Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/31513
Назва: Qualimetric Analysis of Pipelines with Corrosion Surfaces in the Monitoring System of Oil and Gas Enterprises
Автори: Yuzevych, Volodymyr
Pavlenchyk, Nataliia
Zaiats, Olha
Heorhiadi, Nellі
Lakiza, Viktoriia
Бібліографічний опис: Yuzevych, V., Pavlenchyk, N., Zaiats, O., Heorhiadi, N., & Lakiza, V. (2020). Qualimetric Analysis of Pipelines with Corrosion Surfaces in the Monitoring System of Oil and Gas Enterprises // International Journal of Recent Technology and Engineering (IJRTE), 9(1), 1145–1150. (ISSN 2277-3878).
Журнал/збірник: International Journal of Recent Technology and Engineering (IJRTE)
Дата публікації: 1-тра-2020
Дата внесення: 6-тра-2020
Теми: pipeline
metal
oil and gas enterprises
structure degradation
fracture
cavern
crack
metrology
quality control
non-destructive testing
neural network
Діапазон сторінок: 1145–1150
Короткий огляд (реферат): The introduction of new technologies for diagnosing underground metal pipelines with dangerous surface defects is a practically important task. That is why studies aimed at improving the methods of assessing the quality of deformed metal pipelines and structural elements are necessary and relevant. The evaluation of the effectiveness of engineering and technological solutions for oil and gas enterprises needs improvement. In this context, an important task is to solve the problem of quality control (including durability) of gas and oil transportation systems and the improvement of appropriate metrological support. Based on surface physics and fracture mechanics, development of a methodological approach to assessing the quality and resource of underground metal pipelines (UMP) of oil and gas enterprises, taking into account the constructions strength, corrosion fatigue, parameters of corrosion protection and metrological support. Results of processing of normative documents and scientific works in the field of gas transportation enterprises, as well as methods of surface physics, mechanics of deformed solid body, fracture mechanics, qualimetry regarding the system “pipeline (UMP) – coating”. A new criterion for the strength of the surface of a metal underground pipe is proposed, which characterizes the peculiarities of bond fractures (adhesion) between the coating and the metal. Using the criterion of the strength of a metal tube with a defect in the electrolyte, the dependence of the critical internal pressure of the gas pipeline (UMP) on the geometric and energy (elastic and plastic) parameters of the metal, as well as the current of the anodic dissolution, which characterizes the features of the crack propagation at the bottom of the corrosion cavern. On the basis of surface physics and fracture mechanics obtained, a methodology for evaluating the quality of underground metal pipelines of oil and gas enterprises was developed to determine their resource, taking into account strength, corrosion fatigue, parameters of corrosion protection and metrological support.
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/lib/31513
ISSN: 2277-3878
URL-посилання пов’язаного матеріалу: http://www.ijrte.org/archive/
https://www.scopus.com/sourceid/21100889873
References: 1. Technical diagnostics of materials and structures: Reference manual / Ed.-in-chief Z. T. Nazarchuk. Vol. 4: Electrophysical methods for nondestructive testing of defects in structural elements / R. M. Dzhala (ed), V. R. Dzhala, I. B. Ivasiv, V. G. Rybachuk, V. M. Uchanin. Lviv: Prostir-M, 2018. 356 p. (In Ukr.).
2. Lozovan, V., Dzhala, R., Skrynkovskyy, R., & Yuzevych, V. (2019). Detection of specific features in the functioning of a system for the anti-corrosion protection of underground pipelines at oil and gas enterprises using neural networks. Eastern-European Journal of Enterprise Technologies, 1(5(97)), 20–27. doi: http://dx.doi.org/10.15587/1729-4061.2019.154999.
3. Lozovan, V., Skrynkovskyy, R., Yuzevych, V., Yasinskyi, M., & Pawlowski, G. (2019). Forming the toolset for development of a system to control quality of operation of underground pipelines by oil and gas enterprises with the use of neural networks. Eastern-European Journal of Enterprise Technologies, 2(5(98)), 41–48. doi: http://dx.doi.org/10.15587/1729-4061.2019.161484.
4. Yuzevych, V., Skrynkovskyy, R., & Koman, B. (2018). Intelligent Analysis of Data Systems for Defects in Underground Gas Pipeline. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp.2018.8478560.
5. Yuzevych, L., Skrynkovskyy, R., & Koman, B. (2017). Development of information support of quality management of underground pipelines. EUREKA: Physics and Engineering, 4, 49–60. doi: https://doi.org/10.21303/2461-4262.2017.00392.
6. Yuzevych, V. M., Dzhala, R. M., & Koman, B. P. (2018). Analysis of Metal Corrosion under Conditions of Mechanical Impacts and Aggressive Environments. Metallofizika i Noveishie Tekhnologii, 39(12), 1655–1667. doi: https://doi.org/10.15407/mfint.39.12.1655.
7. Yuzevych, V., Klyuvak, O., & Skrynkovskyy, R. (2016). Diagnostics of the system of interaction between the government and business in terms of public e-procurement. Economic Annals-ХХI, 160(7-8), 39–44. doi: https://doi.org/10.21003/ea.v160-08.
8. Dzhala, R. M., Savula, S. F., & Yuzevych, V. M. (2014). Mathematical Model for Evaluation of Resource of Pipeline with corrosive Crack at loading intrinsic Pressure. Methods and Devices of Quality Control, 2(33), 123–126.
9. Din, M. M., Ithnin, N., Zain, A. M., Noor, N. M., Siraj, M. M., & Rasol, R. M. (2015). An artificial neural network modeling for pipeline corrosion growth prediction. ARPN Journal of Engineering and Applied Sciences, 10(2), 512–519.
10. Liao, K., Yao, Q., Wu, X., & Jia, W. A (2012). Numerical Corrosion Rate Prediction Method for Direct Assessment of Wet Gas Gathering Pipelines Internal Corrosion. Energies, 5(10), 3892–3907. doi: https://doi.org/10.3390/en5103892.
11. Cosham, A., & Hopkins, P. (2004). The assessment of corrosion in pipelines – guidance in the pipeline. Pipeline Pigging and Integrity Management Conference (17-18th May 2004 – Amsterdam, The Netherlands), 1–31.
12. Zhang, H., Zhang, H., Zhao, X., Wang, Y., & Li, N. (2016). Study of Thickness Effect on Fracture Toughness of High Grade Pipeline Steel. MATEC Web of Conferences, 67(Article Number 03016), 1–8. doi: https://doi.org/10.1051/matecconf/20166703016.
13. Skrynkovskyi, R. (2008). Investment attractiveness evaluation technique for machine-building enterprises. Actual Problems of Economics, 7(85), 228–240.
14. Skrynkovskyi, R. M. (2011). Methodical approaches to economic estimation of investment attractiveness of machine-building enterprises for portfolio investors. Actual Problems of Economics, 118(4), 177–186.
15. Podgórski, J. (2017). The criterion for determining the direction of crack propagation in a random pattern composites. Meccanica, 52(8), 1923–1934. doi: https://doi.org/10.1007/s11012-016-0523-y.
16. Koman, B. P., & Yuzevich, V. M. (2015). Energy Parameters of Interfacial Layers in Composite Systems: Graphene – (Si, Cu, Fe, Co, Au, Ag, Al, Ru, Hf, Pb) and Semiconductor (Si, Ge) – (Fe, Co, Cu, Al, Au, Cr, W, Pb). Journal of nano- and electronic physics, 7(4), 04059-104059-7.
17. Kaneko, K., & Narahashi, K. (2009). Study on Adhesive Strength Criterion under Complex Stresses. Journal of Solid Mechanics and Materials Engineering, 3(1), 49–63. doi: https://doi.org/10.1299/jmmp.3.49.
18. Monda, J., Marandi, M., Kozlova, J., Merisalu, M., Niilisk, A., & Sammelselg, V. (2014). Protection and Functionalizing of Stainless Steel Surface by Graphene Oxide-Polypyrrole Composite Coating. J. Chem. Chem. Eng., 8, 786–793.
19. Salnikov, A. V., Sharygin, A. M., & Ignatik, A. A. (2016). Strength and durability evaluation of pipes with defects for effective repair planning on the linear part of the main pipelines. Territorija “NEFTEGAS” [Oil and Gas Territory], 9, 114–121 (In Russ.). URL: https://tng.elpub.ru/jour/article/view/375.
20. Dzhala, R. M., Kaplun, A. V., Valiashek, V. B., & Yuzevych, V. M. (2014). Model of the boundary of metals and the method of a small parameter in the problems of the theory of adhesion. Selection and information processing, 41(117), 20–27.
21. Wright, M., Guillen, P., Soltis, J. (2017). Risk management of stress corrosion cracking of buried pipelines. Rio Pipeline Conference & Exhibition 2017, 1–7.
22. Colorado-Garrido, D., Ortega-Toledo, D. M., Hernández, J. A., González-Rodríguez, J. G., & Uruchurtu, J. (2008). Neural networks for Nyquist plots prediction during corrosion inhibition of a pipeline steel. Journal of Solid State Electrochemistry, 13(11), 1715–1722. doi: https://doi.org/10.1007/s10008-008-0728-7.
23. Zhu, P., Yang, L., Li, Z., & Sun, J. (2010). The shielding effects of the crack-tip plastic zone. International Journal of Fracture, 161(2), 131–139. doi: http://dx.doi.org/10.1007/s10704-011-9618-6.
24. Elishakoff, I. Interrelation Between Safety Factors and Reliability. NASA/CR-2001-211309; Florida Atl.Univ., Boca Raton, Florida. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020011027.pdf.
25. El May, M., Saintier, N., Palin-Luc, T., Devos, O., & Brucelle, O. (2018). Modelling of corrosion fatigue crack initiation on martensitic stainless steel in high cycle fatigue regime. Corrosion science,133, 397–405. doi: http://dx.doi.org/10.1016/j.corsci.2018.01.034.
26. Babych, M., Korobka, S., Skrynkovskyy, R., Korobka, S., & Krygul, R. (2016). Substantiation of economic efficiency of using a solar dryer under conditions of personal peasant farms. Eastern-European Journal of Enterprise Technologies, 6(8(84)), 41–47. doi: http://dx.doi.org/10.15587/1729-4061.2016.83756.
27. Popova, N., Kataiev, A., Skrynkovskyy, R., & Nevertii, A. (2019). Development of trust marketing in the digital society. Economic Annals-XXI, 176(3-4), 13–25. doi: https://doi.org/10.21003/ea.V176-02.
28. Koman, B., Skrynkovskyy, R., & Yuzevych, V. (2018). Information Parameters of Synergetic Processes in Structures with Interfractional Boundaries. 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). doi: https://doi.org/10.1109/nap.2018.8914983.
29. Dzhala, R., Yuzevych, V., Lozovan, V., Mytsyk, A., Skrynkovskyy, R., & Yasinskyi, M. (2019). Qualimetric analysis of pipelines with surface corrosion defects. Fracture Mechanics of Materials and Structural Integrity: Book of abstracts of the 6th International Conference (June 3–6, 2019, Lviv, Ukraine). Lviv: Karpenko Physico-Mechanical Institute of NASU, 125–126.
30. Klyuvak, A., Kliuva O., & Skrynkovskyy, R. (2018). Partial Motion Blur Removal. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/DSMP.2018.8478595.
31. Yuzevych, L., Skrynkovskyy, R., Yuzevych, V., Lozovan, V., Pawlowski, G., Yasinskyi, M., & Ogirko, I. (2019). Improving the diagnostics of underground pipelines at oil-and-gas enterprises based on determining hydrogen exponent (PH) of the soil media applying neural networks. Eastern-European Journal of Enterprise Technologies, 4(5(100)), 56–64. doi: http://dx.doi.org/10.15587/1729-4061.2019.174488.
32. Yuzevych, L., Yankovska, L., Sopilnyk, L., Yuzevych, V., Skrynkovskyy, R., Koman, B., Yasinska-Damri, L., Heorhiadi, N., Dzhala, R., & Yasinskyi, M. (2019). Improvement of the toolset for diagnosing underground pipelines of oil and gas enterprises considering changes in internal working pressure. Eastern-European Journal of Enterprise Technologies, 6(5(102)), 23–29. doi: http://dx.doi.org/10.15587/1729-4061.2019.184247.
33. Dzhala, R. М., & Yuzevych, L. V. (2019). Modeling of Relationships Between the Mechanoelectrochemical Parameters of the Metal Surface. Materials Science, 54, 753–759. doi: https://doi.org/10.1007/s11003-019-00243-w.
Тип вмісту: Article
Розташовується у зібраннях:Зібрання статей

Файли цього матеріалу:
Файл Опис РозмірФормат 
A1341059120.pdf556,14 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.