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Summary. The paper presents the results of modeling the dynamic characteristics of the shaft of a
laboratory centrifuge, which were compared with the results obtained analytically and experimentally. The
obtained results showed the convergence of analytical and experimental data, in turn, the results obtained with
the help of the KISSsoft software complex have overestimated values. The paper also provides determination of
natural frequencies and forms of oscillations by the methods of the vibration theory.
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Formulation of the problem. Centrifuges are used in various industries, in medical
laboratories, agriculture, for separating mixtures into fractions consisting of substances having
different densities.

Centrifuges are designed to provide a high degree of separation of the mixture. They
have high-speed rotating elements in the form of rotors, which cause harmful vibrations. To
ensure high quality separation, they must provide high rotational speeds and stability. these
requirements can only be met if the dynamic characteristics are determined, the knowledge of
which makes it possible to determine the critical frequencies, stable and unstable zones of the
centrifuge movement.

Analysis of the available research results. The analysis of literature sources has shown
that existing methods for calculating the dynamics of centrifuges are simplified [1-3] and are
based on a model with a one-body rotation [4], which is the rotor, and are based on the kinetic
momentum theorem, while the actual design of the centrifuge is a multi-mass system [5]. Based
on a one-mass model, it is not possible to accurately determine the necessary information about
the spectrum of the centrifuge's natural frequencies [6—7], which is important. The problem of
determining the centrifuge motion leads to the need to consider the problem of motion of a
system of bodies fixed on elastic supports [7-11]. Therefore, to solve this problem, a natural
approach is to use the Lagrange equations of the second type [8]. The shaft is considered as a
rotating elastic rod.

Objective of the research. To investigate the dynamics of shaft motion on the example
of the PICO21 centrifuge by determining the natural frequencies and forms of oscillations, both
by the methods of vibration theory and using the KiSSsoft software package, and to check the
adequacy of the results obtained by comparing them with experimental data.

Statement of the problem. The RISO21 laboratory centrifuge (Fig. 1, Fig. 2) consists
of such elements as a rotor 3 spinning around a vertical axis, which is also the shaft of an electric
motor, whose rod 2 is located on the same axis. The stator of the motor 1 and the casing of the
laboratory centrifuge are fixed on elastic supports-dampers. The supports 4 of the laboratory
centrifuge casing are designed in such a way that the centrifuge can rotate relative to the fixed
axes. The stiffness of the supports is the same when rotating about any horizontal axis [7, 8,
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11]. Compared to the masses of other bodies, the mass of shaft 5 is small, so the calculations
did not take into account the weight of the shaft and considered it as a linear elastic beam.

In this research, the computational dynamic model of a centrifuge is considered as a
multi-mass system with elastic elements, which takes into consideration the influence of
gyroscopic effects [12]. The method under study reflects the determination of the spectrum of
natural frequencies and natural oscillation forms of the centrifuge by taking into account the
multimass and other design factors.

Figure 1. Laboratory centrifuge Pico 21 with arotor  Figure 2. Sketch of the laboratory centrifuge Pico 21

As noted, the common approach to studying the dynamics of multimass systems is to
use the Lagrange equation of the second kind [8].

e ===, ®

where L is the Lagrange function, and ¢; is the generalized coordinates. The Lagrange

equations are differential equations that describe the motion of a system. The periodic motions
of a centrifuge were considered. One of the variants of the Euler-Krylov angles was used to
describe the motion of bodies [12].

The kinetic energy of the system is calculated as the sum of the kinetic energies of the

bodies of which it consists, i.e. T =T, +T, +T,, where T, —is the kinetic energy of the stator and
centrifuge housing, T, —the kinetic energy of the motor rotor (anchor), and T, —the kinetic
energy of the rotor. The potential energy is expressed through displacement as follows

1= %(ql,qz,---,qi)-HCq |-(q 40 a0) ()

where C; are the components of the stiffness matrix, which is related to the yielding matrix

-1 -1 -

Hﬁij H by the relation Hcij Hz”c?ij H 1, j=112.
Using Lagrange's equations of the second kind, the differential equations of motion of
the multimass system were obtained. Since the operating mode of the centrifuge is a trapezoidal
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cycle, i.e., start-operating speed-stop, we are interested in periodic motions, the desired
functions were represented as harmonic functions that were substituted into the differential
equations of motion (1). The result is a homogeneous system of linear algebraic equations. This
system has non-trivial solutions provided that its determinant is zero. Since the components of
the determinant depend on the rotational speed, the natural frequencies also depend on the shaft
rotational speed [13-15]. The natural frequencies of the centrifuge shaft oscillations can either
increase (direct precession) or decrease (inverse precession). As the shaft rotation speed
increases, the frequency difference between the direct and inverse precession increases. The
developed methodology was verified on test examples. The results of determining the natural
frequencies are shown in Table 2.

To determine the natural frequencies and waveforms by the methods of vibration theory,
the laboratory centrifuge shaft is considered as a system with two degrees of freedom [16] (Fig. 3).

The rotor mass and the total mass of the anchor and stator have the following values:

m =m, =0,507kg, m,=m,+m,=2,4+0,6=3kg .

To compare the determination of natural frequencies of oscillations, the force method,
the Donckerley method, and the Rayleigh method are used.
1. Determination of the first natural frequency by the method of forces
The equations of the force method are as follows:
Wy = —81ymwy — §1,mpW; 3
—_5 b 5 " 3)
W 21 Wy 22MaW»

For calculation, we take the displacement as w, =W, cos pt; w, =W, cos pt and

substitute it into the system of equations (3).
To obtain a nontrivial solution to the system of equations, we equate the determinant
to zero:

det 4)

a)2511ml -1 a)2512m2 0
w2521ﬁ11 a)2522m2 -

Expanding the determinant, we obtain the characteristic equation with respect to ©°,
from which we determine the squares of the natural frequencies o, »,”:

o' (511522 - 512521) mm, — o’ (m2522 + ml511) +1=0 (5)

The displacements &,,,6,,,0;,,0,, were calculated using the Vereshchagin method. To
determine the corresponding displacements, bending moment diagrams were constructed from
the action of unit forces X, =1, X, =1applied at the places of concentrated masses m,, m, .

Substituting the obtained displacement values into the characteristic equation, we obtain
the value of the first natural frequency «, =144, 44\/E .

Next, determine the first natural frequency of the waveform.

a)lz M —1 a)nzé‘lzmz J-H\Nn} ~0 ©6)

2 2
@ 0uM, @ 5,m, =1 W,

34 ... ISSN 2522-4433. Scientific Journal of the TNTU, No 4 (112), 2023 https://doi.org/10.33108/visnyk_tntu2023.04


https://doi.org/10.33108/visnyk_tntu2023.0

laroslav Lavrenko, Tetiana Sydora, Maksym Sushchenko

Taking into account the first natural frequency a, =144,44+El and normalized
W,, =1, we obtain the first natural waveform from the solution of equation (6):

2 _ 2 1
dans ean )0 gl
@, "0uMy @ 6,M, =1 (Wi, 0 0,544

The intrinsic waveform is shown graphically in Fig. 6.

2. Determination of the first natural frequency by the Donckerley method

The Donckerley method is a modal analysis method used to analyze dynamic systems
and oscillations by determining the modal parameters of the system, such as natural frequencies.
This method involves that the system oscillates with a fairly stable period and has no significant
changes in its dynamics during the observation interval

12 = 1 z T 1 2 (8)
D1° ()" (o)

1 N2 1
(@) = :

éllml 522m2

After the calculations, taking into account the obtained displacements, the
corresponding masses, and substituting them into Equation (8), the value of the first natural
frequency is obtained. The results of the calculations are shown below.

3. Determination of the first natural frequency by the Rayleigh method

The Rayleigh method is a superposition method used to analyze dynamic systems and
oscillations by dividing the system into its constituent elements, determining their natural
frequencies, and superposing these oscillations to obtain a general characteristic of the system.
This method allows to determine the fundamental natural frequency of the system by analyzing
the energy products of harmonic components

where (@)’ =

2
il W
(1)12 — =1 Ql L (9)

where Q, =m.g, i.e. Q =0,507-10=5,07N, Q, =3-10=30N.
The values W, are determined using the Vereshchagin method.

Analysis of numerical results. The results of determining the natural frequencies of
oscillations analytically based on the Lagrange equation of the second kind are shown in the
graphical form of the dependence of the natural frequency on the rotational speed, taking into
account gyroscopic effects (Campbell diagram) in Fig. 4.

To verify the methodology for determining the natural frequencies, experimental studies
of the centrifuge were carried out using laboratory equipment (Fig. 5) from the Institute of
Mechanics of the Otto von Guericke University in Magdeburg (Germany).

To determine the critical frequencies, the centrifuge was accelerated in the range from
0 to 12000 rpm.

For the measurement of displacements, two triangulation displacement sensors Opto
NCDT 2220 (micro-epsilon) ILD 2220-100 lasers were used, the beams of which are directed
at an angle of 90° to the side surface of the rotating rotor of the laboratory centrifuge, on which
a mirror tape was fixed. An amplifier of the NP-3414 type built into the laser was used to
measure the signals (Fig. 5).
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The signal was received using the DS-2000, which amplifies and extends the signal to
the vibration sensor. To analyze the signal, a DS-0227 multi-channel station was used to process
the data. The results of data processing and the trajectory of the rotating body were displayed
on a PC screen.

In order to study the vibrations of the centrifuge shaft, vibration patterns were recorded
at different operating speeds, which were used for further analysis. Spectral analysis of the
vibrations made it possible to determine the natural frequencies of the laboratory centrifuge.

Based on the results obtained, a Campbell diagram was experimentally constructed (Fig.
4), which shows the dependence of natural frequencies on the rotational speed and demonstrates
the influence of gyroscopic effects on natural frequencies and enables determining the operating
modes in which resonant oscillations are possible.

To verify the reliability of the results obtained, the natural frequencies of oscillations of
the centrifuge shaft were also calculated using the KISSsoft software package [17]. The data
given in Table 1 were taken for modeling the shaft.

Table 1

Shaft dimensions

Diameter of shaft section Length of shaft section

d, =3mm L =5mm

d, =4,5mm L =12mm
d, =4mm L=1mm

d, =4,5mm L =10mm

d, =15mm L =36mm

ds =18mm L =14,2mm

d, =16mm L =56,8mm
dg =8mm L =8mm
dy =4mm L=4mm

A graphical representation of the shaft design in the KISSsoft software, according to the

above dimensions, is shown in Figure 3.
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Figure 3. Schematic representation of the rod system
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The results of simulation using the KISSsoft program are shown in Table 2 and
Fig. 7.

Results of the research. Since the natural frequencies in dynamic systems depend on
the gyroscopic effects arising from rotation, the Campbell diagram (Fig. 4) contains branches
of natural values that are formed by splitting the gyroscopic forces. Forward and backward
precession curves can appear if the movement is in the direction of rotation. Forward precession
curves usually occur due to unbalanced rotation, while backward precession curves can occur
due to other periodic forces.
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Figure 4. Campbell diagram, plotted
experimentally and analytically

Figure 5. Experimental bench with equipment

Fig. 4 shows the dependence of natural frequencies on rotational speed, taking
into account gyroscopic effects. The dotted line shows the values obtained analytically,
and the solid line shows the data obtained experimentally. The results show that at
low frequencies, the measurement accuracy is quite high and is within 5%. As the rotational
speed increases, the accuracy begins to decrease, and depending on the rotational speed, it
varies up to 20%.

Table 2 shows a comparative analysis of the first three natural frequencies without
taking into account gyroscopic effects, obtained by three methods: experimentally, analytically,
and as a result of simulation in the KiSSsoft software package.

Table 2

Comparative values of the first three natural frequencies

P; | Experimental value, Hz Calculation value, Hz KISSsoft value, Hz
P, 10 9.8 25.12
P, 34.375 33.774 92.39
Ps 323.75 327.71 310.71

As a comparison, the values of the first natural frequency of bending vibrations of the
shaft obtained by the methods of vibration theory are given below:

e by force method: @ =20862,9El ¢ — @, =144,44,/EIl ¢
e by Donckerley method: @} =28384,9El ¢ — @, =168,47,/El ¢
e be Raileigh method: @ =29180,7El ¢ — @, =170,8L/El ¢
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Discrepancy in the results obtained:

170,81 — 168,47
6D0nckerley = | 170.81

| -100% = 1,37%

168,47 — 144,44
6force method = ’ 168.47 ’ -100% = 14‘;26%

From the values obtained, it can be concluded that the Rayleigh method gives
overestimated values of the natural frequency compared to other methods, since the force
method gives more accurate results.
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Figure 6. The first form of oscillations, obtained by Figure 7. Shaft displacement, obtained by the
force method KISSsoft

Figures 6 and 7 show that the waveforms obtained with KISSsoft are similar to those
obtained with the force method.

Conclusions. The Campbell diagram showing the dependence of natural frequencies on
the rotational speed with consideration of gyroscopic effects is constructed.

As a result of simulation using the KISSsoft software, a set of natural frequencies was
obtained, which can be used to track the discrepancy between the obtained frequencies and the
values obtained by experimental and analytical methods. This error is due to inaccuracies in the
calculations and simulations in the KISSsoft software.

The results obtained make it possible to carry out the further necessary correction in
order to improve the characteristics of the structure to increase both the reliability and the life
of the system.

The graphs of natural waveforms reflecting the relative amplitude of movement of a
structural element are constructed. The graph obtained using the methods of vibration theory is
similar to the graph obtained using the KISSsoft software.
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BU3HAYEHHSA ITNHAMIYHUX XAPAKTEPUCTHUK BAJIY
HEHTPUDYT'U

SApocaas JlaBpenko; Terstna Cunopa; Makcum CynieHko

Hayionanvnuii mexuiunuu ynisepcumem Yxpainu « Kuigcokuu noaimexuivHuu
incmumym imeni Ieops Cikopcvrkozoy, Kuis, Ykpaina

Pesztome. Hageoeno pesynomamu mMoOentogants OUHAMIYHUX XAPAKMEPUCIUK 84Ty HA NPUKAAOT peanbHOT
nabopamopnoi yenmpugyeu PICO21 i3 3acmocysannam npoecpamuozo komnaexcy KISSsoft ax 6azamomacogoi
cucmemu. Ilpeocmaenena po3paxynkosa mooenb 8paxosye 8ai 1aOOpAmopHoi yenmpugyau, pomop y aKomy
DO3MIWYIOMbCA MEH3YPKU 3 PeHo8UHamu pisHoi ppaxyii, ankepa ma cmamopa. Ompumani 3Ha4eHHs: ROPIBHIOBAU
3 pe3yIbmamamu, OMPUMAHUMY AHATIMUYHUM MA eKCNEPUMEHMATIbHUM WLIAXOM. AHanimuuno e1acHi uacmomu
KOJIUBAHD 8ATLY YEHMPUDY2U PO3PAX08YBANU 3 3ACTNOCYBAHHAM PIBHAHHSA Jlaepanica Opy202o pooy 015 OUHAMIUHOL
Moldeni AK 6azamomacosoi cucmemu, OCKIIbKU ICHYIOYI Memoou GUSHAYEHHS OUHAMIYHUX XAPAKMepUCmuK
cnpowjeni, po3paxyHku NPoeoounu AK Oisl OOHOMACOBUX CUCMeEM MA 3dCHO8AHI HA meopemi npo KiHemuuHuil
MOMENmM, Wo, Y C8OI0 4epey, He ONUCYE Peabhy MOOeb YeHmpudyeau, OCKLIbKU He 8pAX08YE 6NAUE YCIX MM, SKI
cmeopioloms  8ibpayii 6 koncmpykyii. Ilpeocmaenena po3paxyHkoea Mmooenb 8paxo8ye MmaKoiC 6HIUG
2IPOCKONIYHUX epeKkmis, SAKI SUHUKAIOMb V pe3yabmami pooomu nabopamoproi yenmpugyeu. B pesyromami
PO3paxyukie nodyoosano diacpamy Kemnbenna, sika 6idobpasicae 3a1eicHiCme GIACHUX YACMOM KOJUBAHL 6i0
weuokocmi obepmannus. Taxooic, y ceoto yepey, 8UKOPUCMOBYIOUU NODYO08aHy Oiazpamy, MONCHA GUSHAYUMU
PDE30HAHCHI Y4acmomu, wo HAOAE MONCIUBICIb CMAHOBUMU O00- MA NICAAPE3OHAHCHI 30HU CMIUKOI pobomu
yeumpugyeu. Pezynomamu noxasanu 30ix%cHiCmMb OMPUMAHUX AHATIMUYHUX MA eKCNEPUMEHMATbHUX OAHUX, )
CB0I0 uepey, pe3yIbmamu, OmMpuMaHi 3a 00nomo2ow npocpamuoco komnuaexcy KISSsoft maromo 3asuweni
3HayeHHs. /[ nepegipKu 00CMOBIPHOCHT OMPUMAHUX 3HAYEHb BUKOHAHO BU3HAYEHHS GIACHUX YACMOM KOAUBAHb
Memooamu meopii KOAUBAHb WIAXOM 3ACMOCY8AHHA Memody cui, memooy [lonxepni ma memooy Penes.
Ilposedeno nopisHsinbhull anHaiz OMpUManux pesyiomamie. Y pesyiomami ananizy 6CMAHOGIEHO, WO Memoo
Penes oac 3asuwgeni 3HauenHss 61ACHUX YACMOM KOAUBAHb Y NOPIGHAHMI 3 THuwuMu Memodamu. Bracni ¢hopmu
KOUBAHb ALYy 1AOOPAMOPHOT YeHmpugyau po3paxogysanu 3a OONOMO2010 NPeOCMAeHUx y pobomi memodie
meopii konusanb ma npozpamno2o komnaexcy KISSsoft. Pesyismamu po3paxyHkie HOKa3auu cXodicy 3a1ediCHICb,
w0 nIOMBEepPOHCYE A0eK8AMHICIb Pe3YIbmamie MOOen08AHNS 8ATTY.

Knrouosi crosa: yenmpugyea, enacni yacmomu, éiracti popmu, oiazpama Kemnoéena, KISSsoft.
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