Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/20717

Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorАстанін, В'ячеслав
dc.contributor.authorЩегель, Ганна
dc.contributor.authorAstanin, Vyacheslav
dc.contributor.authorShchegel, Ganna
dc.date.accessioned2017-05-17T19:23:18Z-
dc.date.available2017-05-17T19:23:18Z-
dc.date.created2016-10-27
dc.date.issued2016-10-27
dc.date.submitted2016-05-19
dc.identifier.citationAstanin V. Experimental and probabilistic numerical modeling of impact of fiber-reinforced composites at high and low velocities / Vyacheslav Astanin, Ganna Shchegel // Вісник ТНТУ. — Т. : ТНТУ, 2016. — № 4 (84). — С. 7–22. — (Механіка та матеріалознавство).
dc.identifier.issn1727-7108
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/20717-
dc.description.abstractПроаналізовано особливості динаміки енергопоглинання й пошкодження пластин із багатокомпонентного композиційного матеріалу залежно від швидкості удару в діапазоні швидкостей зіткнення від 20 до 1500 м/с з урахуванням визначаючих їх фізичних процесів пошкодження на основі даних експерименту й чисельного розрахунку за допомогою розробленої ймовірнісної моделі. Проведено порівняння результатів з дослідними даними, отриманими іншими авторами.
dc.description.abstractPeculiarities of energy absorption dynamics and the damage of plates of multicomponent composite material are analysed depending on the impact speed at impact velocities ranging from 20 to 1500 m/s in view of causing them physical damage processes based on experimental data and numerical calculation using a developed probabilistic model. The results are compared with experimental data obtained by other authors.
dc.format.extent7-22
dc.language.isoen
dc.publisherТНТУ
dc.publisherTNTU
dc.relation.ispartofВісник Тернопільського національного технічного університету
dc.relation.ispartofScientific Journal of the Ternopil National Technical University
dc.subjectволоконнозміцнені композити
dc.subjectеволюція пошкодження
dc.subjectймовірнісне моделювання
dc.subjectвисокошвидкісний удар
dc.subjectшвидкість деформації
dc.subjectелектромагнітна емісія
dc.subjectакустична емісія
dc.subjectfiber-reinforced composites
dc.subjectdamage evolution
dc.subjectprobabilistic modeling
dc.subjecthigh-velocity impact
dc.subjectstrain rate
dc.subjectelectromagnetic emission
dc.subjectacoustic emission
dc.titleExperimental and probabilistic numerical modeling of impact of fiber-reinforced composites at high and low velocities
dc.title.alternativeЕкспериментальне і ймовірнісне чисельне моделювання удару волоконнозміцнених композитів при високих і низьких швидкостях
dc.typeArticle
dc.rights.holder© Тернопільський національний технічний університет імені Івана Пулюя, 2016
dc.coverage.placenameУкраїна, Тернопіль
dc.coverage.placenameUkraine, Ternopil
dc.format.pages16
dc.subject.udc629.02
dc.subject.udc620.19(043.2)
dc.relation.referencesen1. Hinton M.J. A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence, M.J. Hinton, A.S. Kaddour, P.D. Soden, Compos. Sci. Technol, 2002, vol. 62, pp. 1725 – 1797.
dc.relation.referencesen2.Polilov A.N. Dynamic experimental investigations of composites, A.N. Polilov, A.F. Melshanov, N.A. Tatous, N.A. Makhutov, J. Phys. IV, 2003, vol. 110, no. 1, pp. 559 – 564.
dc.relation.referencesen3.Powell D. Impact and delamination failure characterization of BMS 8 – 212 composite aircraft material, D. Powell, G. Johnson, T. Zohdi, Final report, Berkeley: California Univ. Dep. Mech. Eng, DOT.FAA.AR-08.48, 2008, 40 p.
dc.relation.referencesen4.Altenbach H. Mechanics of composite structural elements, H. Altenbach, J. Altenbach, W. Kissing, Berlin Heidelberg: Springer-Verlag, 2004, 468 p.
dc.relation.referencesen5.Truesdell C.A. The non-linear field theories of mechanics, C.A. Truesdell, W. Noll, S.S. Antman, ed., Berlin Heidelberg: Springer, 1965, vol. 3, 602 p.
dc.relation.referencesen6.Lepikhin P.P. Penetration of a thick plate by a slightly deformable long rod, P.P. Lepikhin, S.V. Zhura-khovskii, K.B. Ivashchenko, Strength Mater, 1994, vol. 25, no. 10, pp. 755 – 760.
dc.relation.referencesen7.Haupt P. On the mathematical modelling of material behavior in continuum mechanics, P. Haupt, Acta Mechanica, 1993, no. 100, pp. 129 – 154.
dc.relation.referencesen8.Kästner M. Inelastic material behavior of polymers – Experimental characterization, formulation and implementation of a material model, M. Kästner, M. Obst, J. Brummund, K. Thielsch, V. Ulbricht, Mechanics of Mater, 2012, vol. 52, pp. 40 – 57.
dc.relation.referencesen9.Kachanov L.M. O vremeni razrusheniya v usloviyax polzuchesti, L.M. Kachanov. Izv. AN SSSR. OTN, 1958. No 8, pp. 26 – 31. [In Russian].
dc.relation.referencesen10.Rabotnov Yu.N. Vvedenie v mexaniku razrusheniya, Yu.N. Rabotnov. Nauka. Gl. red. fiz.-mat. lit., 1987. 80 p. [In Russian].
dc.relation.referencesen11.Böhm R. Bruchmodebezogene Beschreibung des Degradationsverhaltens textilverstarkter Verbundwerkstoffe, R. Böhm, Diss. akad. Grad. Dr.-Ing., Technische Universitat Dresden, 2008, 123 p.
dc.relation.referencesen12.Gude M. Characterisation and simulation of the strain rate dependent material behaviour of novel 3D textile reinforced composites, M. Gude, C. Ebert, A. Langkamp, W. Hufenbach, ECCM-13: European Conf. on Composite Materials , 2 – 5 June 2008, Stockholm, Sweden: Conf. Proc, 2008, pp. 1 – 15.
dc.relation.referencesen13.Fanteria D. A non-linear shear damage model to reproduce permanent indentation caused by impacts in composite laminates, D. Fanteria, G. Longo, E. Panettieri, Composite Struct, 2014, no. 111, pp. 111 – 121.
dc.relation.referencesen14.Laws N. Stiffness changes in unidirectional composites caused by crack systems, N. Laws, GJ. Dvorak, M. Hejazi, Mech. Mater, 1983, vol. 2, pp. 123 – 137.
dc.relation.referencesen15.Ogihara S. Damage mechanics analysis of transverse cracking behavior in composite laminates, S. Ogihara, A. Kobayashi, N. Takeda, S. Kobayashi, Int. J. Damage Mech, 2000, vol. 9, no. 2, pp. 113 – 129.
dc.relation.referencesen16.Cuntze R. The predictive capability of failure mode concept-based strength criteria for multidirectional laminates, R. Cuntze, A. Freund, Compos. Sci. Technol, 2004, vol. 64, pp. 343 – 377.
dc.relation.referencesen17.Hashin Z. Failure criteria for unidirectional fiber composites, Z. Hashin, J. Appl. Mech, 1980, vol. 47, pp. 329 – 334.
dc.relation.referencesen18.Puck A. Failure analysis of FRP laminates by means of physically based phenomenological models, A. Puck, H. Schurmann, Compos. Sci. Technol, 2002, vol. 62, pp. 1633 – 1662.
dc.relation.referencesen19.Haupt P. Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling, P. Haupt, K. Sedlan, Archive of Appl. Mech, 2001, no. 71 (2), pp. 89 – 109.
dc.relation.referencesen20.Argon A.S. A theory for the low temperature plastic deformation of glassy polymers, A.S. Argon, Phil. Mag, 1973, no. 28, pp. 839 – 865.
dc.relation.referencesen21.Bouvard J.L. An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation, J.L. Bouvard, D.K. Francis, M.A. Tschopp, E.B. Marin, D.J. Bammann, M.F. Horstemeyer, Int. J. of Plasticity, 2013, no. 42, pp. 168 – 193.
dc.relation.referencesen22.Johnsen J. A nano-scale material model applied in finite element analysis of aluminium plates under impact loading, J. Johnsen, J.K. Holmen, O.R. Myhr, O.S. Hopperstad, T. Borvik, Comp. Mater.Sci., 2013, vol. 79, pp. 724 – 735.
dc.relation.referencesen23.Kocks U.F. Laws for work-hardening and low-temperature creep, U.F. Kocks, J. of Eng. Mater. and Tech, 1976, no. 98, pp. 76 – 85.
dc.relation.referencesen24.Liu R. An enhanced constitutive material model for machining of Ti-6Al-4V alloy, R. Liu, S. Melkote, R. Pucha, J. Morehouse, X. Man, T. Marusich, J. of Mater. Processing Tech., 2013, vol. 213, no. 12, pp. 2238 – 2246.
dc.relation.referencesen25.Hufenbach W. Experimental determination of the strain rate dependent out-of-plane shear properties of textile-reinforced composites, W. Hufenbach, A. Langkamp, A. Hornig, C. Ebert, ICCM-17: 17th Int. Conf. on Composite Materials, 27 – 31 July 2009, Edinburgh, UK: Conf. Proc., 2009, pp. 1 – 9.
dc.relation.referencesen26.Tita V. Failure analysis of low velocity impact on thin composite laminates: experimental and numerical approaches, V. Tita, J. Carvalho, Vandepitte D, Composite Structures, 2008, no. 83, pp. 413 – 428.
dc.relation.referencesen27.Hufenbach W. Characterisation of strain-rate dependent material properties of textile-reinforced thermo-plastics for crash and impact analysis, W. Hufenbach, A. Langkamp, M. Gude, C. Ebert, A. Hornig, S. Nitschke, R. Boehm, Procedia Mater. Sci., 2013, no. 2, pp. 204 – 211.
dc.relation.referencesen28.Shchehel H.O. Deformuvannia ta ruinuvannia plastyn iz kompozytsiinykh materialiv pry udarnomu navantazhenni, H.O. Shchehel, avtoref. dys. kand. tekhn. nauk: 01.02.04. 2013, 20 p. [In Ukrainian].
dc.relation.referencesen29.Shchegel G.O. Probabilistic damage modelling of textile-reinforced thermoplastic composites under high velocity impact based on combined acoustic emission and electromagnetic emission measurements, G.O. Shchegel, R. Böhm, A. Hornig, V.V. Astanin, W.A. Hufenbach, Int. J. Impact Engineer, 2014, vol. 69, pp. 1 – 10.
dc.relation.referencesen30.Böhm R. A phenomenologically based damage model for textile composites with crimped reinforcement, R. Böhm, M. Gude, W. Hufenbach, Compos. Sci. Technol., 2010, vol. 70, pp. 81 – 87.
dc.relation.referencesen31.Astanin V.V. Impact deformation and fracture of hybrid composite materials, V.V. Astanin, А.А. Shchegel, Strength of Materials, 2011, vol. 43, no. 6, pp. 615 – 627.
dc.relation.referencesen32.Astanin V.V. Characterising failure in textile-reinforced thermoplastic composites by electromagnetic emission measurements under medium and high velocity impact loading, V.V. Astanin, G.O. Shchegel, W. Hufenbach, A. Hornig, A. Langkamp, Int. J. Impact Eng, 2012, vol. 49, pp. 22 – 30.
dc.relation.referencesen33.Astanin V.V. Experimental complex for material impact strength researches, V.V. Astanin, G.O. Olefir, A.V. Balalaev, Journal of KONES. Powertrain and Transport, 2008, vol. 15, no. 1, pp. 17 – 28.
dc.relation.referencesen34.Astanin V.V. Electromagnetic emission of composite materials at high-velocity impact loading, V.V. Astanin, G.O. Shchegel, Aviation in the XXI century. Safety in aviation and space technology: 4th World Congress, 21 – 23 Sept. 2010, Kyiv: Conf. Proc., 2010, vol. 1, pp. 13.33 – 13.41.
dc.relation.referencesen35.Pat. 91030 Ukraina. Volokonnozmitsnenyi kompozytsiinyi material iz vuzlovym sitchastym armuvanniam, V.V. Astanin, O.I. Olefir, H.O. Shchehel, A.O. Olefir; zaiav. i patentovlasn. NAU, zaiavl. 25.06.2014; opubl. 16.10.2013, Biul. 12. [In Ukrainian].
dc.relation.referencesen36.Pat. 91056 Ukraina. Volokonnozmitsnenyi kompozytsiinyi material iz tryvymirnym petlovym armuvanniam, V.V. Astanin, O.I. Olefir, H.O. Shchehel, A.O. Olefir; zaiav. i patentovlasn. NAU, zaiavl. 25.06.2014; opubl. 13.11.2013, Biul. 12. [In Ukrainian].
dc.relation.referencesen37.Pat. 91012 Ukraina. Hnuchkyi elastychnyi volokonnozmitsnenyi udaromitsnyi material, V.V. Astanin, O.I. Olefir, H.O. Shchehel, A.O. Olefir; zaiav. i patentovlasn. NAU, zaiavl. 25.06.2014; opubl. 19.07.2013, Biul. 12. [In Ukrainian].
dc.relation.referencesen38.Wang R. Introduction to orthogonal transforms: with applications in data processing and analysis, R. Wang. N.Y.: Cambridge University Press, 2012, 568 p.
dc.relation.referencesen39.Astanin V. Probabilistic modeling of physical damage processes of fiber-reinforced composite plates under dynamic loading, V. Astanin, G. Shchegel, Visnyk TNTU, Ternopil, TNTU, (Mechanics and materials science), 2016, no. 2(82), pp. 7 – 22.
dc.relation.referencesen40.Astanin V. Numerical realization of probabilistic model of composite material taking into account the damage evolution at high impact velocities, V. Astanin, G. Shchegel, Visnyk TNTU, Ternopil, TNTU, (Mechanics and materials science), 2016, no. 3(83), pp. 16 – 27.
dc.relation.referencesen41.Shchegel G.O. Modellierung des Verhaltens von Mehrkomponen-Verbundmaterialien bei Hoch-geschwindigkeitsbelastung, G.O. Shchegel, Diss. akad. Grad. Dr.-Ing., Technische Universitat Dresden, 2011, 138 p.
dc.relation.referencesen42.Fiber, matrix, and interface properties, C.J. Spragg, L.T. Drzal, ed., Scranton: ASTM 1290, 1996, 200 p.
dc.relation.referencesen43.Wagner H. Toughness of interfaces from initial fiber-matrix debonding in a single fiber composite frag-mentation test, H. Wagner, J. Nairn, M. Detassis, Applied Composite Materials, 1995, vol. 2, pp. 107 – 117.
dc.identifier.citationenAstanin V., Shchegel G. (2016) Experimental and probabilistic numerical modeling of impact of fiber-reinforced composites at high and low velocities. Scientific Journal of TNTU (Tern.), no 4 (84), pp. 7-22 [in English].
dc.contributor.affiliationНаціональний авіаційний університет, Київ, Україна
dc.contributor.affiliationNational Aviation University, Kyiv, Ukraine
dc.citation.journalTitleВісник Тернопільського національного технічного університету
dc.citation.issue4 (84)
dc.citation.spage7
dc.citation.epage22
Розташовується у зібраннях:Вісник ТНТУ, 2016, № 4 (84)



Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.