Använd denna länk för att citera eller länka till detta dokument: http://elartu.tntu.edu.ua/handle/lib/35788
Titel: Дослідження давачів для інформаційних систем віддаленого моніторингу стану здоров’я
Övriga titlar: Study of information systems sensors of health state remote monitoring
Författare: Католік, Руслан Віталійович
Catholic, Ruslan
Affiliation: ТНТУ ім. І. Пулюя, Факультет комп’ютерно-інформаційних систем і програмної інженерії, Кафедра комп’ютерних наук, м. Тернопіль, Україна
Bibliographic description (Ukraine): Католік Р. В. Дослідження давачів для інформаційних систем віддаленого моніторингу стану здоров’я : кваліфікаційна робота освітнього рівня „Бакалавр“ „122 — комп’ютерні науки“ / Р. В. Католік. — Тернопіль : ТНТУ, 2021. — 57 с.
Utgivningsdatum: 24-jun-2021
Submitted date: 10-jun-2021
Date of entry: 11-jul-2021
Country (code): UA
Place of the edition/event: ТНТУ ім. І.Пулюя, ФІС, м. Тернопіль, Україна
Supervisor: Мацюк, Олександр Васильович
Committee members: Цуприк, Галина Богданівна
UDC: 004.62
Nyckelord: давачі
sensors
моніторинг
monitoring
інформаційна система
information system
дослідження
research
Sammanfattning: У цій роботі представлено найсучасніший огляд фізіологічних параметрів та систем моніторингу активності, розроблених на платформі, що носиться. Основною метою такої системи моніторингу здоров’я є надання людям можливості вести самостійне та активне життя у звичному домашньому середовищі, забезпечуючи при цьому постійний, неінвазивний, ненав’язливий та безперешкодний нагляд за своїм здоров’ям та фізичним станом. Розвиток технологій за останні кілька десятиліть призводить до виготовлення та використання мініатюрних, малопотужних, недорогих давачів, електронних компонентів та потужних комп'ютерів, що відкриває шлях до неінвазивнго та постійного моніторингу стану здоров’я людини за дуже низькою вартістю.
This paper presents a state-of-the-art overview of physiological parameters and activity monitoring systems developed on a wearable platform. The main purpose of such a health monitoring system is to enable people to lead an independent and active life in a normal home environment, while ensuring constant, non-invasive, unobtrusive and unhindered supervision of their health and physical condition. The development of technology over the last few decades has led to the manufacture and use of miniature, low-power, low-cost sensors, electronic components and powerful computers, paving the way for non-invasive and continuous monitoring of human health at very low cost.
Content: Вступ 1 Системи моніторингу охорони здоров’я 1.1 Система моніторингу серцево-судинної системи 1.2 Система моніторингу активності 1.3 Система контролю температури тіла 1.4 Система моніторингу гальванічної реакції шкіри 1.5 Системи моніторингу насичення киснем крові 1.6 Носимі давачі на текстильній основі 1.6.1 Текстильні електроди 1.6.2 Давачі температури на текстильній основі 1.6.3 Текстильні давачі для вимірювання активності 2 Комунікаційні технології для носимих систем 2.1 Короткий огляд протоколів бездротового зв'язку короткого діапазону 3 Безпека життєдіяльності, основи хорони праці 3.1 Навчання з питань охорони праці 3.2 Організація оповіщення і зв'язку в надзвичайних ситуаціях техногенного та природного характеру Висновки Список використаних джерел
URI: http://elartu.tntu.edu.ua/handle/lib/35788
Copyright owner: © Католік Руслан Віталійович, 2021
References (Ukraine): 1. Vaishnav, S.; Stevenson, R.; Marchant, B.; Lagi, K.; Ranjadayalan, K.; Timmis, A.D. Relation between heart rate variability early after acute myocardial infarction and long-term mortality. Am. J. Cardiol. 1994, 73, 653–657. 2. Bigger, J.T.; Fleiss, J.L.; Kleiger, R.; Miller, J.P.; Rolnitzky, L.M. The relationships among ventricular arrhythmias, left ventricular dysfunction, and mortality in the 2 years after myocardial infarction. Circulation 1984, 69, 250–258. 3. Kleiger, R.E.; Miller, J.; Bigger, J.; Moss, A.J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987, 59, 256–262. 4. Nemati, E.; Deen, M.; Mondal, T. A wireless wearable ECG sensor for long-term applications. IEEE Commun. Mag. 2012, 50, 36–43. 5. Hadjem, M.; Salem, O.; Nait-Abdesselam, F. An ECG monitoring system for prediction of cardiac anomalies using WBAN. In Proceedings of the 2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom), Natal, Brazil, 15–18 October 2014. 6. Andreoni, G.; Perego, P.; Standoli, C. Wearable monitoring of elderly in an ecologic setting: The SMARTA project. Available online: https://sciforum.net/conference/ecsa-2/paper/3192/download/pdf (accessed on 5 January 2017). 7. Tseng, K.C.; Lin, B.-S.; Liao, L.-D.; Wang, Y.-T.; Wang, Y.-L. Development of a Wearable Mobile Electrocardiogram Monitoring System by Using Novel Dry Foam Electrodes. IEEE Syst. J. 2014, 8, 900–906. 8. Lee, J.; Heo, J.; Lee, W.; Lim, Y.; Kim, Y.; Park, K. Flexible Capacitive Electrodes for Minimizing Motion Artifacts in Ambulatory Electrocardiograms. Sensors 2014, 14, 14732–14743. 9. Nemati, E.; Deen, M.; Mondal, T. A wireless wearable ECG sensor for long-term applications. IEEE Commun.Mag. 2012, 50, 36–43. 10. Komensky, T.; Jurcisin, M.; Ruman, K.; Kovac, O.; Laqua, D.; Husar, P. Ultra-wearable capacitive coupled and common electrode-free ECG monitoring system. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 1594–1597. 11. Park, J.-H.; Jang, D.-G.; Park, J.; Youm, S.-K. Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor. Sensors 2015, 15, 23402–23417. 12. Shu, Y.; Li, C.; Wang, Z.; Mi, W.; Li, Y.; Ren, T.-L. A Pressure sensing system for heart rate monitoring with polymer-based pressure sensors and an anti-interference post processing circuit. Sensors 2015, 15, 3224–3235. 13. Yoon, S.; Cho, Y.-H. A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester. J. Phys. Conf. Ser.2014, 557, 012026. 14. Mulroy, S.; Gronley, J.; Weiss, W.; Newsam, C.; Perry, J. Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke. Gait Posture 2003, 18, 114–125. 15. Snijders, A.H.; Warrenburg, B.P.V.D.; Giladi, N.; Bloem, B.R. Neurological gait disorders in elderly people: Clinical approach and classification. Lancet Neurol. 2007, 6, 63–74. 16. Coutinho, E.S.F.; Bloch, K.V.; Coeli, C.M. One-year mortality among elderly people after hospitalization due to fall-related fractures: Comparison with a control group of matched elderly. Cadernos de Saúde Pública 2012, 28, 801–805. 17. Zhou, Z.; Dai, W.; Eggert, J.; Giger, J.; Keller, J.; Rantz, M.; He, Z. A real-time system for in-home activity monitoring of elders. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 6115–6118. 18. Ni, B.; Wang, G.; Moulin, P. RGBD-HuDaAct: A Color-Depth Video Database for Human Daily Activity Recognition. In Consumer Depth Cameras for Computer Vision; Springer: London, UK, 2013; pp. 193–208. 19. Deen, M.J. Information and communications technologies for elderly ubiquitous healthcare in a smart home. Pers. Ubiquitous Comput. 2015, 19, 573–599. 20. Derawi, M.; Bours, P. Gait and activity recognition using commercial phones. Comput. Secur. 2013, 39, 137–144. 21. De, D.; Bharti, P.; Das, S.K.; Chellappan, S. Multimodal Wearable Sensing for Fine-Grained Activity Recognition in Healthcare. IEEE Internet Comput. 2015, 19, 26–35. 22. Bertolotti, G.M.; Cristiani, A.M.; Colagiorgio, P.; Romano, F.; Bassani, E.; Caramia, N.; Ramat, S. A Wearable and Modular Inertial Unit for Measuring Limb Movements and Balance Control Abilities. IEEE Sens. J. 2016, 16, 790–797. 23. Bejarano, N.C.; Ambrosini, E.; Pedrocchi, A.; Ferrigno, G.; Monticone, M.; Ferrante, S. A Novel Adaptive, Real-Time Algorithm to Detect Gait Events from Wearable Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 413–422. 24. Alshurafa, N.; Xu, W.; Liu, J.J.; Huang, M.-C.; Mortazavi, B.; Roberts, C.K.; Sarrafzadeh, M. Designing a Robust Activity Recognition Framework for Health and Exergaming Using Wearable Sensors. IEEE J. Biomed. Health Inform. 2014, 18, 1636–1646. 25. Kräuchi, K.; Konieczka, K.; Roescheisen-Weich, C.; Gompper, B.; Hauenstein, D.; Schoetzau, A.; Fraenkl, S.; Flammer, J. Diurnal and menstrual cycles in body temperature are regulated differently: A 28-day ambulatory study in healthy women with thermal discomfort of cold extremities and controls. Chronobiol. Int. 2013, 31, 102–113. 26. Coyne, M.D.; Kesick, C.M.; Doherty, T.J.; Kolka, M.A.; Stephenson, L.A. Circadian rhythm changes in core temperature over the menstrual cycle: Method for noninvasive monitoring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R1316–R1320. 27. Reith, J.; Jorgensen, H.S.; Pedersen, P.M.; Nakamaya, H.; Jeppesen, L.L.; Olsen, T.S.; Raaschou, H.O. Body temperature in acute stroke: Relation to stroke severity, infarct size, mortality, and outcome. Lancet 1996, 347, 422–425. 28. Buller, M.J.; Tharion, W.J.; Cheuvront, S.N.; Montain, S.J.; Kenefick, R.W.; Castellani, J.; Latzka, W.A.; Roberts, W.S.; Richter, M.; Jenkins, O.C.; et al. Estimation of human core temperature from sequential heart rate observations. Physiol. Meas. 2013, 34, 781–798. 29. Oguz, P.; Ertas, G. Wireless dual channel human body temperature measurement device. In Proceedings of the 2013 International Conference on Electronics, Computer and Computation (ICECCO), Ankara, Turkey, 7–9 November 2013; pp. 52–55. 30. Boano, C.A.; Lasagni, M.; Romer, K.; Lange, T. Accurate Temperature Measurements for Medical Research Using Body Sensor Networks. In Proceedings of the 2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, Newport Beach, CA, USA, 28–31 March 2011; pp. 189–198. 31. Boano, C.A.; Lasagni, M.; Romer, K. Non-invasive measurement of core body temperature in Marathon runners. In Proceedings of the 2013 IEEE International Conference on Body Sensor Networks, Cambridge, MA, USA, 6–9 May 2013; pp. 1–6. 32. Baker, C. Method and System for Controlled Maintenance of Hypoxia for Therapeutic or Diagnostic Purposes. U.S. Patent No. US 11/241,062, 30 September 2005. 33. O’driscoll, B.R.; Howard, L.S.; Davison, A.G. BTS guideline for emergency oxygen use in adult patients. Thorax 2008, 63, vi1–vi68. 34. Duun, S.B.; Haahr, R.G.; Birkelund, K.; Thomsen, E.V. A Ring-Shaped Photodiode Designed for Use in a Reflectance Pulse Oximetry Sensor in Wireless Health Monitoring Applications. IEEE Sens. J. 2010, 10, 261–268. 35. Chen, W.; Ayoola, I.; Oetomo, S.B.; Feijs, L. Non-invasive blood oxygen saturation monitoring for neonates using reflectance pulse oximeter. In Proceedings of the 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), Dresden, Germany, 8–12 March 2010; pp. 1530–1535. 36. Li, K.; Warren, S. A Wireless Reflectance Pulse Oximeter with Digital Baseline Control for Unfiltered Photoplethysmograms. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 269–278. 37. Guo, D.; Tay, F.E.; Xu, L.; Yu, L.; Nyan, M.; Chong, F.; Yap, K.; Xu, B. A Long-term Wearable Vital Signs Monitoring System using BSN. In Proceedings of the 2008 11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools, Parma, Italy, 3–5 September 2008; pp. 825–830. 38. Petersen, C.; Chen, T.; Ansermino, J.; Dumont, G. Design and Evaluation of a Low-Cost Smartphone Pulse Oximeter. Sensors 2013, 13, 16882–16893. 39. Sola, J.; Castoldi, S.; Chetelat, O.; Correvon, M.; Dasen, S.; Droz, S.; Jacob, N.; Kormann, R.; Neumann, V.; Perrenoud, A.; et al. SpO2 Sensor Embedded in a Finger Ring: Design and implementation. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 31 August–3 September 2006; pp. 4295–4298. 40. Cai, Q.; Sun, J.; Xia, L.; Zhao, X. Implementation of a wireless pulse oximeter based on wrist band sensor. In Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China, 16–18 October 2010; pp. 1897–1900. 41. Tavakoli, M.; Turicchia, L.; Sarpeshkar, R. An Ultra-Low-Power Pulse Oximeter Implemented With an Energy-Efficient Transimpedance Amplifier. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 27–38. 42. Mendelson, Y.; Duckworth, R.J.; Comtois, G. A Wearable Reflectance Pulse Oximeter for Remote Physiological Monitoring. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 31 August–3 September 2006; pp. 912–915. 43. Haahr, R.G.; Duun, S.B.; Toft, M.H.; Belhage, B.; Larsen, J.; Birkelund, K.; Thomsen, E.V. An Electronic Patch for Wearable Health Monitoring by Reflectance Pulse Oximetry. IEEE Trans. Biomed. Circuits Syst. 2012, 6,45–53. 44. Scully, C.G.; Lee, J.; Meyer, J.; Gorbach, A.M.; Granquist-Fraser, D.; Mendelson, Y.; Chon, K.H. Physiological Parameter Monitoring from Optical Recordings With a Mobile Phone. IEEE Trans. Biomed. Eng. 2012, 59, 303–306. 45. Halonen, T.; Romero, J.; Melero, J. GSM, GPRS and EDGE Performance: Evolution towards 3G/UMTS; John Wiley & Sons: Hoboken, NJ, USA, 2002. 46. Salkintzis, K. Mobile Internet: Enabling Technologies and Services; CRC Press: Boca Raton, FL, USA, 2004. 47. Dahlman, E.; Parkvall, S.; Skold, J.; Beming, P. 3G Evolution: HSPA and LTE for Mobile Broadband; Academic Press: Cambridge, MA, USA, 2010. 48. Ren, Y.; Werner, R.; Pazzi, N.; Boukerche, A. Monitoring patients via a secure and mobile healthcare system. IEEE Wirel. Commun. 2010, 17, 59–65. 49. Jang, C.S.; Lee, D.G.; Han, J.-W.; Park, J.H. Hybrid security protocol for wireless body area networks.Wirel. Commun. Mob. Comput. 2011, 11, 277–288. 50. Agrawal, V. Security and Privacy Issues in Wireless Sensor Networks for Healthcare. Internet Things User-Centric IoT 2015, 36, 223–228. 51. Shoshani, B.; David, R.B. Vertical Conductive Textile Traces and Methods of Knitting Thereof. U.S. Patent No. US 14/646,971, 23 November 2013. 52. Matsuhisa, N.; Kaltenbrunner, M.; Yokota, T.; Jinno, H.; Kuribara, K.; Sekitani, T.; Someya, T. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 2015, 6, 7461. 53. Parkova, I.; Vališevskis, A.; Ziemele, I.; Briedis, U.; Vilumsone, A. Improvements of Smart Garment Electronic Contact System. Adv. Sci. Technol. 2013, 80, 90–95. 54. Laine, T.H.; Lee, C.; Suk, H. Mobile Gateway for Ubiquitous Health Care System Using ZigBee and Bluetooth. In Proceedings of the 2014 Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Birmingham, UK, 2–4 July 2014; pp. 139–145. 55. Touati, F.; Tabish, R. U-Healthcare System: State-of-the-Art Review and Challenges. J. Med. Syst. 2013, 37, 1–20. 56. Dementyev, A.; Hodges, S.; Taylor, S.; Smith, J. Power consumption analysis of Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario. In Proceedings of the 2013 IEEE International Wireless Symposium (IWS), Beijing, China, 14–18 April 2013; pp. 1–4. 57. Malhi, K.; Mukhopadhyay, S.; Schnepper, J.; Haefke, M.; Ewald, H. A Zigbee-Based Wearable Physiological Parameters Monitoring System. IEEE Sens. J. 2012, 12, 423–430. 58. Mehmood, N.Q.; Culmone, R. An ANT Protocol Based Health Care System. In Proceedings of the 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops, Guwangiu, Korea, 24–27 March 2015; pp. 193–198. 59. Savci, H.; Sula, A.; Wang, Z.; Dogan, N.; Arvas, E. MICS Transceivers: Regulatory Standards and Applications. In IEEE SoutheastCon Proceedings; IEEE: Piscataway, NJ, USA, 2005; pp. 179–182. 60. Fang, Q.; Lee, S.Y.; Permana, H.; Ghorbani, K.; Cosic, I. Developing a Wireless Implantable Body Sensor Network in MICS Band. IEEE Trans. Inform. Technol. Biomed. 2011, 15, 567–576. 61. Zhen, B.; Li, H.B.; Kohno, R. Networking issues in medical implant communications. Int. J. Multimed. Ubiquitous Eng. 2009, 4, 23–38. 62. Lazaro, A.; Girbau, D.; Villarino, R. Analysis of Vital Signs Monitoring Using an Ir-Uwb Radar. Prog. Electromagn. Res. 2010, 100, 265–284. 63. Chu, Y.; Ganz, A. A UWB-based 3D location system for indoor environments. In Proceedings of the 2nd International Conference on Broadband Networks, Boston, MA, USA, 3–7 October 2005; pp. 1147–1155. 64. Yoo, H.-J.; Cho, N. Body channel communication for low energy BSN/BAN. In Proceedings of the APCCAS 2008—2008 IEEE Asia Pacific Conference on Circuits and Systems, Macao, China, 30 November–3 December 2008; pp. 7–11. 65. Sole, M.; Musu, C.; Boi, F.; Giusto, D.; Popescu, V. RFID sensor network for workplace safety management. In Proceedings of the 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), Cagliari, Italy, 10–13 September 2013; pp. 1–4. 66. Liu, Y. A Heart Rate Finger Ring and Its Smartphone APP through Customized NFC. Master’s Thesis, Rose-Hulman Institute of Technology, Terre Haute, IN, USA, 2015. 67. Fontecha, J.; Hervas, R.; Bravo, J.; Villarreal, V. An NFC Approach for Nursing Care Training. In Proceedings of the 2011 Third International Workshop on Near Field Communication, Hagenberg, Austria, 22–23 February 2011; pp. 38–43.
Content type: Bachelor Thesis
Samling:122 — Компʼютерні науки (бакалаври)

Fulltext och övriga filer i denna post:
Fil Beskrivning StorlekFormat 
2021_KRB_SNs-42_Catcholic_R_V.pdf711,12 kBAdobe PDFVisa/Öppna


Materialet i DSpace är upphovsrättsligt skyddat och får ej användas i kommersiellt syfte!

Administrativa verktyg