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Abstract. In this study probabilistic methods of the fractarechanics are applied to integrity
assessment of cracked components subjected to ataticyclic loading. Various key issues
related to a probabilistic analysis are discussedl @ccounted for in the calculations. An
example illustrating the application of computatibprocedures to evaluate the integrity of a
component with postulated cracks is presented.llifir@ome available experimental results
on fatigue crack growth are re-evaluated basedhemse of statistical methods.

Introduction

Fracture mechanics assessment of components dogtaixisting or postulated flaws is
usually performed based on deterministic approachesse act on proper assumptions of the
flaw state, material strength and toughness prigseras well as applied loading. Generally,
deterministic estimates of component’s strengthcareservative, provided that state-of-the-
art analysis methods together with reliable andseorative input data are employed.
However, many applications deal with variable od/amcertain data whose impact on the
final result cannot be distinctly judged. If appriape, uncertainties and scatter in the input
parameters are taken into account by applying ehgistudies or using certain percentile
curves to describe material properties (e.g. withen90% confidence interval).

Alternatively, methods of statistical data analyail probabilistic fracture mechanics
can be applied. In this case, available measuresmdnnaterial properties, load magnitudes
and sequences, and results of the non-destructaleaion (NDE) can be directly involved
in the analysis as statistically distributed qu#edi An essential advantage of such an
approach is that the critical conditions (e.g. kraze, loading, material toughness) or the
component life-time can be expressed in form ofrithstion functions, so that both the
expectation (median value) and the scatter of tuglst solution parameter can readily be
guantified.

A considerable progress in the probabilistic freetumechanics methods achieved
within past two decades was mainly due to reseauwtlvities on component safety and
damage tolerance in nuclear and conventional pgiaants, aerospace, pipeline, pressure
vessel industries. Numerous examples of the prbbtbiassessment of cracked components
are considered in the literature, e.g. [1-4]; seveomputer programs and benchmark results
are available [5-6]. Moreover, probabilistic methate included in the latest versions of the
structural integrity assessment procedures [7-9].

Although the general solution approach in the phodistic fracture mechanics analysis
is well established, several computational issuesdnto be systematically considered. In
particular, the following topics should be addrelsse

— methods of the data fit using various distributionctions;

— evaluation of the fit accuracy and validity crigefor distribution assumptions;

— statistical description of random data, such agieghjoading in fatigue problems, and
their extrapolation (e.g. in the time domain);

— random data generation;

— calculation of probabilistic integrals and failymebabilities;

— evaluation of the scatter in the final results.

Associated computational methods and mathematigalriboms, as well as related
fracture mechanics models and solutions are briefiyewed in this paper. Subsequently,
probabilistic analyses are performed to evaluaet@ire probabilities in a piping containing
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postulated defects [9]. Furthermore, available lcgrowth data for surface cracked plates in
cyclic bending [10] are re-evaluated using probsiiil analysis tools.

Analytical Failure Assessment

Failure assessment procedures, e.g. [7-9], accémtede use in industrial applications
employ the failure assessment diagram (FAD) for paments under static loading and elastic
stress intensity factor solutions for predictinigae crack growth under cyclic loading.
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Fig. 1. Typical FAD (a) and fatigue crack growtimee (b) for a cracked component.

Figure 1 schematically illustrates both approacties related analysis methods. The
assessment point in FAD is defined by [7]

K, = Klp +&+p, L, :izo-”af 1)
Kiat K P oy

with Kj, andKs being elastic stress intensity factors for thenany and secondary loading,
respectively Kma: the material fracture toughnegsa plasticity correction accounting for the
interaction between the primary and secondary &R (or di«) a measure of the primary
load, andP,_ (or the yield strengtlar) the load (respectively, stress level) correspogdd the
yielding of the cracked ligament. The failure assasnt line K, = f(L,), separating the safe
state region from that assigned to the componeélntrda(Fig. 1a) is determined based on the
tensile data available (yield strength, ultimatersgth, stress-strain curve) [7].

Calculations of fatigue crack propagation are galheperformed assuming a material
specific relationship between the crack growth ,rdeédN, and the stress intensity factor
range AK. In a simple case of constant amplitude loading,Raris-Erdogan equation applies
(region Il in Fig. 1b):

9 _ oAk 2)
dN

Deterministic failure assessment is based on ceatee assumptions of the material
data (strength properties, fracture toughnesguatcrack growth rates and threshold value,
AKy), crack size (e.g. above accepted NDE limits) dochtion, as well as the load
magnitude. Moreover, considerable conservative Ificaiions of the load spectrum are
often performed in fatigue calculations. An addiab use of safety factors [7-9] aims at
providing sufficient safety margins for problems/atving scattering or uncertain data. In
general, this leads to a considerable underesbmatf the critical conditions (load, defect
size) and life-time for a cracked component, sa th&urther data refinement may become
necessary to prove the component safety.

On the other hand, the above approach is not abtminpletely exclude the risk of
failure. For instance, the scatter in material prtips cannot be entirely captured by specimen
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testing, so that severe data variations about xipeated values are possible. Furthermore,
even though long-term load measurements are alaifab certain components, extreme

loads can still arise. In such cases, methodsatisstal analysis and probabilistic fracture

mechanics are able to improve and supplement ttegndimistic analysis and provide more

realistic predictions of component behaviour.

Significance and Description of Data Scatter

Input data involved in fracture mechanics calcoladi can be separated in three groups:
geometry, material and loading. Most or even allhef input parameters are subjected to the
variability and uncertainty which causes the valigbof the final solution. To describe the
scatter in the input data and account for thishie analysis, methods of the mathematical
statistics and probability theory are employed.

The table below summarises some distribution foenstiused in technical application.

Table 1. Typical distribution functions employedeingineering calculations.

Distribution  Distribution Probability density function Eq.
type parameters
Normal = mean 1 1(x-puY’
o = standard 0= Znex{_z( o j ()
deviation

-0 <X<0,0>0

Lognormal Xo = location

_ 1 1 X=Xy ?
parameter f(x)_(x_%)gmex;{ 257 ('” o ” (4)
m = scale parameter

o = shape parameter
Xy £ X<oo,m>0,0>0

Weibull = location _y \A1 v\
; et 5

parameter (5)
[ = shape parameter

n = scale parameter
Xg £X<0,7>0,>0

Exponential b = scale parameter £ :lex;{— (x- xo)}
Xo = location b b
parameter
X S X<0,b>0

(6)

A statistical description of the flaw state incledavo key aspects: (1) flaw size
distribution; (2) probability of detection (POD) afcrack having a certain size The flaw
size distribution depends both on material qualitd NDE requirements. The lognormal and
exponential distribution functions, Eqs (4), (6)e auitable for describing the initial crack
size. The probability of detection is related te timount of NDE data and the quality of
employed apparatus.

The material is characterised by its strength aadtdire mechanics parameters. The
scatter in the yield and tensile strength can offterdescribed by fitting available test results
to normal or lognormal distribution functions, E¢®-(4). A considerable scatter of the
fracture toughness, especially in the brittle-tatde transition region, is a critical point to be
accounted for in the analysis of cracked compondmisappropriate statistical description of
fracture toughness is achieved using a three-paeariaéeibull distribution, Eq. (5), of the
master curve method [11]. Various statistical apphes are known to treat the scatter of
fatigue crack growth data [1, 2].
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To account for uncertainties and variability of dygplied load, different procedures are
used [1-6]. Fatigue analyses additionally employhoés for counting measured load spectra.
Furthermore, statistically based extrapolation méphes have been developed [12].

Failure probabilities or fatigue crack growth cadtions are often performed making
use of the Monte-Carlo simulation (MCS). Howevars tmethod becomes rather inefficient if
low failure probabilities are requested. In suclkesa the first- or second-order reliability
methods (FORM, SORM) [13], as well as MCS with imtpoce sampling [14] are
advantageous.

Examples of Probabilistic Assessment
The following two examples illustrate the perforrnarand potentials of probabilistic
methods in the assessment of cracked componengs bath static and cyclic loading.

Component under static loading

This example deals with strength and burst safesgssment of a spiral welded pipe
made of steel StE480.7TM (API X70) [9]. Imperfeaisoin the welds have originated when
the welded, finished and pressure tested pipes tuened on support rollers to put on the
outer insulation under heating. As a consequenaaatfunctions of the support rollers, the
weld metal area was locally deformed leading todblel forming and reduction of material
toughness in the weld areas [9, 15].

The imperfections are located between the weld Inmeetd heat affected zone and
extend over about 200 mm parallel to the seam wisclat an angle of 22° with the
circumferential direction. By extensive hardnessasueements, the cold formed zone was
found to extend to a maximum depth of 2 mm intophpe wall. To exclude the pipe failure,
the whole cold formed zone is conservatively assutode a long surface crack of the depth
a = 2 mm. The static internal pressurepis 7.6 MPa. Additionally, residual weld stresses
(secondary stresses) of magnituzie= 0., are imposed on the structure; this assumption

Is conservative, since the residual stresseslaly lio disappear in the cold formed area.

Figure 2 summarises the component and crack gepnesid parameters and material
data and shows the model employed in calculatidhs. fracture toughness was estimated
based on measurements of the crack tip openindadepent; hereby, the smallest of 10
individual values & = 0.05 mm) was used [15].

Table 2 presents distribution functions and relafmdtameters employed in the
probabilistic analysis. In particular, the fractuiaighness is assumed to follow a three-
parameter Weibull distribution according to the taagurve concept, whereas the value of
Kmat= 91 MPa/m is assigned to the failure probability of 5%. @plore the significance of
the crack depth assumptions, two mean valyes2 and 3 mm are analysed.

229
Outer diamete) = 1420 mm
| Flaw \ Wall thicknesst = 15.6 mm
Crack deptha=2 ... 3mm
Yield strengthRy0.= 480 MPa
Tensile strengthk,= 600 MPa
22 - Fracture toughnes&,, = 91 MPalm

Internal pressurgy = 7.6 MPa
Primary stressg, = 192 MPa
depth, o Secondary stresg; = 288 MPa

Fig. 2. Geometry of the spiral welded pipe and eetipe analysis model.
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Table 2. Data for probabilistic assessment of gheabkwelded pipe.

Input data Mean Distribution type Distribution
value parameters
Crack depta, mm 2 normal H=2,0=0,2
3 u=3,0=0,3
Primary stresgj,, MPa 192 normal u=192,0=4
Secondary stress, MPa 288 lognormal X =282m=6,0=0,6
Yield strengthR, ., MPa 480 lognormal Xo=474m=6,0=0,4
Tensile strengtiR,, MPa 600 normal 1 =600,0=10
Fracture toughnes§, ., 91 Weibull X =20,8=4,n=149

MPa/m

Probabilistic calculations are first performed @siNICS with the total number of
simulations varied betweeti= 10° and 16. The failure probability is then determined by

szNf/N (7)

whereN; is the number of failure cases, as predicted daogrto the FAD approach, Eq. (1).
Figure 3 shows the analysis results obtainedNa 1C¢°. Here a unique assessment line
corresponding to the mean values of the matemahgth and toughness parameters is drawn;
the assessment points are scaled according toptbgition in the diagram at each individual
simulation with randomly selected input data (TabjeThe failure probability i€ = 0.004
for the mean crack depth pf = 2 mm andP; = 0.026 fori, = 3 mm. With increasing number
of simulations, the result tends B = 4.08x1C° for 14 = 2 mm andP; = 3.05x1C" for
L =3 mm.

The failure cases occasionally predicted in Figwr& mainly due to low values of the
fracture toughness, as derived from the presumedWaelistribution with the lower bound
of Kmin =20 MPa/m. While this assumption is generally too conséveatfurther analyses
are carried out to specify the minimum requiredtinee toughness needed to assure a certain
reliability level of the piping. A target failurergbability of 7x10° is selected, as requested
for non-redundant components with severe failurasequences [7]. Failure probabilities
calculated by the second-order reliability methoslgiven in Fig. 4 as a function of the lower
bound of fracture toughness. The results suggestthie valueKnyin =47 and 82 MPén
would provide the desired reliability level for thging with the mean crack depth of 2 and 3
mm, respectively. Hence, comprehensive measureméttie fracture toughness, as well as a
reliable non-destructive examination are two deeisictions to assure a safe operation of the
piping.
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Fig. 3. Probabilistic FAD assessment of Fig. 4. Failure probability versus the
the spiral welded pipe. lower bound of fracture toughness.
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Assessment of fatigue crack growth

In [10], experimental results are presented fofaser cracked specimens made of steel
15X2M®A, subjected to cyclic bending with the stressor&F 0.32. Analytical calculations
of fatigue crack growth were performed on the deteistic basis within the Paris region of
the fatigue crack growth curve, Eq. (2), usingdbastant = 2.96x1¢, m = 2.54 @a/dN in
mm/cycle,AK in MPa/m), Fig. 5. In particular, predicted fatigue livies specimens with
semi-elliptical cracks were within 30% of the experntal results.

10° 1.0 5
O Data points
— —— Weibull distribution, C o
i Weibull distribution, log C o
ofm 0.8/ ... Normal distribution, log C / °©
Ho >
T 0 = /°
E 107 <
3 / S 04+
S % : o
O
O Data points . %
—Paris' equation Ll 0.2 1
-8
10 0.0 ——= } }
10 20 40 60 100 -8 7.8 7.6 7.4 7.2
DK [MPaym] log C

Fig. 5. Fatigue crack growth data for steel Fig. 6. Distribution functions for the
15X2M®A, R=0.32 [10]. parameteC in Eq. (2),m = 2.54.

In this example, probabilistic analysis is appliecevaluate the significance of the data
scatter in Fig. 5 and to derive distribution funog for fatigue lives of the corresponding
specimens.

Since the Paris constanBsandm are often considered to be dependent parameters, a
common approach to describe the scatter of FCGislatefix one of them and vary the other
one [1]. Assumingn = 2.54, the cumulative distribution function f@ or log C can be
derived, Fig. 6. This was fitted using the normiagnormal and Weibull distribution
functions, Egs (3)-(5), both fa€ and logC. Subsequently applying the Anderson-Darling
goodness-of-fit (AD-GOF) test, only three distriloats were found to be acceptable, Fig. 6.
The solid line in Fig. 6 provides the best fit b@ empirical data and is described by equation

F(logC)=1- exp{— (Mj - (8)

0286

The valueC = 2.96x10° employed in [10] corresponds to the probabilitsome 54%.

Using randomly generated values ©f crack growth analyses for four specimens
(designation 1.2, 1.4, 1.5, 1.6) tested in [10]eveerformed by integrating Eq. (2). For each
specimen, 100 simulations were completed. Figusarimarises the input data and analysis
results in terms of the cumulative probability ftion for fatigue lives.

An appropriate analytical description of the engalidata is achieved by applying the
Weibull distribution for eithemN or log N, as well as the normal distribution for Idg
However, the AD-GOF test succeeded for all dats setly when using the Weibull
distribution for logN, as shown by solid lines in Fig. 7.
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1.0

Specimen: plate with a semi-elliptical surface
crack

08+ Plate thickness: 30 mm, width: 116 mm

= Loading: cyclic bendingR = 0.32
2 o6l ag: initial crack depth
s 2co: initial crack length
5 oal a: final crack depth
= ' o specimen 1.2 . .
E « specimen 14 N: number of cycles in test
] + specimen 1.5
0.2 + x specimen 1.6 -
B test data [10] Specimen 1.2 1.4 1.5 1.6
Wi = predidions [10) Omas, MPa 366 454 395 471
0.0+t
0 30 60 90 120 150 180 210 d, MM 8.8 3.9 5.4 6.0
N, 10°xcycles 2co, mm 25.2 12.4 12.2 13.4
a, mm 17.7 18.6 18.3 16.1

N, cycles 119000 96100 130200 57700

Fig. 7. Fatigue life distributions of surface cradkspecimens under cyclic bending.

Deterministic fatigue life predictions obtained[itD] correspond with the probability
level of 41% to 51%, as expected for the mean cumdg. 5; the experimental results cover
the probability range of 32% to 78% (Fig. 7).

Conclusions

Probabilistic methods are a valuable extensionotoventional (deterministic) analysis
tools, allowing for consideration and handling ofcartainties, variability and scatter in the
input parameters. On one hand, probabilistic catanis help to quantify the influence of
individual parameters and their scatter on thel fireault; on the other hand, they provide
estimates of component’s limit state or life-timmetérms of probability distribution functions.
The latter brings essential advantages over thermetistic approach, e.g. in explaining
occasional failure cases of components whose ddsigmelieved to be safe. Moreover,
probabilistic calculations can be efficiently ugedspecify requirements on the input data in
order to reach a targeted reliability level, asvamn the first example of the paper.

Results of a probabilistic analysis are reliabld,ahus, valuable provided that accurate
and statistically representative input data arelwved. In particular, the use of underlying
distribution functions must be carefully checkeds discussed in the last example of the
paper, wrong assumptions on the type of distrilbbutismctions can be eliminated by properly
applying goodness-of-fit tests. Finally, adequatthads for computing failure probabilities
should be employed. Specifically, calculations @i Ifailure probabilities require accurate
algorithms based on the FORM or SORM.
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