Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/27312

Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorЯсній, Петро Володимирович-
dc.contributor.authorДивдик, Олександр Васильович-
dc.contributor.authorЛуцик, Надія Степанівна-
dc.contributor.authorЯсній, Володимир Петрович-
dc.contributor.authorYasniy, Petro Volodymyrovych-
dc.contributor.authorDyvdyk, Oleksandr Vasylovych-
dc.contributor.authorLutsyk, Nadiia Stepanivna-
dc.contributor.authorYasnii, Volodymyr Petrovych-
dc.date.accessioned2019-01-10T10:42:10Z-
dc.date.available2019-01-10T10:42:10Z-
dc.date.created2018-11-12-
dc.date.issued2018-11-12-
dc.date.submitted2018-08-30-
dc.identifier.citationModelling of mechanical behaviour of shape memory alloys using finite elements method / Petro Volodymyrovych Yasniy, Oleksandr Vasylovych Dyvdyk, Nadiia Stepanivna Lutsyk, Volodymyr Petrovych Yasnii // Scientific Journal of TNTU. — Tern. : TNTU, 2018. — Vol 91. — No 3. — P. 7–15. — (Mechanics and materials sciense).-
dc.identifier.issn2522-4433-
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/27312-
dc.description.abstractМетодом скінчених елементів змодельовано й експериментально досліджено псевдопружну поведінку нікель-титанового сплаву за змінної амплітуди навантаження. Зразки з нікель-титанового сплаву (Ni – 55,8%, Ti – 44,2%) діаметром d = 1,5 мм і довжиною робочої ділянки L = 30 мм досліджували за одновісного розтягу на випробувальній машині FP-100 при кімнатній температурі на повітрі. Експериментально визначено механічні характеристики матеріалу та напруження старту й фінішу прямих і зворотних фазових перетворень, використаних при моделюванні. Створено скінченоелементну тривимірну модель, здатну відтворювати псевдопружну поведінку за статичного й повторно-статичного навантаження розтягом та розвантаження. За результатами моделювання методом скінчених елементів у середовищі ПК ANSYS Workbench 17.1 отримано залежності напружень від деформації в кожному циклі за змінної амплітуди навантаження. Виявлено, що за змінної амплітуди навантаження напруження початку та закінчення прямих і зворотних фазових перетворень змінюються у кожному циклі, а розрахункові залежності напружень від деформацій задовільно узгоджуються з експериментальними. Похибка напружень, обчислених методом скінчених елементів упродовж усіх циклів навантаження не перевищує 10,1%, а деформацій – 6,1%. У точках, які відповідають напруженням прямих і зворотних перетворень, обчислена енергія пружної деформації та енергія дисипації. Похибка енергії пружної деформації при чисельному моделюванні не перевищує 10,9%, а енергії розсіювання (дисипації) – 10,8% порівняно з експериментальними даними. Отримані результати мають теоретичне й прикладне значення для моделювання псевдопружної поведінки, міцності й витривалості конструкцій з сплавів з пам’яттю форми за сталої та змінної амплітуди навантаження.-
dc.description.abstractSuperelastic behaviour of Ni-Ti alloy wire under variable amplitude loading was simulated and experimentally studied. Mechanical properties and phase transformation stresses (𝜎𝑀𝑠, 𝜎𝑀𝑓, 𝜎𝐴𝑠, 𝜎𝐴𝑓) of the material were obtained in uniaxial tensile test. The wire of 55,8% Ni – 44,2% Ti alloy with a diameter of 1,5 mm and a working length of 30 mm was tested at room temperature (+ 16°C) on the air. On the base of finite elements method, using ANSYS the stress-strain dependencies on each loading cycle were calculated. The stress-phase transformation are changes under a variable amplitude loading. The simulated stress-strain dependencies were compared with the experimental ones. The maximum error, being compared with experimental data, does not exceed 10,9%. The calculated dependences of elastic strain and dissipated energies on the amplitude stress are well agreed with experimental data. The obtained results are of theoretical and applied interest for modelling the superelastic behaviour of SMA under variable amplitude loading.-
dc.format.extent7-15-
dc.language.isoen-
dc.publisherТНТУ-
dc.publisherTNTU-
dc.relation.ispartofВісник Тернопільського національного технічного університету, 3 (91), 2018-
dc.relation.ispartofScientific Journal of the Ternopil National Technical University, 3 (91), 2018-
dc.subjectсплав з пам’яттю форми-
dc.subjectпсевдопружність-
dc.subjectнапруження фазових перетворень-
dc.subjectмартенсит-
dc.subjectаустеніт-
dc.subjectенергія дисипації-
dc.subjectshape memory alloy-
dc.subjectsuperelastic-
dc.subjectstress-phase transformations-
dc.subjectmartensite-
dc.subjectaustenite-
dc.subjectenergy dissipation-
dc.titleModelling of mechanical behaviour of shape memory alloys using finite elements method-
dc.title.alternativeМоделювання методом скінчених елементів механічної поведінки сплавів з пам’яттю форми-
dc.typeArticle-
dc.rights.holder© Тернопільський національний технічний університет імені Івана Пулюя, 2018-
dc.coverage.placenameТернопіль-
dc.coverage.placenameTernopil-
dc.format.pages9-
dc.subject.udc539.3-
dc.relation.references1. Giurgiutiu, V. The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry [Text] / V. Giurgiutiu, A. Zagrai // Proceedings of SPIE. – 2000. – P. 1 – 12.-
dc.relation.references2. Bucht, A. Industrial Applications of Shape Memory Alloys Potentials and Limitations [Text] / A. Bucht et al // Innovative Small Drives and Micro-Motor Systems; GMM, ETG Symposium. – 2013. – P. 1 – 6.-
dc.relation.references3. Mohd Jani, J. A review of shape memory alloy research, applications and opportunities [Text] / J. Mohd Jani et al // Mater. Des. Elsevier. – 2014. – Vol. 56. – P. 1078 – 1113.-
dc.relation.references4. Hartl, D.J. Standardization of shape memory alloy test methods toward certification of aerospace applications [Text] / D.J. Hartl et al // Smart Mater. Struct. – 2015. – № 8 (24). – P. 1 – 6.-
dc.relation.references5. Pittaccio, S. Applications of Shape Memory Alloys for Neurology and Neuromuscular Rehabilitation [Text] / S. Pittaccio et al // J. Funct. Biomater / ed. Petrini L. MDPI. – 2015. – № 2 (6). – P. 328 – 344.-
dc.relation.references6. Karthik, G. Processing, properties and applications of Ni-Ti-Fe shape memory alloys [Text] / G. Karthik, B. Kashyap, T.R. Prabhu // Mater. Today Proc. Elsevier. – 2017. – № 2 (4). – P. 3581 – 3589.-
dc.relation.references7. ANSYS Inc. 2009, ANSYS 12.1 Help System. Canonsburg, Pennsylvania.-
dc.relation.references8. Divringi, K. Advanced Shape Memory Alloy Material Models for ANSYS [Text] / K. Divringi, C. Ozcan. – 2009. – P. 1 – 12.-
dc.relation.references9. Shape Memory Alloys: Material Modeling and Device Finite Element Simulations [Text] / F. Auricchio, M. Conti, S. Morganti, A. Reali // Book «IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials». – 2011. – P. 33 – 42.-
dc.relation.references10. Kumar, P.K. Shape Memory Alloys [Text] / P.K. Kumar, D.C. Lagoudas. – 2008. – P. 1 – 51.-
dc.relation.references11. Ясній, В. Фазові перетворення та механічні властивості сплаву нітинол з пам’яттю форми [Текст] / В. Ясній, Р. Юнга // Фізико-хімічна механіка матеріалів. – 2018. – № 3. – С. 107 – 111.-
dc.relation.references12. Predki, W. Cyclic torsional loading of pseudoelastic Ni-Ti shape memory alloys: damping and fatigue failure [Text] / W. Predki, M. Klonne, A. Knopik // Materials science and engineering. – 2006. – P. 182 – 189.-
dc.relation.references13. Ясній, В.П. Моделювання МСЕ механічної поведінки сплавів з пам’яттю форми [Текст] / В.П. Ясній, О.В. Дивдик, Я.Р. Лисенко // Праці конференції «Пошкодження матеріалів під час експлуатації, методи його діагностування і прогнозування», 19 – 22 вересня 2017 року. – Т. : ТНТУ, 2017. – С. 60 – 62.-
dc.relation.references14. Моделювання псевдопружної поведінки сплавів із пам’яттю форми за статичного навантаження розтягом [Текст] / О.В. Дивдик, В.П. Ясній, Л.І. Цимбалюк, Н.С. Луцик // Матеріали Міжнародної науково-технічної конференції «Фундаментальні та прикладні проблеми сучасних технологій», 22 – 24 травня 2018. – Т. : ТНТУ, 2018. – С. 180 – 181.-
dc.relation.referencesen1. Giurgiutiu V., Zagrai A. The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry, Proceedings of SPIE, 2000, pp. 1 – 12. https://doi.org/10.1117/12.388812-
dc.relation.referencesen2. Bucht A. et al. Industrial Applications of Shape Memory Alloys Potentials and Limitations Innovative Small Drives and Micro-Motor Systems; GMM, ETG Symposium, 2013, pp. 1 – 6.-
dc.relation.referencesen3. Mohd Jani J. et al. A review of shape memory alloy research applications and opportunities, Mater. Des. Elsevier, 2014, Vol. 56, pp. 1078 – 1113. https://doi.org/10.1016/j.matdes.2013.11.084-
dc.relation.referencesen4. Hartl D.J. et al. Standardization of shape memory alloy test methods toward certification of aerospace applications, Smart Mater. Struct., 2015, Vol. 24, No. 8, pp. 1 – 6. https://doi.org/10.1088/0964-1726/24/8/082001-
dc.relation.referencesen5. Pittaccio S. et al. Applications of Shape Memory Alloys for Neurology and Neuromuscular Rehabilitation, J. Funct. Biomater, ed. Petrini L. MDPI, 2015, Vol. 6, No. 2, pp. 328 – 344.-
dc.relation.referencesen6. Karthik G., Kashyap B., Prabhu T.R. Processing, properties and applications of Ni-Ti-Fe shape memory alloys, Mater. Today Proc. Elsevier, 2017, Vol. 4, No. 2, pp. 3581 – 3589. https://doi.org/10.1016/j.matpr.2017.02.250-
dc.relation.referencesen7. ANSYS Inc. 2009, ANSYS 12.1 Help System. Canonsburg, Pennsylvania.-
dc.relation.referencesen8. Divringi K., Ozcan C. Advanced Shape Memory Alloy Material Models for ANSYS, 2009, pp. 1 – 12.-
dc.relation.referencesen9. Auricchio F., Conti M., Morganti S., Reali A. Shape Memory Alloys: material Modeling and Device Finite Element Simulations. Book "IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials", 2011, pp. 33 – 42. https://doi.org/10.1007/978-90-481-9887-0_4-
dc.relation.referencesen10. Kumar P.K., Lagoudas D.C. "Shape Memory Alloys", 2008, pp. 1 – 51. https://doi.org/10.1007/978-0-387-47685-8_1-
dc.relation.referencesen11. Yasnii V., Yunha R. Fazovi peretvorennia ta mekhanichni vlastyvosti splavu nitynol z pamiattiu formy, “Fizyko-khimichna mekhanika materialiv”, 2018, No. 3, pp. 107 – 111 [In Ukrainian].-
dc.relation.referencesen12. Predki W., Klonne M., Knopik A. Cyclic torsional loading of pseudoelastic Ni-Ti shape memory alloys: damping and fatigue failure. Materials science and engineering, 2006, pp. 182 – 189. https://doi.org/10.1016/j.msea.2005.10.037-
dc.relation.referencesen13. Yasnii V.P., Dyvdyk O.V., Lysenko Ya.R. Modeliuvannia MSE mekhanichnoi povedinky splaviv z pamiattiu formy. Proceedings of the Conference “In-service damage of materials, its diagnostics and prediction”. Ternopil, 19 – 22 September 2017, pp. 60 – 62 [In Ukrainian].-
dc.relation.referencesen14. Dyvdyk O., Iasnii V., Tsymbaliuk L., Lutsyk N. Modeliuvannia psevdopruzhnoi povedinky splaviv iz pamiattiu formy za statychnoho navantazhennia roztiahom. Modeling of pseudoelastic behavior of sma under static tension loading. Materials of the International scientific and technical conference “Fundamental and applied problems of modern technologies”. Ternopil, 22 – 24 May 2018, pp. 180 – 181 [In Ukrainian].-
dc.identifier.citationenYasniy P. V., Dyvdyk O. V., Lutsyk N. S., Yasnii V. P. (2018) Modelling of mechanical behaviour of shape memory alloys using finite elements method. Scientific Journal of TNTU (Tern.), vol. 91, no 3, pp. 7-15.-
dc.identifier.doihttps://doi.org/10.33108/visnyk_tntu2018.03.007-
dc.contributor.affiliationТернопільський національний технічний університет імені Івана Пулюя, Тернопіль, Україна-
dc.contributor.affiliationTernopil Ivan Puluj National Technical University, Ternopil, Ukraine-
dc.citation.journalTitleВісник Тернопільського національного технічного університету-
dc.citation.volume91-
dc.citation.issue3-
dc.citation.spage7-
dc.citation.epage15-
Розташовується у зібраннях:Наукова діяльність Яснія П. В.
Вісник ТНТУ, 2018, № 3 (91)



Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.