Ezzel az azonosítóval hivatkozhat erre a dokumentumra forrásmegjelölésben vagy hiperhivatkozás esetén: http://elartu.tntu.edu.ua/handle/lib/34801

Title: Comparative analysis of neurointerface technologies for the problem of their reasonable choice in human-machine information systems
Other Titles: Компаративний аналіз нейроінтерфейсних технологій для задачі обґрунтованого їх вибору в інформаційних системах людино-машинних взаємодій
Authors: Буцій, Роман Андрійович
Лупенко, Сергій Анатолійович
Butsiy, Roman
Lupenko, Serhii
Affiliation: Інститут телекомунікацій та глобального інформаційного простору, Київ, Україна
Тернопільський національний технічний університет імені Івана Пулюя, Тернопіль, Україна
Institute of Telecommunications and Global Information Space, Kyiv, Ukraine
Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
Bibliographic description (Ukraine): Butsiy R. Comparative analysis of neurointerface technologies for the problem of their reasonable choice in human-machine information systems / Roman Butsiy, Serhii Lupenko // Scientific Journal of TNTU. — Tern. : TNTU, 2020. — Vol 4. — No 100. — P. 135–148.
Bibliographic description (International): Butsiy R., Lupenko S. (2020) Comparative analysis of neurointerface technologies for the problem of their reasonable choice in human-machine information systems. Scientific Journal of TNTU (Tern.), vol. 4, no 100, pp. 135-148.
Is part of: Вісник Тернопільського національного технічного університету, 100 (4), 2020
Scientific Journal of the Ternopil National Technical University, 100 (4), 2020
Journal/Collection: Вісник Тернопільського національного технічного університету
Issue: 100
Volume: 4
Issue Date: 22-dec-2020
Submitted date: 14-sze-2020
Date of entry: 1-ápr-2021
Publisher: ТНТУ
TNTU
Place of the edition/event: Тернопіль
Ternopil
DOI: https://doi.org/10.33108/visnyk_tntu2020.04.135
UDC: 004.021
004.77
Keywords: нейроінтерфейс
компаративний аналіз
опрацювання сигналів
електроенцефалограма
neurointerface
cassification
signal processing
comparative analysis
EEG
Number of pages: 14
Page range: 135-148
Start page: 135
End page: 148
Abstract: Ринок сучасних нейроінтерфейсів, не зважаючи на свій активний розвиток, нажаль, може запропонувати користувачам лише ряд діючих прототипів, які мають відносно низьку точність та достовірність ідентифікації керуючих впливів людини-оператора. Крім того, будь-який нейроінтерфейс, що представлений на ринку, потрібно індивідуально підлаштовувати під кожну людину-оператора, що ускладнює об’єктивізацію його показників точності, достовірності та надійності функціонування. Першим етапом вирішення вищезгаданих проблем є проведення компаративного аналізу різних цінових сегментів ринку існуючих нейроінтерфейсних технологій, що і зроблено у даній праці. В ході дослідження ринку виявлено, що не зважаючи на недоліки електроенцефалографії вона є одним з найдоступніших неінвазивних методів реєстрації біологічних сигналів у нейроінтерфейсних системах. Для полегшення майбутніх досліджень, було розглянуто та проаналізовано основні переваги й недоліки відомих моделей і методів аналізу сигналів в нейроінтерфейсах. Зокрема, в контексті попереднього опрацювання сигналів розглянуто недоліки та переваги таких методів, як Common Average Referencing, Independent Component Analysis, Common Spatial Patterns, Surface Laplacian, Common Spatio-Spatial Patterns та Adaptive Filtering. На етапі оцінювання інформативних характеристик сигналу проведено аналіз моделей та методів, що ґрунтуються на моделі адаптивних параметрів авторегресії, білінійної авторегресії, багатовимірної авторегресії, швидкого перетворення Фур'є, вейвлет-перетворення, розкладання хвильових пакетів. Також здійснено порівняльний аналіз найпоширеніших методів ідентифікації керуючих впливів людини-оператора нейроінтерфейса, а саме, метод дискримінантного аналізу, метод опорних векторів, нелінійні баєсівські класифікатори, класифікатори найближчих сусідів, штучні нейронні мережі. На основі наведеного матеріалу запропоновано узагальнений підхід до обґрунтованого вибору методів, моделей та програмно-апаратних засобів для розроблення нейроінтерфейсних систем у прикладних областях їх можливого застосування. Проведене дослідження нейроінтерфейсних технологій надає дослідникам додаткові підстави щодо обґрунтованого вибору математичного, програмного та апаратного забезпечення нейроінтерфейсних систем, а також сприяє розроблення їх нових версій із підвищеними показниками точності, достовірності та надійності
The market of modern neurointerfaces, despite its active development, unfortunately, can offer users only a number of existing prototypes that have a relatively low accuracy and identification reliability of the human operator control effects. In addition, any neurointerface on the market must be individually tailored to each operator, which makes it difficult to objectify its accuracy, precision and reliability. The first step in solving the above problems is to conduct a comparative analysis of different price segments of the market of existing neurointerface technologies, as presented in this article. The market research revealed that despite the disadvantages of electroencephalography, it is one of the most accessible non-invasive methods of recording biological signals in neurointerface systems. To facilitate future research, the main advantages and disadvantages of known models and methods of signal analysis in neurointerfaces have been considered and analyzed. In particular, in the context of signal pre-processing, advantages and disadvantages of such methods as Common Average Referencing, Independent Component Analysis, Common Spatial Patterns, Surface Laplacian, Common Spatio-Spatial Patterns and Adaptive Filtering are considered. At the stage of evaluating the informative characteristics of the signal, the analysis of models and methods based on the models of adaptive parameters of autoregression, bilinear autoregression, multidimensional autoregression, fast Fourier transform, wavelet transformation, wave packet decomposition is performed. Besides, a comparative analysis of the most common methods of identification (recognition) of control effects of the human neurointerface operator, namely, the method of discriminant analysis, the method of reference vectors, nonlinear Bayesian classifiers, classifiers of nearest neighbors, artificial neural networks is carried out. The study of neurointerface technologies provides researchers with additional grounds for a sound choice of mathematical, software and hardware of neurointerface systems, as well as contributes to the development of new versions with increased accuracy, reliability and reliability.
URI: http://elartu.tntu.edu.ua/handle/lib/34801
ISSN: 1727-7108
Copyright owner: © Тернопільський національний технічний університет імені Івана Пулюя, 2020
URL for reference material: https://doi.org/10.1016/j.mayocp.2011.12.008
https://doi.org/10.1073/pnas.0403504101
https://doi.org/10.14569/IJARAI.2012.010804
https://doi.org/10.1038/35084005
https://doi.org/10.1504/IJBET.2013.055044
https://doi.org/10.1016/S0013-4694(97)00022-2
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1007/BF01129656
https://doi.org/10.1109/TBME.2010.2082539
https://doi.org/10.1016/0013-4694(75)90056-5
https://doi.org/10.1109/10.83591
https://doi.org/10.1137/0515056
https://doi.org/10.1002/andp.19053220607
https://doi.org/10.1016/j.measurement.2007.07.007
https://doi.org/10.1088/1741-2552/aab2f2
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/TNSRE.2003.814441
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.33108/visnyk_tntu2020.01.110
References (Ukraine): 1. Tufte E. R. «Envisioning Information» Cheshire. CT: Graphics Press, 1990.
2. Suchman L. A. «Plans and situated actions: the problem of human-machine communication.» Cambridge University Press. Cambridge. UK 1987.
3. Lupenko C., ButsIy R. SuchasnI neyroInterfeysnI tehnologiyi: aktualnIst, perspektivi ta skladnosti. Mizhnarodna naukova konferentsIya «Ivan Pulyuy: zhittya v Im’ya nauki ta UkraYini», 28–30 veresnya 2020 r.: tezi dop. TernopIl, 2020. Р. 81–82.
4. Shih J., Krusienski D., Wolpaw J. «Brain-Computer Interfaces in Medicine». Mayo Clin Pro. 2012. Том 87. № 3. С. 268–279. DOI: https://doi.org/10.1016/j.mayocp.2011.12.008
5. Wolpaw J., McFarland D. Control of a two -dimensional movement signal by a noninvasive brain–computer interface in humans. Proc Natl Acad Sci. 2004. Том 101. № 51. DOI: https://doi.org/10.1073/pnas.0403504101
6. Буцій Р., Лупенко C. Аналіз основних характеристик комерційних нейроінтерфейсів: IX Міжнародна науково-технічна конференція молодих учених та студентів «Актуальні задачі сучасних технологій», 25–26 листопада 2020 р.: тези доп. Тернопіль, 2020. Том 2. С. 9–10.
7. T. Kameswara Rao, M. Rajya Lakshmi, Dr. T. V. Prasad. An Exploration of Brain Computer Interface and Its Recent Trends. Int. J. of Advanced Research in Artificial Intelligence. 2012. Том 1. № 8. DOI: https://doi.org/10.14569/IJARAI.2012.010804
8. William O. Ellen R. Grass Lecture: Extraordinary EEG. Neurodiagnostic Journal. 2014. Том 54. С. 3–21.
9. Logothetis N., Pauls J., Auguth M. A neurophysiological investigation of the basis of the BOLD signal in Fmri. Nature. 2001. Том 412. С. 150–157. DOI: https://doi.org/10.1038/35084005
10. Changde Du., Changying Du., Huiguang He. Sharing deep generative representation for perceived image reconstruction from human brain activity. International Joint Conf. on Neural Networks, 2017.
11. Aruna T., Vijay N. Brain–computer interface: a thought translation device turning fantasy into reality. Int. J. Biomedical Engg. and Tech. 2013. Том 11. № 2. DOI: https://doi.org/10.1504/IJBET.2013.055044
12. Буцій Р., Лупенко C. Аналіз методів для задач опрацювання сигналів нейроінтерфейсних систем: VIII Науково-технічна конференція «Інформаційні моделі, системи та технології», 9–10 грудня 2020 р.: тези доп. Тернопіль, 2020. С. 3.
13. McFarland D., McCane L., David S., Wolpaw J. Spatial filter selection for EEG based communication. Electroencephalogr. Clin. Neurophysiol. 1997. Том 103. № 3. С. 386–394. DOI: https://doi.org/10.1016/S0013-4694(97)00022-2
14. Mohammed J. Common Average Reference (CAR) Improves P300 Speller. Int. J. of Engg. and Tech. 2012. Том 2. № 3.
15. Arnaud D., Scott M. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. of Neuroscience Methods. 2004. Том 134. DOI: https://doi.org/10.1016/j.jneumeth.2003.10.009
16. Jung T., Makeig S., Humphries C. Extended ICA Removes Artefacts from Electroencephalographic Recording. Advances in Neural Inf. Processing Systems. 1998. Том 10.
17. Koles J., Lazaret S., Zhou Z. Spatial patterns underlying population differences in the background EEG. Brain topography. 1990. Том 2. С. 275–284. DOI: https://doi.org/10.1007/BF01129656
18. Fabien L., Cuntai G. Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms. IEEE Trans. On Biomedical Engg. 2011. Том 58. № 2. DOI: https://doi.org/10.1109/TBME.2010.2082539
19. Hjorth B. An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalography and Clinical Neurophysiology. 1975. Том 39. С. 526–530. DOI: https://doi.org/10.1016/0013-4694(75)90056-5
20. Thakor N., Zhu Y. Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. IEEE Transactions on Biomedical Engineering. 1991. Том 38. С. 785–794. DOI: https://doi.org/10.1109/10.83591
21. Chandrakar C., Kowar M. De-noising ECG Signals Using Adaptive Filter Algorithm. Int. J. of Soft Computing and Engg. 2012. Том 2. № 1.
22. AlMejrad S. Human Emotions Detection using Brain Wave Signals. A Challenging, European Journal of Scientific Research. 2010. Том 4.
23. Grossmann A., Morlet J. Grossmann A. Decomposition of Hardsi functions into square integrable wavelets of constant shape. SIAM J. Math. 1984. Том 15. С. 723–736. DOI: https://doi.org/10.1137/0515056
24. Mallat S. Multiresolution representations and wavelets, Ph.D. Thesis, University of Pennsylvania, Philadelphia. 1988.
25. Einstein A. On a Heuristic Viewpoint Concerning the Production and Transformation of Light. Annalen der Physik. 1905. Том 17. С. 132–148. DOI: https://doi.org/10.1002/andp.19053220607
26. Wu T., Yan G., Yang B., Sun H. EEG feature extraction based on wavelet packet decomposition for brain computer interface. Elsevier. 2008. Том 41. С. 618–625. DOI: https://doi.org/10.1016/j.measurement.2007.07.007
27. Lotte F., Bougrain L., Cichocki A. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update.Journal of Neural Engineering. 2018. Том 4. DOI: https://doi.org/10.1088/1741-2552/aab2f2
28. McLachlan G. Discriminant Analysis and Statistical Pattern Recognition. New Jersey: Wiley Interscience, 2004.
29. Senthilmurugan M., Latha M., Malmurugan N. Classification in EEG-Based Brain Computer Interfaces Using Inverse Model. Int. J. of Computer Theory and Engg. 2011. Том 2.
30. Cortes C., Vapnik V. Support-vector networks. Machine Learning. 1995. Том 20. С. 273–297. DOI: https://doi.org/10.1007/BF00994018
31. Garrett D., Peterson D., Anderson C., Thaut M. Comparison of Linear, Nonlinear, and Feature Selection Methods for EEG Signal Classification. IEEE Trans. on Neural Systems And Rehabilitation Engg. 2003. Том 11. № 2. DOI: https://doi.org/10.1109/TNSRE.2003.814441
32. Lotte F. Study of Electroencephalographic Signal Processing and Classification Techniques towards the use of Brain-Co–mputer Interfaces in Virtual Reality Applications: Ph D. Rennes, 2009.
33. M. Rajya Lakshmi, Dr. T. V. Prasad, Dr. V. Chandra Prakash. Survey on EEG Signal Processing Methods. Int. J. of Advanced Research in Computer Science and Software Engineering. 2014. Том 4. С. 84–91.
34. Altman N. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician. 1992. Том 46. С. 175–185. DOI: https://doi.org/10.1080/00031305.1992.10475879
35. Andreas Z. Simulation of Neural Networks. Tuebingen: Addison-Wesley, 1994.
36. Lupenko S., Lytvynenko Ia., Stadnyk N. Method for reducing the computational complexity of processing discrete cyclic random processes in digital data analysis systems. Scientific Journal of TNTU (Tern.). Vol. 97. No. 1. Р. 110–121. DOI: https://doi.org/10.33108/visnyk_tntu2020.01.110
37. Lupenko S., Osukhivska H., Lutsyk N., Stadnyk N., Zozulia A., Shablii N. The comparative analysis of mathematical models of cyclic signals structure and processes. Scientific Journal of TNTU (Tern.). Vol. 82. No. 2. Р. 115–127.
References (International): 1. Tufte, E. R. “Envisioning Information.” Cheshire, CT: Graphics Press, 1990.
2. Suchman, L. A. “Plans and situated actions: the problem of human-machine communication.” Cambridge University Press, Cambridge, UK 1987.
3. Lupenko S. A., Butsiy R. A. “Modern neurointerface technologies: actuality, prospects and complexities”, International Scientific and Technical Conference “Ivan Puluj: life in the name of science and Ukraine”, 2020. P. 81–82.
4. Shih J., Krusienski D., Wolpaw J., “Brain-Computer Interfaces in Medicine”. Mayo Clin Pro. Vol. 87. No. 3, 2012. P. 268–279. DOI: https://doi.org/10.1016/j.mayocp.2011.12.008
5. Wolpaw J., McFarland D., “Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans”. Proc Natl Acad Sci. Vol. 101. No. 51. 2004. DOI: https://doi.org/10.1073/pnas.0403504101
6. ButsIy R., Lupenko C. AnalIz osnovnih harakteristik komertsIynih neyroInterfeysIv. IX MIzhnarodna naukovo-tehnIchna konferentsIya molodih uchenih ta studentIv “AktualnI zadachI suchasnih tehnologIy”, 25–26 listopada 2020 r.: tezi dop. TernopIl, 2020. Tom 2. Р. 9–10.
7. T. Kameswara Rao, M. Rajya Lakshmi, Dr. T. V. Prasad, “An Exploration of Brain Computer Interface and Its Recent Trends”, Int. J. of Advanced Research in Artificial Intelligence. Vol. 1. No. 8. 2012. DOI: https://doi.org/10.14569/IJARAI.2012.010804
8. William O., Ellen R., “Grass Lecture: Extraordinary EEG”, Neurodiagnostic Journal. Vol. 54.2014. P. 3–21.
9. Logothetis N., Pauls J., Auguth M., Trinath T., Oeltermann A., “A neurophysiological investigation of the basis of the BOLD signal in fMRI”. Nature. Vol. 412. 2001. P. 150–157. DOI: https://doi.org/10.1038/35084005
10. Changde Du., Changying Du., Huiguang He. “Sharing deep generative representation for perceived image reconstruction from human brain activity”. International Joint Conference on Neural Networks. 2017.
11. Aruna T., Vijay N., “Brain-computer interface: a thought translation device turning fantasy into reality”, Int. J. Biomedical Engg. and Tech. Vol. 11. No. 2. 2013. DOI: https://doi.org/10.1504/IJBET.2013.055044
12. ButsIy R., Lupenko C. AnalIz metodIv dlya zadach opratsyuvannya signalIv neyroInterfeysnih sistem. VIII Naukovo-tehnIchna konferentsIya “InformatsIynI modelI, sistemi ta tehnologIYi”, 9 –10 grudnya 2020 r.: tezi dop. TernopIl, 2020. Р. 3.
13. D. J. McFarland, L. M. McCane, S. V. David, and J. R. Wolpaw, “Spatial filter selection for EEGbased communication”, Electroencephalogr. Clin. Neurophysiol. Vol. 103. No. 3.1997. P. 386–394. DOI: https://doi.org/10.1016/S0013-4694(97)00022-2
14. Mohammed J., “Common Average Reference (CAR) Improves P300 Speller”, Int. J. of Engg. and Tech. Vol. 2. No. 3. 2012.
15. Arnaud D., Scott M., “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis”. J. of Neuroscience Methods. Vol. 134. 2004. DOI: https://doi.org/10.1016/j.jneumeth.2003.10.009
16. Jung T., Makeig S. and Humphries S., “Extended ICA Removes Artefacts from Electroencephalographic Recording”, Advances in Neural Inf. Processing Systems. Cambridge. Vol. 10. 1998.
17. Koles J., Lazaret S., Zhou Z., “Spatial patterns underlying population differences in the background EEG”. Brain topography. Vol. 2. 1990. P. 275–284. DOI: https://doi.org/10.1007/BF01129656
18. Fabien L. and Cuntai G., “Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms”. IEEE Trans. On Biomedical Engg. Vol. 58. No. 2. 2011. DOI: https://doi.org/10.1109/TBME.2010.2082539
19. Hjorth B., “An on-line transformation of EEG scalp potentials into orthogonal source derivations”, Electroencephalography and Clinical Neurophysiology. Vol. 2. 1975. P. 526–530. DOI: https://doi.org/10.1016/0013-4694(75)90056-5
20. Thakor N. and Zhu Y., “Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection”, IEEE Transactions on Biomedical Engineering. Vol. 38 . 1991. P. 785–794. DOI: https://doi.org/10.1109/10.83591
21. Chandrakar C. and Kowar M., “De-noising ECG Signals Using Adaptive Filter Algorithm”, Int. J. of Soft Computing and Engg. Vol. 2. No 1. 2012.
22. AlMejrad S. “Human Emotions Detection using Brain Wave Signals”, European Journal of Scientific Research. Vol. 4. 2010.
23. Grossmann A. and Morlet J. “Decomposition of Hardsi functions into square integrable wavelets of constant shape”. SIAM J. Math. Vol. 15. 1984. P. 723–736. DOI: https://doi.org/10.1137/0515056
24. Mallat S. “Multiresolution representations and wavelets”, Ph.D. Thesis, University of Pennsylvania, Philadelphia. 1988.
25. Einstein A. “On a Heuristic Viewpoint Concerning the Production and Transformation of Light”. Annalen der Physik. Vol. 17.1905. P. 132–148. DOI: https://doi.org/10.1002/andp.19053220607
26. Wu T., Yan G., Yang B., Sun H. “EEG feature extraction based on wavelet packet decomposition for brain computer interface”. Elsevier. Vol. 41. 2008. P. 618–625. DOI: https://doi.org/10.1016/j.measurement.2007.07.007
27. Lotte F., Bougrain L., Cichocki A., Congedo M. “A A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. Journal of Neural Engineering. Vol. 4. 2018. DOI: https://doi.org/10.1088/1741-2552/aab2f2
28. McLachlan G., “Discriminant Analysis and Statistical Pattern Recognition”. New Jersey: Wiley Interscience, 2004.
29. Senthilmurugan M., Latha N., Malmurugan N., “Classification in EEG-Based Brain Computer Interfaces Using Inverse Model”. Int. J.of Computer Theory and Engg. Vol. 2. 2011.
30. Cortes C., Vapnik V. “Support-vector networks”, Machine Learning. Vol. 20. 1995. P. 273–297. DOI: https://doi.org/10.1007/BF00994018
31. Garrett D., Peterson D., Anderson C., Thaut M. “Comparison of Linear, Nonlinear, and Feature Selection Methods for EEG Signal Classification”. IEEE Trans. on Neural Systems And Rehabilitation Engg. Vol. 11. No. 2. June 2003. DOI: https://doi.org/10.1109/TNSRE.2003.814441
32. Lotte F. “Study of Electroencephalographic Signal Processing and Classification Techniques towards the use of Brain-Co–mputer Interfaces in Virtual Reality Applications”. Rennes. 2009.
33. Rajya Lakshmi M., Dr Prasad T. V., Dr Chandra V. “Prakash Survey on EEG Signal Processing Methods”, Int. J. of Advanced Research in Computer Science and Software Engineering. Vol. 4 . 2014. P. 84–91.
34. Altman N. “An introduction to kernel and nearest-neighbor nonparametric regression”. The American Statistician. Vol. 46. 1992. P. 175–185. DOI: https://doi.org/10.1080/00031305.1992.10475879
35. Andreas Z. “Simulation of Neural Networks”. Tuebingen: Addison-Wesley, 1994.
36. Lupenko S., Lytvynenko I., Stadnyk N. (2020) Method for reducing the computational complexity of processing discrete cyclic random processes in digital data analysis systems. Scientific Journal of TNTU (Tern.). Vol. 97. No. 1. Р. 110–121. DOI: https://doi.org/10.33108/visnyk_tntu2020.01.110
37. Lupenko S. A., Osukhivska H. M., Lutsyk N. S., Stadnyk N. B., Zozulia A. M., Shablii N. R. (2016) The comparative analysis of mathematical models of cyclic signals structure and processes. Scientific Journal of TNTU (Tern.). Vol. 82. No. 2. Р. 115–127.
Content type: Article
Ebben a gyűjteményben:Вісник ТНТУ, 2020, № 4 (100)



Minden dokumentum, ami a DSpace rendszerben szerepel, szerzői jogokkal védett. Minden jog fenntartva!