where energy of electrons is larger than EF is apparent). In normal conditions concentration of 
electrons in excited states is very small (for 300 K it aggregates less than 1% of total electron 
concentration in metal). 
 
 
9.3.3. Superconductivity .Explanation of superconductivity 

Classical physics can not explain phenomenon of superconductivity, when below the 
temperature, called critical temperature, electrical resistance of material (metal, alloy, 
ceramic) drops to zero (see Figure 9.5). 

In experiment, the sharp decrease of electric resistance for 
temperature T<Tc can be studied by two methods: 
1. By switching superconductor in series with conductor. Then 
the drop voltage on superconductor become zero at moment of 
transition into superconducting state.  
2. By inserting superconducting coil into magnetic field 
normal to it. Current, induced in coil, will flow during very 
long time without damping (in one of fundamental 
experiments it existed for more than two years). 
Superconductors are ideal diamagnetics, and magnetic field 
does not penetrate into depth of superconductor. Strong 

magnetic field destroys superconductivity of material. Value of breaking magnetic field Bc 
depends on temperature. If T=Tc then Bc=0 (Figure 9.6). 
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Superconductivity is a phenomenon, in which 
quantum effects become apparent on macroscopic scales. 
Theoretical explanation of superconductivity of metals and 
alloys based on quantum theory has been proposed in works 
of Bogoliubov and Bardeen, Cooper and Schrieffer.  
In accordance with this theory at some conditions electrons in 
solids are bound into superconducting pairs (Figure 9.7) 
It conditioned by phonon interchanging between electrons 
(corresponding diagram is shown in the upper part of the figure). This interchange of phonon 
(quantum of lattice vibration) is visualized 
below the diagram. Each of two electrons 
passing through the lattice make ions to shift 
from their equilibrium positions. This 
produce effective attraction of electrons 
(electrons repel each other but are attracted 
to ions shifted by other electron).  
Electrons have opposite spins in such state 
and electrical charge of superconducting pair 
is 2e. Such electron pairs (Cooper pair) 
moves without dispersion on vibrations of crystal lattice. So resistance of material is zero in the 
temperature region T<Tc. 
Superconducting pairs are destroyed at temperature increase to value T>Tc. Then the material 
pass to normal state (with usual electrical resistance). 
Alloys Nb3Ge; Nb3Si; SnGe, ZrSn, compounds YВa2Cu4O7; are superconductors with different 
Тc – from10 К till 98 К, the highest Tc so far discovered is 139 K for Hg0.2Tl0.8Ca2Ba2Cu3O 
compound. 

Ordinary ferromagnetic-core electromagnets are limited to fields of around 2 T, higher 
fields require high current densities which lead to the melting of wires. Nowadays, conventional 
superconductors, especially Nb3Sn alloy, are used to create ultra high magnetic fields up to 20 
teslas, which a metallic conductor in normal (non-superconducting) state is unable to create 
because of energy leak to Joule heating. For the same reason the superconducting magnet 
consumes much less power. Strong magnetic fields have many applications, for example, in 
magnetic resonance imaging (MRI) used in medical diagnostics. Structure of chemical 
compounds can be determined with nuclear magnetic resonance equipment (NMR, uses strong 
magnetic field) very precisely. Modern accelerators of charged particles use magnetic field to 
control the trajectory of high-energy particles. In state-of-art Large Hadron Collider the niobium-
titanium magnets operating at 1.9 K produce field of 8.3 T. The solenoid superconducting 
magnets designed for the ITER fusion reactor use niobium-tin (Nb3Sn) as a superconductor 
producing a field of 13.5 teslas. Without this solenoid hot plasma would not be confined inside 
the ITER reactor for time enough to allow fusion of Hydrogen nuclei, which, hypothetically, will 
become a source of energy for the future. 

If in a circuit two superconductors are separated by normal metal, persistent current 
occurs. This system, referred to as Josephson junctions is extremely sensitive to magnetic field 
and is used in superconducting quantum magnetometers (SQUID) to measure magnetic fields 
with unmatched precision. 
Other expected applications of superconductors will be transmission of energy without losses 
and fast-acting electronic switch. The latter can become main logical 
elements of future computer designs, in which bit will be realized as 
element in normal or superconducting state (superconducting cubit). 
 
 
10. Conductivity of semiconductors. Contact phenomena 
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10.1 Donors and acceptors. Electrons and holes  
 
 Semiconductors are the class of substances which conductivity depends on temperature, 
pressure, radiation, concentration of impurities and presence of defects.  
The typical semiconductors are elements like Si, Ge, P, Se, Te and their different compounds, for 
example: 
AIIIBV          GaP, GaAs, GaSb, InSb,  
AIIBVІ          CdTe, CdS, CdSe                   Semiconductors 
АIVBVI         CdxHg1-xTe 
AVBVI          Bi2Te3, BiSe, BiSb 
 
The conductivity of pure semiconductors is called intrinsic conductivity, the conductivity, 
caused by impurities is called extrinsic conductivity.  
   In the figure 10.1 the concept of electrons and holes in conduction and valence bands and the 
concept of an electron and a hole in a simpler, more graphic way as the presence or absence of 
an outer-shell electron at a particular location in a crystal lattice is shown.. 
 In pure semiconductors at low temperature all electrons are localized on the valence bonds 
(Figure 10.1 c) and current carriers are absent. For this reason the conductivity of 
semiconductors at low temperature is very low as for insulators. In energy representation this 
corresponds to Figure 10.1 a, at low temperature the thermal energy of electrons is insufficient to 
allow jumps into the higher conduction band. At high enough temperature the thermal motion 
can break off bonding and free an electron. The unfilled bond, left by electron becomes 
positively charged (charge +e) and is called “hole” (figure 10.1 d). Another electron can jump in 
this free place. As result the hall begin to travel in crystal too. This case corresponds to figure 
10.1 b with equal numbers of electrons in conduction band and holes in valence band. 

When small amounts of impurities are added to a semiconductor such as silicon (about 
one impurity atom per 107 silicon atoms), both the band structure of the semiconductor and its 
resistivity are modified.  
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Figure 10.2  
The process of adding impurities, called doping, is important in making devices having well-
defined regions of different resistivity. For example, when an atom containing five outer-shell 
electrons, such as arsenic, is added to a semiconductor such as silicon, four of the arsenic 
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electrons form shared bonds with atoms of the semiconductor and one is left over. (Figure 10.2 
a) 
This extra electron is nearly free of its parent atom and has an energy level that lies in the energy 
gap, just below the conduction band. Such a pentavalent atom in effect donates an electron to the 
structure and hence is referred to as donor atom. Because the spacing between the energy level 
of the electron of the donor atom and the bottom of the conduction band is very small (typically, 
about 0.05 eV), only a small amount of thermal energy is needed to cause this electron to move 
into the conduction band. Recall that the average thermal energy of an electron at room 
temperature is 3kBT/2 about 0.04 eV). Semiconductors doped with donor atoms are called n-type 
semiconductors, because the charge carriers are electrons, the charge of which is negative. 

If a semiconductor is doped with atoms containing three outer-shell electrons, such as 
aluminum, or indium, the three electrons form shared bonds with neighbouring semiconductor 
atoms, leaving an electron deficiency—a hole—where the fourth bond would be if an impurity-
atom electron was available to form it. The energy level of this hole lies in the energy gap, just 
above the valence band. An electron from the valence band has enough energy at room 
temperature to fill that impurity level, leaving behind a hole in the valence band.  Because a 
trivalent atom, in effect, accepts an electron from the valence band, such impurities are referred 
to as acceptor atoms. A semiconductor doped with acceptor impurities is known as a p-type 
semiconductor, because the majority of charge carriers are positive charged holes. 
 
10.2. Intrinsic and extrinsic conductivity of semiconductors. Temperature dependence of 
conductivity in semiconductors. Photoinduced conductivity 
 

The intrinsic conductivity σ is characterized by simultaneous appearance of two types 
carriers -electrons and holes:  pne pni   . Here n is mobility of electrons, n is 
concentration of electrons, р is mobility of holes and p is concentration of holes. 

The extrinsic conductivity is described by formula: app pe   or by formula: 

dnn ne  .The first is used, when carriers are holes, created due to acceptor atoms and the 
second, when the carriers are the electrons of donors. 
 

 
The temperature dependence of conductivity divides 
into three regions (Figure10.3), which are 
qualitatively differed and corresponds to different 
temperatures.  
For n-type semiconductor it is explained in the next 
way: 
1) At low temperature the conductivity increases 
with temperature increasing (because the number of 
electrons passing from donor levels to the 
conduction band increases.) This is a region of 
impurity conductance. 

2) When all donors are ionized, the concentration is remained constant and mobility of carriers 
decreases, so conductivity decreases too (this is region of exhaust). 
3) The third region is conditioned by appearance of intrinsic conductivity due to transition of 
electrons from valence into conduction band. 

The formula for temperature dependence of conductivity is: kT
E

e 2
0

0


   (intrinsic 

region of conductivity); kT
Ed

e 2
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


   (extrinsic region, or impurity conductivity). Here E0 is 
energy gap width of semiconductor and Ed is energy of impurity level.  
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Temperature dependence of conductivity for p-type semiconductor is explained in like 
manner. Only the region of impurity conduction is explained by increasing of electrons jumping 
from valence band to the acceptor’s levels. 

From the dependence 







T
ln 1
  we can obtain the width band (gap) of semiconductor Е0 and 

energy of impurity levels Ed (or Ea). 
Photoconductivity is connected with transition of electrons from donor levels to 

conduction band, or transition of electrons from valence band to acceptor levels under light 
action. The light is considered as the flow of photons. Photoconductivity takes place, when 
energy of photon h > Ed (for impurity semiconductor) or h >E0 (for intrinsic conductivity). 
As result the conductivity of semiconductor increases under irradiation.  
 
10.3 Contacts  phenomena. p n junction  
 
  Contact phenomena are these which take place on the border between two different metals, or 
metal and semiconductor or two semiconductors with p- and n-types of conductivity.  
 
p n junction is the region, depleted by free carriers of current, which is created on the border of 
semiconductors of  p and n-type of conductivity. In n-type semiconductor concentration of free 
electrons is many orders of magnitude greater than in p-region and vice versa. After p- and n-
regions are connected diffusion processes tend to establish an equilibrium distribution of carriers 
across the border. 

Mobile donor electrons from the n-region nearest the 
junction move to p-region (the figure 10.4.) leaving 
behind immobile positive ions. At the same time, holes 
from the p-region nearest the junction diffuse to the n-
region and leave behind a region of fixed negative ions.  
As a result, an internal electric field Ep-n of the order  
104 -106 V/cm is created within the depletion region. 
This field sweeps mobile charge out of the depletion 

region. Internal electric field creates an internal potential energy difference eΔφ, that prevents 
further diffusion of holes and electrons across the junction and thereby ensures zero current in 
the junction when no external potential difference is applied . 
p-n junction is the principal element of all modern semiconductor electronics. 
Semiconductor diodes use the ability of p–n junction to pass current in only one direction. 
In Figure 10.5 the physical reason of such an unidirectional conduction is illustrated. 
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Figure 10.5  
If an external voltage V is  applied to the junction such that the p side is connected to the positive 
terminal of a voltage source as in Figure 10.5 a, the internal potential difference eΔ� across the 
junction decreases, resulting in a current that increases exponentially (positive V values in Figure 
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10.5 c) with increasing forward voltage, or forward bias. In reverse bias (where the n side of the 
junction is connected to the positive 
terminal of a voltage source, Figure 
10.5 b), the internal potential 
difference � increases with 
increasing reverse bias. This results 
in a very small reverse current that 
quickly reaches a saturation value 
(negatitive V values in Figure 10.5 
c). 
The transistors are the semiconductor 
devices consisting on two p-n 

junction and bias (very narrow region) between them (Figure 10.6). Its invention in 1948 totally 
revolutionized the world of electronics. Another types of semiconductor devices are semistor, 
dinistor,  thyristor differ one from another by number and peculiarities of p-n junctions. 
An integrated circuit is a collection of interconnected transistors, diodes, resistors, and 
capacitors fabricated on a single piece of silicon known as a chip. State-of-the-art chips easily 
contain several million components in 1cm 2. 
 
Problem 
Calculate the forbidden gap width of semiconductor thermoresistor, if at voltage measurement by 
scheme shown on figure 10.7 potential drop on thermo resistor decreased by half, when the 
temperature increased from  17С  to 27С (intrinsic region of conductivity). Potential drop on 
thermo resistor at 17С is U1=0,9 V.  E.m.f. of  battery =1 V. Internal resistance of  battery r=2 
Ohm. 
Strategy. 
Recollect  1. Ohm’s law  for scheme drawn on figure 10.7. 
                 2. Band structure of semiconductors and the formula for temperature dependence of 
their conductivity.  
 
Solution 
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and after calculation one finds   Е  1,6 еV. 
 
 


