Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://elartu.tntu.edu.ua/handle/123456789/16779

Titel: A phenomenological model of macrocrack initiation and growth in cyclically deformed material
Autor(en): Ostash, O. P.
Panasyuk, V. V.
Affiliation: Karpenko Physico-Mechanical Institute, National Academy of Science of Ukraine, 5, Naukova Str., 79601, Lviv, Ukraine
Bibliographic description (Ukraine): Ostash O. P. A phenomenological model of macrocrack initiation and growth in cyclically deformed material / O. P. Ostash, V. V. Panasyuk // Механічна втома металів. Праці 13-го міжнародного колоквіуму (МВМ-2006), 25-28 вересня 2006 року — Т. : ТДТУ, 2006 — С. 152-159. — (Фізичні та феноменологічні підходи до опису втомного пошкодження).
Bibliographic description (International): Ostash O. P., Panasyuk V. V. (2006) A phenomenological model of macrocrack initiation and growth in cyclically deformed material. Mechanical Fatigue of Metals: Proceeding of the 13-th International Colloquium (MFM) (Tern., 25-28 September 2006), pp. 152-159 [in English].
Is part of: ⅩⅢ міжнародний колоквіум „Механічна втома металів“
ⅩⅢ Internation Colloquium "Mechanical fatigue of metals"
Conference/Event: 13-ий міжнародний колоквіум (МВМ-2006) „Механічна втома металів“
Journal/Collection: ⅩⅢ міжнародний колоквіум „Механічна втома металів“
Erscheinungsdatum: 25-Sep-2006
Date of entry: 5-Jun-2016
Herausgeber: ТДТУ
TDTU
Place of the edition/event: Україна, Тернопіль
Ukraine, Ternopil
Temporal Coverage: 25-28 вересня 2006 року
25-28 September 2006
Number of pages: 8
Page range: 152-159
Start page: 152
End page: 159
Zusammenfassung: Role of the process zone in fatigue macrocrack initiation and propagation is considered. An examples of the assessment of the fatigue macrocrack initiation period, Ni, and the failure period, Nf, of a notched specimens on the base of unified model using fatigue macrocrack growth rates only are shown. Some backgrounds and well-known fatigue phenomena (Kitagawa's and Smith's diagrams, etc) are discussed.
URI: http://elartu.tntu.edu.ua/handle/123456789/16779
ISBN: 966-305-027-6
Copyright owner: © Тернопільський державний технічний університет імені Івана Пулюя
References (Ukraine): 1. Schijve J. Fatigue of structures and materials in the 20th century and the state of the art // International Journal of Fatigue.- 2003.- 25 (8).- p. 679-702.
2. Ostash O.P., Panasyuk V.V., Kostyk C.M. A phenomenological model of fatigue macrocrack initiation near stress concentrators // Fatigue Fract. Engng Mater. Struct.- 1999.- 22 (2).- p. 161-172.
3. Ostash O.P., Panasyuk V.V. Fatigue process zone at notches // Int. J. Fatigue.- 2001.- 23 (7).- p. 627-636.
4. Ostash O.P., Panasyuk V.V. A unified approach to fatigue macrocrack initiation and propagation // Int. J. Fatigue.- 2003.- 25 (8).- p. 703-708.
5. Neuber H. Kerbspannungslehre, Berlin, Springer, 1945. (Trans. Theory of Notch Stress, U.S. Office of Technical Services, 1961).
6. Peterson R.E. Notch sensitivity, Metal fatigue (Sines G., Weisman I.L., editors), New York, Mc Craw-Hill, 1959.- p. 293-306.
7. Qylafsku G., Azari Z., Kadi N., Gjonaj N., Pluvinage G. Application of a new model proposal for the fatigue life prediction on notches and key-seats // Int. J. Fatigue.- 1999.- 21 (8).- p. 753-760.
8. Taylor D., Wang G. The validation of some methods of notch fatigue analysis // Fatigue Fract. Engng Mater. Struct.- 2000.- 23.- p. 387-394.
9. Klesnil M., Lukas P. Fatigue of metallic materials, Prague, Academia, 1980.- 239 p.p.
10. Troshchenko V.T. Investigation of the threshold stress intensity factors at cyclic loading. Communication 2. Prediction of the fatigue limit and the fatigue crack propagation // Strength of Materials.- 1998.- № 5.- p. 5-11 (in Russian).
11. Kitagawa H., Takahashi S. Applicability of fracture mechanics to very small cracks in the early stage // Proceedings 2nd Int. Conf. on Mechanical Behaviour of Materials, Boston, Massachusetts, 1976.- p. 627-631.
12. El Haddad M. H., Dowling N. F., Topper T. H., Smith K. N. J-integral application for short fatigue cracks at notches // Int. J. of Fracture.- 1980.- 16.- p. 15-24.
13. Taylor D. Geometrical effects in fatigue: a unifying theoretical model // Int. J. of Fatigue.- 1999.-21.- p. 413-420.
14. Yarema S.Ya., Ostash O.P. About the fracture toughness of materials at cyclic loading // Soviet Material Science.- 1978.- 5.- p. 112-114.
15. Ostash O. P. Assessment of materials degradation in structures after long-term service using unified model of fatigue fracture.—Fracture Mechanics of Materials and Strength of Structures (Editor Panasyuk V. V.), Lviv, Karpenko Physico-Mechanical Institute, 2004.- p.p. 457-464 (in Ukrainian).
16. Saanouni K., Bathias C. Study of fatigue initiation in the vicinity of notches // Engng Fract. Mech.- 1982.- 16 (5).- p. 615-706.
17. Smith R. A., Miller K. J. Prediction of fatigue regimes in notched component // Int. J. Mech. Sci.-1978.- 20 (3).- p. 201-206.
References (International): 1. Schijve J. Fatigue of structures and materials in the 20th century and the state of the art, International Journal of Fatigue, 2003, 25 (8), p. 679-702.
2. Ostash O.P., Panasyuk V.V., Kostyk C.M. A phenomenological model of fatigue macrocrack initiation near stress concentrators, Fatigue Fract. Engng Mater. Struct, 1999, 22 (2), p. 161-172.
3. Ostash O.P., Panasyuk V.V. Fatigue process zone at notches, Int. J. Fatigue, 2001, 23 (7), p. 627-636.
4. Ostash O.P., Panasyuk V.V. A unified approach to fatigue macrocrack initiation and propagation, Int. J. Fatigue, 2003, 25 (8), p. 703-708.
5. Neuber H. Kerbspannungslehre, Berlin, Springer, 1945. (Trans. Theory of Notch Stress, U.S. Office of Technical Services, 1961).
6. Peterson R.E. Notch sensitivity, Metal fatigue (Sines G., Weisman I.L., editors), New York, Mc Craw-Hill, 1959, p. 293-306.
7. Qylafsku G., Azari Z., Kadi N., Gjonaj N., Pluvinage G. Application of a new model proposal for the fatigue life prediction on notches and key-seats, Int. J. Fatigue, 1999, 21 (8), p. 753-760.
8. Taylor D., Wang G. The validation of some methods of notch fatigue analysis, Fatigue Fract. Engng Mater. Struct, 2000, 23, p. 387-394.
9. Klesnil M., Lukas P. Fatigue of metallic materials, Prague, Academia, 1980, 239 p.p.
10. Troshchenko V.T. Investigation of the threshold stress intensity factors at cyclic loading. Communication 2. Prediction of the fatigue limit and the fatigue crack propagation, Strength of Materials, 1998, No 5, p. 5-11 (in Russian).
11. Kitagawa H., Takahashi S. Applicability of fracture mechanics to very small cracks in the early stage, Proceedings 2nd Int. Conf. on Mechanical Behaviour of Materials, Boston, Massachusetts, 1976, p. 627-631.
12. El Haddad M. H., Dowling N. F., Topper T. H., Smith K. N. J-integral application for short fatigue cracks at notches, Int. J. of Fracture, 1980, 16, p. 15-24.
13. Taylor D. Geometrical effects in fatigue: a unifying theoretical model, Int. J. of Fatigue, 1999.-21, p. 413-420.
14. Yarema S.Ya., Ostash O.P. About the fracture toughness of materials at cyclic loading, Soviet Material Science, 1978, 5, p. 112-114.
15. Ostash O. P. Assessment of materials degradation in structures after long-term service using unified model of fatigue fracture.-Fracture Mechanics of Materials and Strength of Structures (Editor Panasyuk V. V.), Lviv, Karpenko Physico-Mechanical Institute, 2004, p.p. 457-464 (in Ukrainian).
16. Saanouni K., Bathias C. Study of fatigue initiation in the vicinity of notches, Engng Fract. Mech, 1982, 16 (5), p. 615-706.
17. Smith R. A., Miller K. J. Prediction of fatigue regimes in notched component, Int. J. Mech. Sci.-1978, 20 (3), p. 201-206.
Content type: Article
Enthalten in den Sammlungen:13-ий міжнародний колоквіум (МВМ-2006) „Механічна втома металів“ (2006)



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.