Empreu aquest identificador per citar o enllaçar aquest ítem: http://elartu.tntu.edu.ua/handle/lib/35796
Títol: Огляд сучасних технологій у боротьбі з пандемією коронавірусу (COVID-19): штучний інтелект та великі дані
Altres títols: Review of the latest technologies in the fight against coronavirus pandemic disease (COVID-19): artificial intelligence and big data
Autor: Ракуш, Віталій Володимирович
Rakush, Vitalii
Affiliation: ТНТУ ім. І. Пулюя, Факультет комп’ютерно-інформаційних систем і програмної інженерії, Кафедра комп’ютерних наук, м. Тернопіль, Україна
Bibliographic description (Ukraine): Ракуш В. В. Огляд сучасних технологій у боротьбі з пандемією коронавірусу (COVID-19): штучний інтелект та великі дані : кваліфікаційна робота освітнього рівня „Бакалавр“ „122 — комп’ютерні науки“ / В. В. Ракуш. — Тернопіль : ТНТУ, 2021. — 71 с.
Data de publicació: 24-de -2021
Submitted date: 10-de -2021
Date of entry: 11-de -2021
Country (code): UA
Place of the edition/event: ТНТУ ім. І.Пулюя, ФІС, м. Тернопіль, Україна
Supervisor: Мацюк, Олександр Васильович
Committee members: Томашевський, Богдан Паісійович
UDC: 004.4
Paraules clau: штучний інтелект
artificial intelligence
великі дані
big data
інформаційна система
information system
пандемія
pandemic
вірус
virus
Resum: У кваліфікаційній роботі розглянуто огляд сучасних рішень у боротьбі з пандемією COVID-19. Огляду наукової літератури показав, що великі дані відіграють важливу роль у боротьбі з пандемією COVID-19 завдяки ряду перспективних застосувань, включаючи прогнозування спалахів, відстеження поширення вірусу, діагностику / лікування коронавірусів та виявлення вакцини / ліків. Використання Big Data дає змогу передбачити спалах у глобальному масштабі, використовуючи аналітичні інструменти для величезних наборів даних, зібраних із доступних джерел. Big Data підтримують процеси діагностики та лікування COVID-19.
The qualification work reviews the current solutions in the fight against the COVID-19 pandemic. A review of the scientific literature has shown that big data play an important role in controlling the COVID-19 pandemic through a number of promising applications, including outbreak prediction, virus tracking, coronavirus diagnosis / treatment, and vaccine / drug detection. Using Big Data makes it possible to predict an outbreak globally, using analytical tools for huge data sets collected from available sources. Big Data supports the diagnosis and treatment of COVID-19.
Content: Вступ 1 Огляд публікацій по COVID-19 1.1 Пандемія COVID-19 1.2 Штучний інтелект 1.3 Великі дані 2 Застосування штучного інтелекту та великих даних при виявленні пандемії COVID-19 2.1 Застосування штучного інтелекту для боротьби з COVID-19 2.1.1 Штучний інтелект для виявлення та діагностики COVID-19 2.1.2 Визначення, відстеження та прогнозування спалаху 2.1.3 Штучний інтелект з питань інфодеміології та інформаційного спостереження 2.1.4 Штучний інтелект для біомедицини та фармакотерапії 2.2 Застосування великих даних для боротьби з covid-19 2.2.1 Прогноз спалаху 2.2.2 Відстеження поширення вірусів 2.2.3 Діагностика / лікування коронавірусу 2.2.4 Відкриття вакцини / ліків 2.3 Приклади структур на основі ші і великих даних для боротьби з covid-19 2.3.1 Рішення для виявлення та спостереження на основі смартфону 2.3.2 Штучний інтелект та великі дані для нейтралізації виявлення антитіл 2.4 Завдання, уроки та рекомендації 3 Безпека життєдіяльності, основи хорони праці 3.1 Вимоги і норми охорони праці приміщень де використовується комп’ютерна техніка 3.2 Класифікація надзвичайних ситуацій Висновки Список використаних джерел
URI: http://elartu.tntu.edu.ua/handle/lib/35796
Copyright owner: © Ракуш Віталій Володимирович, 2021
References (Ukraine): 1. “Coronavirus disease (COVID-19) pandemic,” 2020. [Online]. Available: https://www.who.int/emergencies/diseases/ novel-coronavirus-2019 2. “Coronavirus (COVID-19),” 2020. [Online]. Available: https://www. cdc.gov/coronavirus/2019-nCoV/index.html 3. “White House announces new partnership to unleash U.S. supercomputing resources to fight COVID-19,” 2020. [Online]. Available: https://www.whitehouse.gov/briefings-statements 4. “arXiv announces new COVID-19 quick search,” 2020. [Online]. Available: https://blogs.cornell.edu/arxiv/2020/03/30/ new-covid-19-quick-search/ 5. C. Sohrabi, Z. Alsafi, N. O’Neill, M. Khan, A. Kerwan, A. Al-Jabir, C. Iosifidis, and R. Agha, “World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19),” International Journal of Surgery, vol. 76, pp. 71 – 76, 2020. 6. H. Li, S.-M. Liu, X.-H. Yu, S.-L. Tang, and C.-K. Tang, “Coronavirus disease 2019 (COVID-19): current status and future perspectives,” International Journal of Antimicrobial Agents, p. 105951, 2020. 7. T. Huynh-The, C. Hua, Q.-V. Pham, and D. Kim, “MCNet: An efficient CNN architecture for robust automatic modulation classification,” IEEE Communications Letters, vol. 24, no. 4, pp. 811–815, Apr. 2020. 8. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016. 9. B. R. Beck, B. Shin, Y. Choi, S. Park, and K. Kang, “Predicting com-mercially available antiviral drugs that may act on the novel coronavirus (2019-nCoV), Wuhan, China through a drug-target interaction deep learning model,” BioRxiv, 2020. 10. A. Zhavoronkov, V. Aladinskiy, A. Zhebrak, B. Zagribelnyy, V. Teren-tiev, D. S. Bezrukov, D. Polykovskiy, R. Shayakhmetov, A. Filimonov, P. Orekhov, Y. Yan, O. Popova, Q. Vanhaelen, A. Aliper, and Y. Iva-nenkov, “Potential COVID-2019 3C-like protease inhibitors designed using generative deep learning approaches,” ChemRxi, 2 2020. 11. C. Zheng, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, W. Liu, and X. Wang, “Deep learning-based detection for COVID-19 from chest CT using weak label,” MedRxiv, 2020. 12. Z. Hu, Q. Ge, L. Jin, and M. Xiong, “Artificial intelligence forecasting of COVID-19 in China,” arXiv preprint arXiv:2002.07112, 2020. 13. “COVID-19 open research dataset challenge (CORD-19): An AI challenge with AI2, CZI, MSR, Georgetown, NIH & The White House,” 2020. [Online]. Available: www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge 14. “IBM releases novel AI-powered technologies to help health and research community accelerate the discovery of medical insights and treatments for COVID-19,” 2020. [Online]. Available: https://www.ibm.com/blogs/research/2020/04/ ai-powered-technologies-accelerate-discovery-covid-19/ 15. C.-W. Tsai, C.-F. Lai, H.-C. Chao, and A. V. Vasilakos, “Big data analytics: a survey,” Journal of Big data, vol. 2, no. 1, p. 21, 2015. 16. K. Priyanka and N. Kulennavar, “A survey on big data analytics in health care,” International Journal of Computer Science and Informa-tion Technologies, vol. 5, no. 4, pp. 5865–5868, 2014. 17. M. Cottle, W. Hoover, S. Kanwal, M. Kohn, T. Strome, and N. Treister, “Transforming health care through big data strategies for leveraging big data in the health care industry,” Institute for Health Technology Transformation, http://ihealthtran. com/big-data-in-healthcare, 2013. 18. “Almost one zettabyte of mobile data traffic in 2022-cisco,” 2020. [Online]. Available: https://telecoms.com/495666/ almost-one-zettabyte-of-mobile-data-traffic-in-2022-cisco/ 19. G. Manogaran, D. Lopez, C. Thota, K. M. Abbas, S. Pyne, and R. Sundarasekar, “Big data analytics in healthcare internet of things,” in Innovative healthcare systems for the 21st century. Springer, 2017, pp. 263–284. 20. G. Manogaran, C. Thota, D. Lopez, V. Vijayakumar, K. M. Abbas, and R. Sundarsekar, “Big data knowledge system in healthcare,” in Internet of things and big data technologies for next generation healthcare. Springer, 2017, pp. 133–157. 21. S. Chae, S. Kwon, and D. Lee, “Predicting infectious disease using deep learning and big data,” International journal of environmental research and public health, vol. 15, no. 8, p. 1596, 2018. 22. S. Bansal, G. Chowell, L. Simonsen, A. Vespignani, and C. Viboud, “Big data for infectious disease surveillance and modeling,” The Journal of infectious diseases, vol. 214, no. suppl 4, pp. S375–S379, 2016. 23. M. Eisenstein, “Infection forecasts powered by big data,” Nature, vol. 555, no. 7695, 2018. 24. “Improving epidemic surveillance and response: big data is dead, long live big data,” 2020. [Online]. Available: https://www.thelancet.com/ journals/landig/article/PIIS2589-7500(20)30059-5/fulltext 25. “Big data in the time of coronavirus (COVID-19),” 2020. [Online]. Available: https://www.forbes.com/sites/ciocentral/2020/03/ 30/big-data-in-the-time-of-coronavirus-{COVID-19}/ 26. “Understanding the COVID-19 pandemic as a big data analytics issue,” 2020. [Online]. Available: https://healthitanalytics.com/news/understanding-the-{COVID-19}-pandemic-as-a-big-data-analytics-issue 27. V. M. Corman, O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D. K. Chu, T. Bleicker, S. Brunink, J. Schneider, M. L. Schmidt et al., “Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR,” Eurosurveillance, vol. 25, no. 3, 2020. 28. A. S. Fomsgaard and M. W. Rosenstierne, “An alternative workflow for molecular detection of SARS-CoV-2-escape from the NA extraction kit-shortage,” medRxiv, 2020. 29. H. S. Maghdid, K. Z. Ghafoor, A. S. Sadiq, K. Curran, and K. Rabie, “A novel AI-enabled framework to diagnose coronavirus COVID-19 using smartphone embedded sensors: Design study,” arXiv preprint arXiv:2003.07434, 2020. 30. A. S. S. Rao and J. A. Vazquez, “Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone-based survey in the populations when cities/towns are under quarantine,” Infection Control & Hospital Epidemiology, p. 1–18, 2020. 31. B. M. Silva, J. J. Rodrigues, I. [de la Torre D´ıez], M. Lopez-Coronado, and K. Saleem, “Mobile-health: A review of current state in 2015,” Journal of Biomedical Informatics, vol. 56, pp. 265 – 272, 2015. 32. Q.-V. Pham, F. Fang, V. N. Ha, M. Le, Z. Ding, L. B. Le, and W.-J. Hwang, “A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art,” CoRR, 2019. [Online]. Available: arxiv.org/abs/1906.08452 33. Q.-V. Pham, T. Leanh, N. H. Tran, B. J. Park, and C. S. Hong, “Decentralized computation offloading and resource allocation for mobile-edge computing: A matching game approach,” IEEE Access, vol. 6, pp. 75 868–75 885, Nov. 2018. 34. O. Gozes, M. Frid-Adar, N. Sagie, H. Zhang, W. Ji, and H. Greenspan, “Coronavirus detection and analysis on chest CT with deep learning,” arXiv preprint arXiv:2004.02640, 2020. 35. M. Barstugan, U. Ozkaya, and S. Ozturk, “Coronavirus (COVID-19) classification using CT images by machine learning methods,” arXiv preprint arXiv:2003.09424, 2020. 36. L. O. Hall, R. Paul, D. B. Goldgof, and G. M. Goldgof, “Finding Covid-19 from chest X-rays using deep learning on a small dataset,” arXiv preprint arXiv:2004.02060, 2020. 37. N. E. M. Khalifa, M. H. N. Taha, A. E. Hassanien, and S. Elghamrawy, “Detection of coronavirus (COVID-19) associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest X-ray dataset,” arXiv preprint arXiv:2004.01184, 2020. 38. A. Abbas, M. M. Abdelsamea, and M. M. Gaber, “Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network,” arXiv preprint arXiv:2003.13815, 2020. 39. K. E. Asnaoui, Y. Chawki, and A. Idri, “Automated methods for detection and classification pneumonia based on X-ray images using deep learning,” arXiv preprint arXiv:2003.14363, 2020. 40. I. D. Apostolopoulos and T. Bessiana, “Covid-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks,” arXiv preprint arXiv:2003.11617, 2020. 41. A. Narin, C. Kaya, and Z. Pamuk, “Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks,” arXiv preprint arXiv:2003.10849, 2020. 42. P. Afshar, S. Heidarian, F. Naderkhani, A. Oikonomou, K. N. Platan-iotis, and A. Mohammadi, “COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images,” 2020. 43. B. Ghoshal and A. Tucker, “Estimating uncertainty and interpretability in deep learning for coronavirus (COVID-19) detection,” arXiv preprint arXiv:2003.10769, 2020. 44. G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sanchez, “A survey on deep learning in medical image analysis,” Medical image analysis, vol. 42, pp. 60–88, 2017. 45. D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image analysis,” Annual review of biomedical engineering, vol. 19, pp. 221– 248, 2017. 46. L. Wang and A. Wong, “COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images,” arXiv preprint arXiv:2003.09871, 2020. 47. O. Gozes, M. Frid-Adar, H. Greenspan, P. D. Browning, H. Zhang, W. Ji, A. Bernheim, and E. Siegel, “Rapid AI development cycle for the coronavirus (COVID-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis,” arXiv preprint arXiv:2003.05037, 2020. 48. S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang, Y. Li, X. Meng et al., “A deep learning algorithm using CT images to screen for corona virus disease (COVID-19),” medRxiv, 2020. 49. U. Ozkaya, S. Ozturk, and M. Barstugan, “Coronavirus (COVID-19) classification using deep features fusion and ranking technique,” arXiv preprint arXiv:2004.03698, 2020. 50. W. cai Dai, H. wen Zhang, J. Yu, H. jian Xu, H. Chen, S. ping Luo, H. Zhang, L. hong Liang, X. liu Wu, Y. Lei, and F. Lin, “CT imaging and differential diagnosis of COVID-19,” Canadian Association of Radiologists Journal, vol. 71, no. 2, pp. 195–200, 2020. 51. S. Chaganti, A. Balachandran, G. Chabin, S. Cohen, T. Flohr, B. Georgescu, P. Grenier, S. Grbic, S. Liu, F. Mellot, N. Murray, S. Nicolaou, W. Parker, T. Re, P. Sanelli, A. W. Sauter, Z. Xu, Y. Yoo, V. Ziebandt, and D. Comaniciu, “Quantification of tomographic patterns associated with COVID-19 from chest CT,” arXiv preprint arXiv:2004.01279, 2020. 52. F. Shan+, Y. Gao+, J. Wang, W. Shi, N. Shi, M. Han, Z. Xue, D. Shen, and Y. Shi, “Lung infection quantification of COVID-19 in CT images with deep learning,” arXiv preprint arXiv:2003.04655, 2020. 53. K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep resid-ual networks,” in European conference on computer vision. Springer, 2016, pp. 630–645. 54. Z. Tang, W. Zhao, X. Xie, Z. Zhong, F. Shi, J. Liu, and D. Shen, “Sever-ity assessment of coronavirus disease 2019 (COVID-19) using quantita-tive features from chest CT images,” arXiv preprint arXiv:2003.11988, 2020. 55. A. Imran, I. Posokhova, H. N. Qureshi, U. Masood, S. Riaz, K. Ali, C. N. John, and M. Nabeel, “AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app,” arXiv preprint arXiv:2004.01275, 2020. 56. C. Qi, D. Karlsson, K. Sallmen, and R. Wyss, “Model studies on the COVID-19 pandemic in Sweden,” arXiv preprint arXiv:2004.01575, 2020. 57. Y.-C. Chen, P.-E. Lu, and C.-S. Chang, “A time-dependent SIR model for COVID-19,” arXiv preprint arXiv:2003.00122, 2020. 58. K. Biswas and P. Sen, “Space-time dependence of corona virus (COVID-19) outbreak,” arXiv preprint arXiv:2003.03149, 2020. 59. N. Crokidakis, “Data analysis and modeling of the evolution of COVID-19 in Brazil,” arXiv preprint arXiv:2003.12150, 2020. 60. G. Gaeta, “A simple SIR model with a large set of asymptomatic infectives,” arXiv preprint arXiv:2003.08720, 2020. 61. R. Dandekar and G. Barbastathis, “Neural network aided quarantine control model estimation of COVID spread in Wuhan, China,” arXiv preprint arXiv:2003.09403, 2020. 62. X. Zhou, N. Hong, Y. Ma, J. He, H. Jiang, C. Liu, G. Shan, L. Su, W. Zhu, and Y. Long, “Forecasting the worldwide spread of COVID-19 based on logistic model and SEIR model,” MedRxiv, 2020. 63. C. Bayes, V. S. y Rosas, and L. Valdivieso, “Modelling death rates due to COVID-19: A Bayesian approach,” arXiv preprint arXiv:2004.02386, 2020. 64. B. M. Ndiaye, L. Tendeng, and D. Seck, “Analysis of the COVID-19 pandemic by SIR model and machine learning technics for forecasting,” 2020. 65. G. Perone, “An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy,” 2020. 66. M. Magdon-Ismail, “Machine learning the phenomenology of COVID-19 from early infection dynamics,” arXiv preprint arXiv:2003.07602, 2020. 67. Z. Hu, Q. Ge, S. Li, E. Boerwincle, L. Jin, and M. Xiong, “Forecasting and evaluating intervention of COVID-19 in the World,” arXiv preprint arXiv:2003.09800, 2020. 68. R. Pal, A. A. Sekh, S. Kar, and D. K. Prasad, “Neural network based country wise risk prediction of COVID-19,” arXiv preprint arXiv:2004.00959, 2020. 69. K. Ganasegeran and S. A. Abdulrahman, Artificial Intelligence Ap-plications in Tracking Health Behaviors During Disease Epidemics. Cham: Springer International Publishing, 2020, pp. 141–155. 70. Z. Hou, F. Du, H. Jiang, X. Zhou, and L. Lin, “Assessment of public attention, risk perception, emotional and behavioural responses to the COVID-19 outbreak: social media surveillance in China,” Risk Perception, Emotional and Behavioural Responses to the COVID-19 Outbreak: Social Media Surveillance in China (3/6/2020), 2020. 71. B. W. Schuller, D. M. Schuller, K. Qian, J. Liu, H. Zheng, and X. Li, “COVID-19 and computer audition: An overview on what speech & sound analysis could contribute in the SARS-CoV-2 corona crisis,” arXiv preprint arXiv:2003.11117, 2020. 72. Y. Ye, S. Hou, Y. Fan, Y. Qian, Y. Zhang, S. Sun, Q. Peng, and K. La-paro, “α-satellite: An AI-driven system and benchmark datasets for hierarchical community-level risk assessment to help combat COVID-19,” arXiv preprint arXiv:2003.12232, 2020. 73. D. Liu, L. Clemente, C. Poirier, X. Ding, M. Chinazzi, J. T. Davis, A. Vespignani, and M. Santillana, “A machine learning methodology for real-time forecasting of the 2019-2020 COVID-19 outbreak using internet searches, news alerts, and estimates from mechanistic models,” arXiv preprint arXiv:2004.04019, 2020. 74. M. Chinazzi, J. T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler, A. Pastore y Piontti, K. Mu, L. Rossi, K. Sun, C. Viboud, X. Xiong, H. Yu, M. E. Halloran, I. M. Longini, and A. Vespignani, “The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak,” Science, 2020. 75. P. Mamoshina, A. Vieira, E. Putin, and A. Zhavoronkov, “Applications of deep learning in biomedicine,” Molecular pharmaceutics, vol. 13, no. 5, pp. 1445–1454, 2016. 76. C. Cao, F. Liu, H. Tan, D. Song, W. Shu, W. Li, Y. Zhou, X. Bo, and Z. Xie, “Deep learning and its applications in biomedicine,” Genomics, Proteomics & Bioinformatics, vol. 16, no. 1, pp. 17 – 32, 2018. 77. S. Ekins, A. C. Puhl, K. M. Zorn, T. R. Lane, D. P. Russo, J. J. Klein, A. J. Hickey, and A. M. Clark, “Exploiting machine learning for end-to-end drug discovery and development,” Nature materials, vol. 18, no. 5, p. 435, 2019. 78. F. Hu, J. Jiang, and P. Yin, “Prediction of potential commercially inhibitors against SARS-CoV-2 by multi-task deep model,” arXiv preprint arXiv:2003.00728, 2020. 79. Y. Ge, T. Tian, S. Huang, F. Wan, J. Li, S. Li, H. Yang, L. Hong, N. Wu, E. Yuan et al., “A data-driven drug repositioning framework discovered a potential therapeutic agent targeting COVID-19,” BioRxiv, 2020. 80. N. Savioli, “One-shot screening of potential peptide ligands on HR1 domain in COVID-19 glycosylated spike (S) protein with deep siamese network,” arXiv preprint arXiv:2004.02136, 2020. 81. A.-T. Ton, F. Gentile, M. Hsing, F. Ban, and A. Cherkasov, “Rapid identification of potential inhibitors of sars-cov-2 main protease by deep docking of 1.3 billion compounds,” Molecular Informatics, 2020. 82. V. Chenthamarakshan, P. Das, I. Padhi, H. Strobelt, K. W. Lim, B. Hoover, S. C. Hoffman, and A. Mojsilovic, “Target-specific and selective drug design for COVID-19 using deep generative models,” arXiv preprint arXiv:2004.01215, 2020. 83. M. Hofmarcher, A. Mayr, E. Rumetshofer, P. Ruch, P. Renz, J. Schimunek, P. Seidl, A. Vall, M. Widrich, S. Hochreiter et al., “Large-scale ligand-based virtual screening for SARS-CoV-2 inhibitors using deep neural networks,” Available at SSRN 3561442, 2020. 84. E. Ong, M. U. Wong, A. Huffman, and Y. He, “COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning,” BioRxiv, 2020. 85. J. Jumper, K. Tunyasuvunakool, P. Kohli, D. Hassabis, and A. Team, “Computational predictions of protein structures associated with COVID-19,” 2020, DeepMind. 86. A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Zˇ´ıdek, A. W. Nelson, A. Bridgland et al., “Improved protein structure prediction using potentials from deep learning,” Nature, pp. 1–5, 2020. 87. A. Strokach, D. Becerra, C. Corbi-Verge, A. Perez-Riba, and P. M. Kim, “Fast and flexible design of novel proteins using graph neural networks,” BioRxiv, 2020. 88. G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, M. Colaneri et al., “A SIDARTHE model of COVID-19 epidemic in italy,” arXiv preprint arXiv:2003.09861, 2020. 89. F. Brauer, C. Castillo-Chavez, and C. Castillo-Chavez, Mathematical models in population biology and epidemiology. Springer, 2012, vol. 2. 90. B. Chen, M. Shi, X. Ni, L. Ruan, H. Jiang, H. Yao, M. Wang, Z. Song, Q. Zhou, and T. Ge, “Visual data analysis and simulation prediction for COVID-19,” arXiv preprint arXiv:2002.07096, 2020. 91. L. Peng, W. Yang, D. Zhang, C. Zhuge, and L. Hong, “Epidemic analysis of COVID-19 in China by dynamical modeling,” arXiv preprint arXiv:2002.06563, 2020. 92. D. Tatrai and Z. Varallyay, “COVID-19 epidemic outcome predictions based on logistic fitting and estimation of its reliability,” arXiv preprint arXiv:2003.14160, 2020. 93. A. Strzelecki, “The second worldwide wave of interest in coronavirus since the COVID-19 outbreaks in South Korea, Italy and Iran: A Google trends study,” arXiv preprint arXiv:2003.10998, 2020. 94. Y.-S. Long, Z.-M. Zhai, L.-L. Han, J. Kang, Y.-L. Li, Z.-H. Lin, L. Zeng, D.-Y. Wu, C.-Q. Hao, M. Tang et al., “Quantitative assessment of the role of undocumented infection in the 2019 novel coronavirus (COVID-19) pandemic,” arXiv preprint arXiv:2003.12028, 2020. 95. R. Gupta, G. Pandey, P. Chaudhary, and S. K. Pal, “SEIR and regression model based COVID-19 outbreak predictions in India,” medRxiv, 2020. 96. S. Heroy, “Metropolitan-scale COVID-19 outbreaks: how similar are they?” arXiv preprint arXiv:2004.01248, 2020. 97. X. Zhao, X. Liu, and X. Li, “Tracking the spread of novel coronavirus (2019-ncov) based on big data,” medRxiv, 2020. 98. C. Zhou, F. Su, T. Pei, A. Zhang, Y. Du, B. Luo, Z. Cao, J. Wang, W. Yuan, Y. Zhu et al., “COVID-19: Challenges to GIS with big data,” Geography and Sustainability, 2020. 99. P. Castorina, A. Iorio, and D. Lanteri, “Data analysis on coro-navirus spreading by macroscopic growth laws,” arXiv preprint arXiv:2003.00507, 2020. 100. A. Notari, “Temperature dependence of COVID-19 transmission,” arXiv preprint arXiv:2003.12417, 2020. 101. V. Lampos, S. Moura, E. Yom-Tov, I. J. Cox, R. McKendry, and M. Edelstein, “Tracking COVID-19 using online search,” arXiv preprint arXiv:2003.08086, 2020. 102. “How China is using AI and big data to fight the coronavirus,” 2020. [Online]. Available: https://www.aljazeera.com/news/2020/03/{China} -ai-big-data-combat-coronavirus-outbreak-200301063901951.html 103. “How China is using big data and artifi-cial intelligence to fight coronavirus,” 2020. [Online]. Available: https://www.internetsearchinc.com/how-{China} -is-using-big-data-and-artificial-intelligence-to-fight-coronavirus/ 104. C. Garattini, J. Raffle, D. N. Aisyah, F. Sartain, and Z. Kozlakidis, “Big data analytics, infectious diseases and associated ethical impacts,” Philosophy & technology, vol. 32, no. 1, pp. 69–85, 2019. 105. C. Li, D. N. Debruyne, J. Spencer, V. Kapoor, L. Y. Liu, B. Zhou, L. Lee, R. Feigelman, G. Burdon, J. Liu et al., “High sensitivity detection of coronavirus SARS-CoV-2 using multiplex PCR and a multiplex-PCR-based metagenomic method,” bioRxiv, 2020. 106. J.-S. Eden, R. Rockett, I. Carter, H. Rahman, J. de Ligt, J. Hadfield, M. Storey, X. Ren, R. Tulloch, K. Basile et al., “An emergent clade of SARS-CoV-2 linked to returned travellers from Iran,” bioRxiv, 2020. 107. I. Ortea and J.-O. Bock, “Re-analysis of SARS-CoV-2 infected host cell proteomics time-course data by impact pathway analysis and network analysis. a potential link with inflammatory response.” BioRxiv, 2020. 108. D. Brann, T. Tsukahara, C. Weinreb, D. W. Logan, and S. R. Datta, “Non-neural expression of SARS-CoV-2 entry genes in the olfactory epithelium suggests mechanisms underlying anosmia in COVID-19 patients,” bioRxiv, 2020. 109. J. R. Lon, Y. Bai, B. Zhong, F. Cai, and H. Du, “Prediction and evolution of B cell epitopes of surface protein in SARS-CoV-2,” bioRxiv, 2020. 110. Y.-H. Jin, L. Cai, Z.-S. Cheng, H. Cheng, T. Deng, Y.-P. Fan, C. Fang, D. Huang, L.-Q. Huang, Q. Huang et al., “A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-ncov) infected pneumonia (standard version),” Military Medical Research, vol. 7, no. 1, p. 4, 2020. 111. S. F. Ahmed, A. A. Quadeer, and M. R. McKay, “Preliminary iden-tification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies,” Viruses, vol. 12, no. 3, p. 254, 2020. 112. A. Banerjee, D. Santra, and S. Maiti, “Energetics based epitope screening in SARS CoV-2 (COVID 19) spike glycoprotein by immuno-informatic analysis aiming to a suitable vaccine development.” bioRxiv, 2020. 113. B. Sarkar, M. A. Ullah, F. T. Johora, M. A. Taniya, and Y. Araf, “The essential facts of wuhan novel coronavirus outbreak in China and Epitope-based vaccine designing against 2019-nCoV,” BioRxiv, 2020. 114. M. I. Abdelmageed, A. H. Abdelmoneim, M. I. Mustafa, N. M. Elfadol, N. S. Murshed, S. W. Shantier, and A. M. Makhawi, “Design of multi epitope-based peptide vaccine against e protein of human 2019-ncov: An immunoinformatics approach,” BioRxiv, 2020. 115. Z. Li, X. Li, Y.-Y. Huang, Y. Wu, L. Zhou, R. Liu, D. Wu, L. Zhang, H. Liu, X. Xu et al., “FEP-based screening prompts drug repositioning against COVID-19,” bioRxiv, 2020. 116. Y. Ge, T. Tian, S. Huang, F. Wan, J. Li, S. Li, H. Yang, L. Hong, N. Wu, E. Yuan et al., “A data-driven drug repositioning framework discovered a potential therapeutic agent targeting COVID-19,” bioRxiv, 2020. 117. B. Udugama, P. Kadhiresan, H. N. Kozlowski, A. Malekjahani, M. Os-borne, V. Y. Li, H. Chen, S. Mubareka, J. Gubbay, and W. C. Chan, “Diagnosing COVID-19: The disease and tools for detection,” ACS Nano, 2020. 118. Q.-V. Pham, L. B. Le, S. Chung, and W. Hwang, “Mobile edge computing with wireless backhaul: Joint task offloading and resource allocation,” IEEE Access, vol. 7, pp. 16 444–16 459, Jan. 2019. 119. Z. Geng, X. Zhang, Z. Fan, X. Lv, Y. Su, and H. Chen, “Recent progress in optical biosensors based on smartphone platforms,” Sensors, vol. 17, no. 11, p. 2449, 2017. 120. “Cisco annual internet report (2018–2023),” 2020. [Online]. Avail-able: https://www.cisco.com/c/en/us/solutions/executive-perspectives/ annual-internet-report/index.html 121. C. S. Wood, M. R. Thomas, J. Budd, T. P. Mashamba-Thompson, K. Herbst, D. Pillay, R. W. Peeling, A. M. Johnson, R. A. McKendry, and M. M. Stevens, “Taking connected mobile-health diagnostics of infectious diseases to the field,” Nature, vol. 566, no. 7745, pp. 467– 474, 2019. 122. R. Magar, P. Yadav, and A. B. Farimani, “Potential neutralizing antibodies discovered for novel corona virus using machine learning,” arXiv preprint arXiv:2003.08447, 2020. 123. H. Yoon, J. Macke, A. P. West Jr, B. Foley, P. J. Bjorkman, B. Korber, and K. Yusim, “CATNAP: a tool to compile, analyze and tally neutralizing antibody panels,” Nucleic acids research, vol. 43, no. W1, pp. W213–W219, 2015. 124. S. Offermanns and W. Rosenthal, Eds., IC50 Values. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 611–611. [Online]. Available: https://doi.org/10.1007/978-3-540-38918-7 5943 125. H. M. Berman, P. E. Bourne, J. Westbrook, and C. Zardecki, “The protein data bank,” in Protein Structure. CRC Press, 2003, pp. 394– 410. 126. C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, and P.-R. Hsueh, “Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coron-avirus disease-2019 (COVID-19): The epidemic and the challenges,” International Journal of Antimicrobial Agents, vol. 55, no. 3, p. 105924, 2020. 127. “Seoul introduces the COVID-19 AI mon-itoring call system,” 2020. [Online]. Avail-able: http://english.seoul.go.kr/seoul-introduces-the-covid-19-%E3% 80%8Cai-monitoring-call-system%E3%80%8D/ 128. “How next-generation information technologies tackled COVID-19 in China,” 2020. [Online]. Available: www.weforum.org/agenda/2020/04/ how-next-generation-information-technologies-tackled-covid-19-in-china/ 129. “How DAMO academy’s AI system detects coronavirus cases,” 2020. [Online]. Available: https://www.alizila.com/ how-damo-academys-ai-system-detects-coronavirus-cases/ 130. R. Kalkreuth and P. Kaufmann, “COVID-19: A survey on public medical imaging data resources,” arXiv preprint arXiv:2004.04569, 2020. 131. D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Blockchain for 5G and beyond networks: A state of the art survey,” arXiv preprint arXiv:1912.05062, 2019. 132. D. Nguyen, M. Ding, P. N. Pathirana, and A. Seneviratne, “Blockchain and AI-based solutions to combat coronavirus (COVID-19)-like epidemics: A survey,” 10.36227/techrxiv.12121962.v1, 2020. 133. T.-T. Kuo, H.-E. Kim, and L. Ohno-Machado, “Blockchain distributed ledger technologies for biomedical and health care applications,” Jour-nal of the American Medical Informatics Association, vol. 24, no. 6, pp. 1211–1220, 2017. 134. “MiPasa project and IBM Blockchain team on open data platform to support covid-19 response,” 2020. [Online]. Available: https: //www.ibm.com/blogs/blockchain/ 2020/03 135. Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” ACM Transactions on Intelligent Systems and Technology, vol. 10, no. 2, pp. 1–19, 2019. 136. H. Gao, C. H. Liu, W. Wang, J. Zhao, Z. Song, X. Su, J. Crowcroft, and K. K. Leung, “A survey of incentive mechanisms for participatory sensing,” IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 918–943, 2015. 137. “AI and cloud computing used to develop COVID-19 vaccine,” 2020. [Online]. Available: https://www.drugtargetreview.com/news/ 59650/ai-and-cloud-computing-used-to-develop-covid-19-vaccine/ 138. “3 ways China is using drones to fight coronavirus,” 2020. [Online]. Available: https://www.forbes.com/sites/zakdoffman/2020/03/ 05/meet-the-coronavirus-spy-drones-that-make-sure-you-stay-home 139. “Social distancing for coronavirus COVID-19,” 2020. [Online]. Available: https://www.health.gov.au/ news/health-alerts/novel-coronavirus-2019-ncov-health-alert/how-to-protect-yourself-and-others-from-coronavirus-covid-19/ social-distancing-for-coronavirus-covid-19
Content type: Bachelor Thesis
Apareix a les col·leccions:122 — Компʼютерні науки (бакалаври)

Arxius per aquest ítem:
Arxiu Descripció MidaFormat 
2021_KRB_SNs-42_Rakush_V_V.pdf1,1 MBAdobe PDFVeure/Obrir


Els ítems de DSpace es troben protegits per copyright, amb tots els drets reservats, sempre i quan no s’indiqui el contrari.

Eines d'Administrador