
 

 

 

Ministry of Education and Science of Ukraine 

Ternopil Ivan Puluj National Technical University 

 

Faculty Of Computer Information Systems and Software Engineering 
(Full name of faculty) 

Computer science Department 
(Full name of department) 

 

 

QUALIFYING PAPER 

For the degree of 

bachelor 
(Degree name) 

topic: Development of the "Smart Office" project based 
on the Internet of things (IoT) technologies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ternopil 

2023  

Submitted by: fourth   year student, group ICН-42 
Specialty: 122  Computer science 
 (Code and name of specialty) 

 
 

 Valani Montu Amrutlal 

 
(signature) 

 
(Surname and initials) 

Supervisor   Holotenko O.S. 

 
(signature) 

 
(Surname and initials) 

Standards verified by    

 
(signature) 

 
(Surname and initials) 

Head of Department   Bodnarchuk I.O. 

 
(signature) 

 
(Surname and initials) 

Reviewer    

 (signature) 
 

(Surname and initials) 



 

Ministry of Education and Science of Ukraine 

Ternopil Ivan Puluj National Technical University 

 

Faculty                   Of Computer Information Systems and Software Engineering 
(Full name of faculty) 

Department                        Computer science Department 
(Full name of department) 

 

 

 

 

ASSIGNMENT 

for QUALIFYING PAPER 

 

for the degree of bachelor 

 (Degree name) 

specialty 122  Computer science 

 (Code and name of the specialty) 

student Valani Montu Amrutlal 

  

1. Paper topic:
 

Development of the "Smart Office" project based on  

 the Internet of things (IoT) technologies 

  

  

Paper supervisor: Holotenko Oleksandr Serhiyovych,, PhD, Assoc. Prof. 

 (Surname, name, patronymic, scientific degree, academic rank) 

Approved by university order as of «___» ________ 2023 №____. 

2. Student's paper submission deadline 10/07/2023 

3. Initial data for the paper methods and means of measuring parameters microclimate and fields 

of 

application, development environment for Arduino, majordomo management system, MQTT protocol. 

4. Paper contents (list of issues to be developed) 1. Evaluation and examination of projects utilizing 

internet of things (IOT) technologies. 2. Design of the ecosystem monitoring of the “smart office” 

information system. 3. Software implementation of the “smart office” information system. 4. 

Occupational safety and health. 

5. List of graphic material (with exact number of required drawings, slides) 1. Relevance of the  

work. 2. The main purpose of work, the object of study, subject of research. 3. Tasks of the work.   

4. System components. 5. Subsystem operation algorithm. 6. The basic electrical scheme 

7. Functional scheme. 8. Working with the system. 9. Conclusions. 

 

APPROVED BY 

Head of Department 

  Bodnarchuk I.O. 

(signature)  (Surname and initials) 

«      »     2023 р. 



 

6. Advisors of paper chapters. 

 

Chapter Advisor's surname, initials and position 

Signature, date 

assignment 

was given by 

assignment was 

received by 

Occupational safety and 
   

health 
   

    

    

    

    

    

    

 

7. Date of receiving the assignment. 

TIME SCHEDULE 

 

LN Paper stages 
Paper stages 

deadlines 
Notes 

 

Analysis of technical task 
  

 

Analysis of characteristics of the object 
  

 

IOT technologies analysis 
  

 

Information resources and services 
  

 

Development of structural elements 
  

 

Development of the subsystem interface 
  

 

Testing the interface and the security 
  

 

Occupational safety and health 
  

 

Graphic materials 
  

 

Preparation to the qualification work presentation 
  

 

Qualification work presentation 
  

    

    

    

    

    

 

Student         Valani Montu Amrutlal 
       (signature)         (surname and initials) 

 

Paper supervisor        Holotenko O.S. 
          (signature)     (surname and initials) 



 

ABSTRACT 

Development of the "Smart Office" project based on the Internet of things (IoT) 

technologies //Qualifying paper // Valani Montu Amrutlal // Ternopil Ivan Puluj 

National Technical University, Faculty of Computer Information Systems and Software 

Engineering, group ІСН-42 //Ternopil, 2023 // p. - 61, fig. - 25, tabl.- 2, code snip. - 1, 

append. - 2, bibliogr. - 15. 

Keywords: Ethernet, physical topology, network equipment, switching, routing, 

sharing services, system, IoT, smart technologies. 

In this diploma thesis developed a "Smart Office" project based on the Internet of 

things (IoT) technologies. Basic documentation has been prepared: subsystem operation 

algorithm, the basic electrical scheme, functional scheme, сcomparison of data providers. 

A programming language and appropriate development tools have been chosen, the 

structural elements of the subsystem and its web interface in configuration mode have 

been developed. The created subsystem fully satisfies the requirements and successfully 

accomplishes all assigned tasks. 



 

TABLE OF CONTENT 

INTRODUCTION ......................................................................................................... 6 

1 EVALUATION AND EXAMINATION OF PROJECTS UTILIZING INTERNET 

OF THINGS (IOT) TECHNOLOGIES ........................................................................ 8 

1.1 Concept of technologies related to the Internet of things ................................... 8 

1.2 Standardization of Internet of Things (IoT) systems ........................................ 17 

2 DESIGN OF THE ECOSYSTEM MONITORING OF THE "SMART OFFICE" 

INFORMATION SYSTEM ........................................................................................ 30 

2.1 Selection of element base .................................................................................. 30 

2.2 Designing the subsystem structure .................................................................... 31 

2.3 Development of the basic information flow collection subsystem diagram ..... 33 

2.4 Designing subsystem behavior .......................................................................... 34 

3. SOFTWARE IMPLEMENTATION OF THE "SMART OFFICE" 

INFORMATION SYSTEM ........................................................................................ 36 

3.1 Selection of programming language and development tools ............................ 36 

3.2 Development of structural elements .................................................................. 38 

3.3 Development of the subsystem interface .......................................................... 40 

3.4 Functional testing of the subsystem .................................................................. 44 

3.5 Testing the interface template layout ................................................................ 48 

3.6 Security Testing ................................................................................................. 50 

3.7 Utilizing IT Ecosystem Monitoring for the Company ...................................... 51 

4. OCCUPATIONAL SAFETY AND HEALTH ................................................... 54 

4.1. General characteristics of the room and workplace ......................................... 54 

4.2 Analysis of potentially dangerous and harmful production factors in the 

workplace ................................................................................................................ 56 

Conclusions ................................................................................................................. 59 

REFERENCES ............................................................................................................ 60 

Appendix A ................................................................................................................. 62 

Appendix B .................................................................................................................. 64 

 

  



 

INTRODUCTION 

Currently, there is rapid advancement in advanced technological systems 

designed to automate household tasks. These systems encompass a wide range of 

household appliances, devices, and sensors, collectively known as Internet of Things 

(IoT) devices, which form the foundation of a Smart Home system. This system 

enables communication between users and their household appliances, expanding 

automation capabilities, device monitoring, and remote control functionalities. 

Similarly, in order to create a more productive and adaptable work environment 

tailored to specific activities, companies are adopting IoT-based systems known as 

"Smart Office" solutions. These systems employ modern technologies to enhance 

employee productivity and optimize space utilization, resulting in efficient and cost-

effective operations. 

The significance of this work stems from the increasing demand for automated 

room management systems that can transform existing devices into a smart 

infrastructure. Efficient management of office space infrastructure is crucial for 

creating a comfortable and effective working environment, ultimately impacting 

overall business efficiency. 

The objective of this research is to explore IoT technology and develop an 

information system for implementing the "Smart Office" concept. The goal is to 

automate and enhance IoT management in office spaces through the implementation 

of the "Smart Office" information system. The following tasks need to be addressed to 

achieve this goal: 

Conduct a comprehensive literature review and analysis of engineering 

equipment used in Smart Office systems, IoT concepts, existing market solutions, and 

technologies for platform development and implementation. 

Develop a system implementation plan encompassing the subject area 

description, project charter, information system life cycle at each development stage, 

and calendar planning. 

Evaluate the effectiveness of the developed system for implementation and 

integration of the information system. 



 

Compile requirements and describe the functionality of the information system 

for IoT technology management. 

Design the architecture and specifications for the "Smart Office" information 

system. 

The research will employ empirical (comparison, experimentation), theoretical 

(search, analysis, modeling), and mathematical (calculation) research methods. It will 

cover fundamental concepts and technologies relevant to the subject matter. 

The scientific novelty of this work lies in its contribution to existing Smart Office 

and IoT solutions. The proposed concept offers the potential for developing systems 

for proactive management of intelligent office spaces. 

The practical significance lies in the economic efficiency, improved usability for 

end-users, and the promising applications of IoT technologies. 

  



 

1 EVALUATION AND EXAMINATION OF PROJECTS UTILIZING 

INTERNET OF THINGS (IOT) TECHNOLOGIES 

 

1.1 Concept of technologies related to the Internet of things 

 

The concept of the Smart Home system revolutionizes the way we approach 

household activities by integrating a comprehensive automated control system that 

enhances operational efficiency and the management reliability of all life support 

systems. A Smart Home is designed to provide security, resource conservation, and 

comfort for its users. At its core, it should be capable of recognizing specific situations 

within the building and responding accordingly, with subsystems controlling the 

behavior of others based on developed algorithms. The automation of multiple 

subsystems generates a synergistic effect for the entire system. 

A Smart Home represents a concept of human interaction with living spaces, 

where the operation of engineering systems and electrical appliances is regulated 

automatically from a central hub, following pre-defined parameters. Such a system 

offers numerous benefits to users, including comfort, safety, and resource efficiency. 

It ensures coordinated operation of the heating and air conditioning systems while 

monitoring factors that affect the need for activating or deactivating these systems. In 

other words, all engineering systems and electrical devices operate and are monitored 

automatically in accordance with external and internal conditions. 

In developed countries, the concept of the Smart Home aligns with 

environmental friendliness and sustainability, as it facilitates the rational utilization of 

limited natural resources while minimizing adverse effects on the environment and 

people's well-being. The primary objective of a Smart Home is to enhance residents' 

comfort and simplify everyday life. 

The history of Smart Home technology dates back to the last century. The term 

"Smart Home" was initially introduced in the 1970s at the Intelligent Building Institute 

in the State of Washington, where groundbreaking projects were developed, enabling 

the transmission of various types of information through a single wire for controlling 

different devices. 



 

One of the early smart home projects was the house of American engineer Emil 

Mathias. In the 1950s, Mathias equipped his home with a variety of devices, which he 

controlled through a button panel. For instance, he could open the garage door and 

remotely turn the radio on and off with a simple press of a button. Additionally, the 

engineer installed automatic alarm systems in the house. Implementing the project 

required over two kilometers of hidden cables, concealing all wires, motors, sensors, 

and devices within the walls and floors. 

Another notable example of smart home development is Monsanto's House of 

the Future, an attraction introduced in 1957. The Monsanto company collaborated with 

the Massachusetts Institute of Technology to create a new type of residential building 

entirely made of plastic. The lightweight nature of plastic enabled the automation of 

all systems in the house with ease. The house featured an ultrasonic dishwasher, in-

floor air conditioning, a speakerphone, shelves that disappeared into the kitchen 

ceiling, and a connected, automated sink that adjusted its level based on a person's 

height. 

The popularization of the smart home concept gained traction in the late 1990s, 

with the release of the film "Smart House" by Disney in 1999, which depicted an 

automated house managed by a robot maid. Since then, the topic has been increasingly 

discussed in cinema and the media. 

In essence, a Smart Home refers to the automation of daily life by integrating 

electrical appliances and household devices into a unified ecosystem within the home. 

Let's consider the exemplary architecture of a Smart Home, as shown in Figure 1. When 

developing a remote control system, the main components typically include user 

applications, a web server, a Smart Home server, and a controller for managing sensors 

and actuators. 

 



 

 

Fig.1 Architecture of the "Smart House" 

 

The Smart Home system encompasses several crucial components that work 

together seamlessly: 

The remote control is facilitated through a mobile application or web browser, 

enabling users to issue commands to Smart Home devices. This component serves as 

a conduit for transmitting instructions to the cloud server while also receiving sensor 

data updates from it. 

The web server acts as a data repository, storing information about the status of 

sensors and devices in a database. Additionally, it acts as an intermediary between 

remote control devices and the Smart Home server. Its primary function involves 

transmitting commands from mobile devices to the cloud, where they are processed 

and subsequently relayed to the home server. 

The Smart Home server serves as the central hub for receiving commands from 

the web server and relaying them to the controllers. It also facilitates the transmission 

of sensor data from the controllers back to the server. 

The controller acts as the linchpin that integrates the various elements of a Smart 

Home into a cohesive entity. It manages connected sensors, receives commands from 



 

the server, and relays information about changes in sensor states back to the server. It 

plays a pivotal role in providing a web interface, executing scripts, and facilitating 

command transfer between devices. 

Sensors are devices responsible for gathering information about the environment 

and the state of household appliances, which they subsequently transmit to the 

controller. For example, a temperature sensor detects the temperature in the house and 

triggers the activation of a heater or an air conditioner accordingly. 

Actuators are executive devices that execute commands directly. This category 

encompasses a wide range of devices, including smart switches, smart sockets, sirens, 

climate controllers, and more. 

IoT devices, also known as Internet of Things devices, are smart home devices 

consisting of a controller, a sensor, and a household appliance, such as a refrigerator, 

thermometer, or blinds. 

The Internet of Things (IoT) refers to the vast network of interconnected objects 

that communicate with each other over the internet, facilitating data exchange and 

interaction with IoT applications, connected devices, and industrial machinery [30]. 

Internet-connected devices incorporate built-in sensors to collect and sometimes 

influence data. IoT applications span a broad spectrum, from smart homes that 

autonomously adjust heating and lighting to smart factories that monitor industrial 

machinery, making real-time adjustments to prevent failures. 

At its core, the Internet of Things operates on the principle of machine-to-

machine communication, enabling electronic devices to interact without human 

intervention. Unlike "smart" homes, IoT systems utilize TCP/IP protocols to exchange 

data across the channels of the global internet network. In an article titled "Architecture 

of a network control complex of a building based on IoT devices", the authors delve 

into the design task of a cyber-physical system utilized as a service for managing 

intelligent buildings using IoT technologies. 

The Internet of Things comprises a network of physical objects connected to the 

internet, capable of self-identification and integration with other devices. Thoughtful 

implementation of IoT can lead to reduced electricity consumption, enhanced safety in 

homes and cities, and improved indoor comfort. This technology empowers 



 

organizations with novel methods to remotely manage and monitor operations, 

enabling full control over remotely located objects while constantly supplying 

information to applications and data repositories. 

The International Telecommunication Union (ITU) Communication Standards 

Division has published Recommendation Y.2060, titled "Overview of the Internet of 

Things" [61]. Within this document, the following definitions provide insights into the 

scope of the Internet of Things: 

Internet of Things: A global infrastructure within the information society that 

enables the provision of advanced services by integrating (physical and virtual) things 

based on existing and functionally compatible information and communication 

technologies. 

In the context of the Internet of Things, a "Thing" refers to an entity existing in 

either the physical world (physical things) or the informational realm (virtual things), 

possessing the ability to be identified and seamlessly integrated into a communication 

network. 

Regarding the Internet of Things, a "Device" signifies an equipment item 

equipped with mandatory communication capabilities, along with additional 

functionalities such as measurement, actuation, data input, storage, and processing. 

As depicted in Figure 2, within the realm of Internet of Things technology, the 

already pervasive information and communication technologies that facilitate 

communication "anytime" and "anywhere" now encompass a novel dimension - 

"communication with anything". 



 

  

Fig.2 Communication with anything  

In the context of IoT, "Things" refer to objects existing in either the physical 

world (referred to as physical things) or the digital realm (referred to as virtual things), 

which can be identified and seamlessly integrated into a communication network. 

These things possess associated information, which can be either static or dynamic. 

Physical things exist in the tangible world and can be measured, controlled, and 

connected. Examples of physical things include the environment, industrial machinery, 

goods, and electrical equipment. On the other hand, virtual things exist in the digital 

realm and can be stored, processed, and accessed. Examples of virtual things include 

multimedia content and application software. 

Researchers highlight that governments of various countries are displaying 

interest in IoT technology and supporting scientists and enterprises engaged in its 

implementation and development. 

The primary challenge with IoT lies in the absence of clear and consistent 

architectures for building connected automated systems. For instance, a single light 

switch may employ one level of data encryption, while a remote control may utilize 

different encryption algorithms. Moreover, wireless protocols can vary, with devices 

using ZigBee, Bluetooth, or Wi-Fi. This leads to duplication of bridges for connection 

across these parameters, forming a network that becomes vulnerable to external 

influences. 

 



 

Regarding IoT security in the household industry, the situation is relatively less 

complex. Smart home devices typically access the internet through standard channels, 

and the information they transmit requires basic protection against viruses and cyber 

threats. Even if a massive cyberattack occurs, it would not lead to a catastrophe. 

Additionally, home devices are often produced in large quantities, and excessive 

protection would significantly increase their cost, discouraging potential buyers. 

In contrast, the situation becomes more severe in business and industry, as 

attackers may attempt to gain access to smart devices within enterprises, posing the 

risk of significant financial losses and potential industrial disasters. Hence, IoT 

networks prioritize enhanced security measures. 

Various methods are employed for protection, including: 

Isolation from the internet, limiting operations to the internal network of the 

office or factory. 

Encryption of industrial data using robust algorithms like AES-256, which 

requires an astronomical amount of time to break the 256-bit key. 

Protection of software and operating systems. 

Intrusion detection and prevention systems that notify administrators if any 

unauthorized attempts to access the system are detected. 

Presently, global digitization of business processes is underway, aiming to 

enhance labor productivity, work quality, and production safety. Digitization 

represents a modern trend, with significant efforts being devoted to improving and 

automating workspaces. Data received from various sources is being used for the 

development of management systems, economies, businesses, and the social sphere, 

fostering harmonious interaction between these domains. 

A smart office refers to an automated control system designed to manage and 

control various aspects of premises, including lighting, heating, ventilation, water 

supply, security, and audio/video equipment. The system can be customized and 

modified based on the owner's preferences. By integrating various subsystems, a smart 

office ensures their seamless operation and high functionality within the entire 

complex. This integration not only prevents conflicts during operation but also 



 

facilitates harmonious interaction among the subsystems. For instance, the air 

conditioner will not cool the room when the heating is already active. 

Through the integration of the aforementioned technologies, indoor comfort is 

ensured. A smart office takes charge of managing the parameters of the entire premises 

complex. It can control lighting, curtains, air conditioning, heated floors, video 

equipment, and other devices as required. 

Currently, the market for smart technologies exhibits the following 

characteristics: 

A significant portion of solutions available in the market are specifically tailored 

for intelligent office environments. Experts assert that implementing these solutions 

not only enhances operational efficiency but also proves to be a profitable investment 

in the long run. 

There is an observed increase in the adoption of smart technologies during the 

construction stage of office buildings in urban areas, highlighting a growing trend 

towards intellectualization. These solutions are characterized by their complexity, 

modularity, and the ability to be personally configured. 

In general, the smart infrastructure of a building comprises two key components: 

IT infrastructure and smart engineering systems (refer to Fig. 3). The IT infrastructure 

encompasses all the information technologies and resources utilized by a particular 

organization or company. On the other hand, intelligent engineering systems 

encompass the building or premises systems that are designed to support life, facilitate 

technological processes, maintain comfort, conserve energy and resources, and ensure 



 

security.

  

Fig. 3 Smart building architecture. 

Smart infrastructure offers clients the convenience of accessing necessary 

services while adhering to security requirements, eliminating the need for direct contact 

with service providers. 

The implementation of a smart office system brings several key advantages: 

Cost reduction: The "smart office" system enables significant cost savings by 

reducing electricity consumption by up to 50% and optimizing water and heating 

supply. This, in turn, leads to reduced rental rates and operating expenses. 

Increased productivity: Simplified tasks such as finding and booking meeting 

rooms streamline workflows, allowing employees to dedicate more time to productive 

work and less time on non-work activities. 

Enhanced comfort: The system ensures a comfortable working environment by 

regulating temperature, humidity, and fresh air circulation both inside and outside the 

premises. 

 



 

Improved security: The Smart Office security system encompasses various 

comfort functions, including security and fire alarms, access control, monitoring of 

engineering subsystems, and video surveillance. 

Optimal utilization of office space: Implementing a smart office solution 

optimizes the use of workspace, freeing up areas and maximizing their efficiency. 

 

1.2 Standardization of Internet of Things (IoT) systems 

 

The Internet of Things gained significant popularity between 2010 and 2017 with 

the advent of affordable terminal devices, secure and fast data transmission 

technologies, and the rapid development of the Internet and communication protocols. 

These factors led to the emergence of numerous cost-effective and straightforward end 

devices that could be quickly assembled into ready-made solutions. Alongside simpler 

solutions, the market saw the introduction of professional systems with complex and 

extensive logic, involving entire companies and international committees (e.g., the 

Concept of Industry 4.0 and the Industrial Internet Consortium). 

While some researchers argue that a single software architecture standard for 

IoT applications may not be feasible due to the lack of contextual information for 

design decisions [60], the Industrial Internet Consortium developed a methodology in 

2015 for Industrial IoT systems. This methodology includes the creation of design 

support tools for specific types of IoT systems. Notably, the publication of established 

standards governing construction levels, complexity, technical details, and 

implementation features of such systems in industrial settings. The document has been 

widely adopted by Western companies involved in the development of industrial IoT 

systems, demonstrating its practical applicability. 

Intellectual buildings possess distinct characteristics outlined by several authors: 

The ability for dynamic development of engineering systems, allowing for 

expansion and modification. 

A significant number of sensors to gather operational information about the 

building's condition. 



 

The software and hardware components should not be restricted to a single 

manufacturer. 

Utilization of typical devices such as controllers, communication buses, input-

output modules, and information display systems. 

Based on these properties, it is imperative to integrate all security systems and 

engineering systems within an intelligent building into a unified information system, 

known as an automated building management system. 

Recommendation Y.2060 also provides an IoT reference model that closely 

resembles the NGN (Next Generation Network) model. It consists of four primary 

horizontal layers (refer to Figure 4): 

• IoT application layer 

• Support layer for services and applications 

• Network layer 

• Device layer 

 

 

Fig. 4 IOT reference model 

 



 

There are two additional vertical levels in the architecture - the management 

level and the security level, encompassing all four horizontal levels. Recommendation 

Y.2060 does not provide detailed coverage of the IoT application layer. The level of 

support for services and programs includes general capabilities for various IoT objects 

for data processing and storage. The network layer incorporates network functions such 

as resource management of the access network and transport network, mobility 

management, authorization, authentication, and settlement functions. Lastly, the device 

layer represents the capabilities of the device and the gateway. Device functionality 

includes direct communication with the network, communication through the gateway, 

sharing via wireless dynamic ad hoc networks, and temporary suspension and 

resumption of device operations for energy-saving purposes. The gateway supports 

multiple device interfaces (CAN bus, ZigBee, Bluetooth, WiFi) as well as access 

networks/transport networks (2G/3G, LTE, DSL). Additionally, the gateway facilitates 

protocol conversion if the protocols of device and network interfaces differ. 

Within the architecture of the information management system, two intellectual 

information models can be identified. The first model pertains to the level of sensors 

and executive mechanisms, encompassing sensors, controllers, and a database for 

storing information processed by the controller. This model enables automatic control 

through the controller, which retrieves information from the sensors, compares it with 

threshold values, and issues control commands to adjust the parameters when 

necessary. Real-time data received from the sensors is stored in a database. The second 

information model is the logic model of the intelligent building, comprising the 

interface, business logic, database, and communication elements. This model facilitates 

user interaction with devices. Web services and SCADA systems are utilized to display 

and control information from sensors and devices. To transfer this data to the server, 

protocols are required. Existing protocols based on HTTP are not suitable for the 

concept of IoT and machine-to-machine interaction. Therefore, a new protocol, MQTT 

(Message Queue Telemetry Transport), was developed. 

MQTT, or Message Queuing Telemetry Transport, is an open data exchange 

protocol. In this protocol, a broker collects data from multiple nodes and transmits it to 

the server. It follows a publisher-subscriber model with an intermediate server acting 



 

as the broker. The transport used is TCP. The MQTT protocol necessitates the presence 

of a data broker. All devices send data exclusively to the broker and receive data from 

it. The broker serves as a program that functions as a TCP server with a dynamic 

database. The protocol was designed to be open, simple, with minimal resource 

requirements, and easy to implement. MQTT operates on top of TCP/IP and adopts a 

client/server model, where each sensor functions as a client connected to a server acting 

as a broker. The MQTT protocol mandates the presence of a broker to manage data 

distribution to subscribers. All devices or actuators only send data to the broker and 

receive data from it as well. 

In an MQTT-based network, the following objects are distinguished: 

Publisher: An MQTT client that publishes relevant topics to the broker when a 

specific event occurs. 

Broker: An MQTT server that receives information from publishers and 

transmits it to relevant subscribers. In complex systems, the broker may also perform 

various operations related to the analysis and processing of received data. Different 

brokers can connect with each other by subscribing to each other's messages. 

Subscriber: An MQTT client that subscribes to the broker, constantly listening 

for and processing incoming messages on topics of interest. 

The diagram illustrating the simple interaction between the subscriber, 

publisher, and broker is presented in Figure 5. 

  

Fig. 5 The main structure of the MQTT broker  



 

Temperature sensors act as "publishers" in the MQTT system, as they can only 

transmit information about their state and cannot accept commands. On the other hand, 

the computer acts as a "subscriber" because it receives data from the MQTT broker 

regarding the state of the sensors. 

In analytical practice, time series are commonly encountered. A time series 

refers to a sequence of observations of the same phenomenon or a parameter of a 

process over a period of time. Each measurement in a time series corresponds to a 

specific time or a serial number based on the time scale. 

InfluxDB is a clustering database designed specifically for storing time series 

and metrics. It is written in Go and can be compiled into a single binary without 

external dependencies. InfluxDB offers users the ability to store data and interact with 

the database through the command line. 

 

The advantages of InfluxDB include: 

• Lack of dependencies 

• Capability to work in cluster mode 

• Ability to store billions of measurement points 

• Efficient data sampling through classification using tags 

• Availability of libraries for various programming languages 

• SQL-like query language for performing operations on time series 

 

InfluxDB is primarily designed to store DevOps monitoring metrics, sensor data, 

and data for online time series analytics. Data in InfluxDB is represented as time series, 

which consist of measured values. A series is a collection of "points" that represent 

values at specific points in time. The "Points" structure includes fields such as: 

• Time: A timestamp that stores time information 

• Measurement: A line indicating the series 

• Fields: Direct values in a "key-value" format 

• Tags: Meta-data about values, also in a "key-value" format 

Conceptually, a measurement in InfluxDB can be likened to a table in SQL, 

where the primary index is always time, and tags and fields serve as columns. Tags are 



 

indexed, while fields are not. The advantage is that InfluxDB can handle millions of 

measurements without requiring predefined schemas. Data is written to InfluxDB using 

the line protocol. 

When analyzing existing systems for IoT, the concept of a "Smart Office" can 

be divided into two components: technological and conceptual. Technologically, a 

"Smart Office" is similar to a "Smart Home". Modern advancements allow for 

integrating the entire engineering infrastructure of a business center into a single 

management system that controls access, energy supply, heating, water supply, and fire 

alarm. 

For tenants or buyers, the operation of office real estate plays a secondary role. 

Their main concern is the financial costs associated with maintaining the premises and 

ways to minimize them. The "Smart Office" system helps reduce electricity costs by 

50% and achieve 30-40% savings in water and heat supply. As a result, both rental 

rates and operating costs are reduced. 

The "Smart Office" Estel in Milan, Italy, is a software and hardware complex 

that enables automatic control of systems and devices. It incorporates a "Smart Office" 

controller integrated into subscriber devices, allowing users to create a network of 

wireless sensors controlled through a smartphone, tablet, or web browser (Figure 6). 

 

Fig. 6 The composition of the solution "Smart Office" Estel  



 

 

Features of the "Smart Office" system include: 

• Ensuring premises security: The system includes remote monitoring of the 

premises through Wi-Fi cameras. 

• Remote control and management of system sensors: The installed application 

receives notifications regarding unauthorized door opening, water leakage, 

smoke detection, and messages from motion sensors. 

• Programmable equipment: All equipment can be programmed to work 

sequentially or simultaneously in the desired mode with specific time and date 

settings. 

• Resource consumption monitoring: The system includes sensors to track 

resource consumption for optimal use of supply services. 

 

Additional features of the system are: 

Microclimate management: The system allows regulation of temperature and 

humidity in the room. When the optimal microclimate is reached, the power of heaters 

or air conditioners is automatically adjusted. 

Lighting systems and electrical appliances management: The system 

automatically turns off lights when the natural lighting in the room reaches an optimal 

level. 

The "Smart Office" system provides an integrated solution that addresses 

important security tasks. Let's explore the advantages of using the system in 

organizations in more detail. 

Leakage control is a feature that helps in unexpected pipe bursts. When the 

sensor detects water, it sends a notification to the owner's smartphone and activates a 

sound or light signal. Future leakage sensors will be capable of automatically shutting 

off the water supply in case of an emergency. In new buildings, sensors can monitor 

water or heat meters, upload readings to smartphones, and issue alerts if the 

consumption exceeds average monthly volumes. 

Enhanced security is achieved through opening sensors placed on doors and 

windows to monitor their status. These sensors are beneficial for office security, as 



 

they send notifications to smartphones, activate loud sirens, or alert security agencies 

if an unauthorized person enters. Opening sensors also record temperature and lighting 

conditions in the room. Motion sensors notify users if someone is present in the house 

when they are away, triggering alerts, surveillance cameras, and providing real-time 

updates. Smoke sensors emit sound signals and communicate with the owner's 

smartphone. 

Outdoor and indoor video surveillance is facilitated by easily installable cameras 

that contribute to increased security. The camera's video stream can be viewed through 

a smartphone app or a personal account on a PC. All captured footage is stored in cloud 

storage. 

The central component of the entire "Smart Office" ecosystem is a controller. 

This device connects all sensors, cameras, and light bulbs in the office, enabling control 

and coordination among them. The controller allows for the creation of interaction 

scenarios between devices. 

Microsoft Technology Center, with 35 employees worldwide, serves as a testing 

ground for Microsoft products' implementation scenarios. It conducts training 

seminars, briefings for partners, as well as conferences and presentations. The center 

is based on the architecture of IoT solutions utilizing the Azure IoT Suite service 

announced by Microsoft. 

Microsoft Azure is a cloud platform that combines infrastructure-as-a-service 

(IaaS) solutions (servers, data storage, networks, operating systems) with a range of 

tools and services that facilitate the development and deployment of cloud applications 

(platform-as-a-service or PaaS). These solutions enable developers to quickly create, 

deploy, and manage large-scale applications tailored to the specific needs of 

organizations. Microsoft Azure services help customers avoid complexities and 

additional costs associated with replacing existing equipment and managing 

infrastructure, leading to more effective IT budget management. Customers only pay 

or the resources they require. 



 

  

Fig. 7 Microsoft technology center architecture 

 

The infrastructure's operation is monitored using numerous sensors and 

actuators. The sensor categories serving as information providers include: 

Server Display Room sensors: These sensors monitor parameters such as 

temperature, humidity, power supply, cooling, and video surveillance in the server 

display room. 

Lighting management: Sensors are employed to manage and control the lighting 

systems. 

Audio-video and presentation equipment management: Sensors are utilized to 

control and manage audio-video and presentation equipment. 

Schedule, configuration, and loading of premises management: Sensors play a 

role in managing the scheduling, configuration, and loading of premises. 



 

Climate management: Sensors are used to monitor and regulate the climate 

within the infrastructure. 

Access management: Sensors contribute to the management of access control 

within the premises. 

Increasing business productivity and unified communications: Sensors aid in 

enhancing business productivity and facilitating unified communications. 

On March 16, 2015, Microsoft Corporation announced the Azure IoT Suite, a 

cloud-based solution designed to assist corporate users in adapting to the expanding 

Internet of Things (IoT) landscape. This solution comprises a collection of cloud 

services integrated with the Azure environment, enabling companies to initiate their 

own IoT projects. Azure IoT Suite facilitates the connection of diverse electronic 

products with network capabilities to the Microsoft Azure cloud. It enables the 

retrieval, management, storage, and analysis of data from these connected devices, 

thereby enabling important business decisions and process automation. 

 

 

Fig. 8 Azure IoT Reference Architecture  

The Microsoft Azure IoT Suite is a comprehensive solution designed for 

enterprise use, offering preconfigured and extensible solutions that enable rapid 

deployment. These solutions are suitable for common IoT scenarios such as remote 

monitoring and predictive maintenance. The preconfigured solutions provided within 

the Azure IoT Suite include the following components: 

Virtual devices: These are preconfigured virtual devices that are essential for 

starting work within the IoT environment. 

Preconfigured Azure services: The suite includes preconfigured Azure services 

that seamlessly integrate with the IoT solutions. 



 

Control console: Each solution comes with a control console specifically 

designed for that particular solution. 

These preconfigured solutions come with tested and ready-to-use code that can 

be customized and extended to suit specific IoT scenarios. 

At the core of the Azure IoT Suite is the Azure IoT Hub service, which acts as a 

messaging platform between devices and the cloud. It serves as a gateway to the cloud 

and other key services within the IoT Suite. The IoT Hub enables real-time message 

reception from devices, command delivery to devices, and device management. 

Azure Stream Analytics is used for operational data analysis within the 

preconfigured solutions. It handles telemetry input processing, aggregation, and event 

detection. Stream Analytics is utilized to process informational messages containing 

metadata or responses to device commands. It helps process device messages and 

facilitates delivery to other services. 

Data storage capabilities are provided by the Azure Document DB service. For 

telemetry data storage and preparation for analysis, preconfigured solutions utilize 

Blob storage. Document DB is used to store device metadata and also provides device 

management functionalities within the solutions. 

Data visualization is achieved through Microsoft Power BI web applications. 

Power BI offers flexibility in creating interactive monitoring dashboards based on data 

from the Azure IoT Suite. 

In addition to Azure IoT Suite, there is another platform called AWS IoT Core, 

which is a managed cloud platform provided by Amazon Web Services (AWS) for 

working with IoT devices. AWS IoT Core supports billions of devices and trillions of 

messages, making it easy to connect devices to the cloud or establish device-to-device 

connections. AWS IoT Core offers a wide range of choices for operating systems, 

programming languages, internet application platforms, databases, and other necessary 

services. 

Key features of AWS IoT Core include the ability to filter and transform device 

data, the preservation of the last state of devices, comprehensive infrastructure security, 

and integration with various AWS and Amazon services such as AWS Lambda, 

Amazon Kinesis, Amazon S3, Amazon SageMaker, Amazon DynamoDB, Amazon 



 

CloudWatch, AWS CloudTrail, Amazon QuickSight, and Alexa Voice Service. AWS 

IoT Core simplifies the development of IoT applications for data collection, 

processing, analysis, and automation without the need to manage underlying 

infrastructure. 

 

Fig. 9 AWS IoT Core Architecture  

 

AWS IoT Core offers the flexibility to choose the most suitable connection 

protocol for connecting and enabling IoT devices based on specific application 

requirements. The supported connection protocols in AWS IoT Core include: 

MQTT (Message Queuing Telemetry Transport): This protocol is designed for 

high-speed telemetry and efficient communication between devices and the cloud. 

HTTPS (Hypertext Transfer Protocol Secure): HTTPS provides advanced 

security features for secure communication between devices and the cloud. 

MQTT over WSS (WebSocket's with advanced security): This protocol 

combines the benefits of MQTT and WebSocket's, allowing for secure and 

bidirectional communication between devices and the cloud. 

LoraWAN: This protocol is ideal for power-efficient, long-range, and low-speed 

communication in IoT applications that require extended coverage. 

The Appliance Gateway serves as the entry point for IoT appliances connecting 

to AWS IoT Core. It implements the semantics of various protocols, including MQTT, 

WebSocket's, and HTTP 1.1, to ensure reliable and efficient communication between 



 

the appliances and AWS IoT Core. The gateway handles bidirectional communication, 

enabling appliances to send and receive notifications throughout the day. 

The Appliance Gateway is designed to scale automatically and can 

accommodate a large number of appliances, even exceeding a billion, without the need 

for additional infrastructure. For customers migrating their data to AWS IoT, the 

Appliance Gateway provides a secure infrastructure migration capability with minimal 

impact on the existing architecture and IoT appliances. 

  



 

 

2 DESIGN OF THE ECOSYSTEM MONITORING OF THE "SMART 

OFFICE" INFORMATION SYSTEM 

 

2.1 Selection of element base 

 

To establish a subsystem that can gather and accumulate information within the 

IT ecosystem of the company, the ESP8266 microcontroller was selected. This choice 

was made due to its comprehensive functionalities and its ability to remain 

technologically relevant. The ESP8266 microcontroller, specifically the MK ESP8266, 

stands out as the optimal option because of its fast operation, ample program memory, 

support for various popular interfaces, and built-in wireless WiFi module. During the 

development phase, communication with the MK occurs through a USB to Serial 

converter, which facilitates code loading into the MK's memory and enables debugging 

of its performance. 

The ESP8266 is highly regarded for its integration capabilities in WiFi 

applications. It incorporates numerous components that are typically external in 

competing solutions. This streamlined design with fewer components leads to lower 

component costs, reduced soldering expenses, a smaller footprint, and decreased 

printed circuit board expenses. 

To ensure the complete functionality of the information gathering and 

accumulation subsystem within the company's IT ecosystem, it is essential to consider 

compatible data providers that can be connected to the system. 

For enhanced convenience when working with the ESP8266, the NodeMCU 

debugging board, depicted in Figure 2.1, was utilized. This board primarily consists of 

the aforementioned MK and incorporates all the necessary circuitry for the reliable 

operation of the ESP8266. 

NodeMCU Lua V3 ESP8266 serves as a developer board based on the ESP8266 

chip, which functions as a UART-WiFi module with extremely low power 

consumption. This board facilitates the convenient development of Internet-enabled 



 

devices as it features pre-existing USB connections, a power regulator, and interfaces 

for data exchange. 

NodeMCU was developed shortly after the release of the ESP8266. Espressif 

Systems initiated the production of the ESP8266 on December 30, 2013.

 

Fig. 10 - NodeMCU development board 

 

The ESP8266, an integrated Wi-Fi SoC (System-on-a-Chip) with the Ten silica 

Extensa LX106 core, is extensively used in IoT applications. On October 13, 2014, 

NodeMCU was created, and two months later, it expanded to support the IoT MQTT 

protocol using Lua to access the MQTT broker. 

The ESP8266 microcontroller offers compatibility with popular interfaces such 

as SPI and I²C. For the purpose of working with these interfaces, the following sensors 

were selected due to their good characteristics and compatibility: 

- DS18B20 temperature sensor 

- DHT11/21/22 air humidity and temperature sensor 

- BMP180 atmospheric pressure sensor 

- BME280 atmospheric pressure sensor 

- MH-Z19 carbon dioxide level transmitter 

- MQ-135 air quality sensor 

 

2.2 Designing the subsystem structure 

 

When implementing monitoring systems, it is important to provide users with a 

convenient interface. The ESP8266 enables the creation of a web server, which can 

offer a user or system administrator an accessible web interface. User interaction with 

the system begins once the device is successfully assembled into a unified system. To 



 

facilitate this, an assembly algorithm is developed, which is presented in Appendix A. 

This algorithm outlines the sequence and mandatory steps that the system user (or 

administrator) needs to perform to initiate successful operation with the system. 

Before commencing component installation, it is necessary to verify the 

availability of all required components and establish a workspace dedicated to device 

assembly. Workspace organization involves checking the availability of necessary 

tools and acquainting oneself with the assembly algorithm. Once all the tools are ready, 

the subsystem for collecting and accumulating information flows from the company's 

IT ecosystem can be assembled: 

Ensure that all system components are present. 

If all components are available, start assembling the device by placing the 

ESP8266 microcontroller on the breadboard. 

Install the power supply board, which includes a voltage stabilizer capable of 

selecting a voltage within the range of 3.3V to 5V, according to the mock-up plan. 

Connect the appropriate contacts of the microcontroller to the power board and 

verify its functionality (successful activation is indicated by an illuminated LED). 

Connect the data providers to the subsystem by determining the parameters of 

the ecosystem that need to be collected and accumulated. 

To establish communication between the subsystem and a computer, connect 

them via a USB to Serial converter and use the Arduino IDE development environment 

to download the firmware into the microcontroller's memory. 

If the download is successful, an access point will be created, allowing you to 

begin working with the system. If not, re-flash the microcontroller. 

After connecting to the access point created by the subsystem, using the 

password defined in the code, you can proceed with the settings. 

During the setup process, specify the global network access parameters by 

entering the name and password to connect to the router, and activate the data 

transmitters connected to the subsystem. 

The final stage involves setting the data export interval to the cloud storage and 

specifying the API key for accessing the cloud data storage. 



 

If the device assembly algorithm is executed correctly and the system setup is 

successful, the export of data from the connected sensors will commence. The data will 

be sent to the selected cloud data storage based on the protocol defined in the code. 

 

2.3 Development of the basic information flow collection subsystem 

diagram 

 

Once the appropriate components have been chosen to fulfill the specified 

requirements, it is necessary to construct a schematic diagram of the subsystem based 

on the selected element base (as depicted in Figure 2.2). The diagram features the 

ESP8266 microcontroller (ESP-12E version) denoted as DD1, to which various sensors 

required for monitoring the company's IT ecosystem are connected. The power supply 

is provided by a 3.3V source. To enable the input/output lines to which the data 

transmitters are connected, resistors with a nominal value of 10 kΩ are required. These 

resistors are connected to each output of the monitoring module and the power line. 

 

Fig. 11 – Scheme of the electrical principle of the subsystem 

 

The ESP8266 ESP-12E subsystem module provides 10 pins for connecting data 

sensors and other components. In this implementation, 8 digital outputs are utilized to 

connect data transmitters. Referring to the schematic diagram, it can be observed that 



 

the subsystem currently supports simultaneous operation with various data providers, 

including: 

 

DS18B20 temperature sensor, labeled as U1 on the diagram. 

DHT11/21/22 air humidity and temperature sensors, labeled as U2 on the 

diagram. 

BMP180 temperature and atmospheric pressure sensor, labeled as U3 on the 

diagram. 

BME280 temperature, humidity, and atmospheric pressure sensor, labeled as U4 

on the diagram. 

MH-Z19 carbon dioxide level sensor, labeled as U5 on the diagram. 

MQ135 air quality sensor, labeled as U6 on the diagram. 

Additionally, the circuit includes a reset button for the monitoring module, 

labeled as S1. This button may be necessary to implement changes after the user 

modifies the subsystem settings. By connecting the sensors to the subsystem following 

this schematic diagram, proper system functionality is ensured, safeguarding both the 

subsystem and the data sensors from damage. 

 

2.4 Designing subsystem behavior 

 

The behavior of the subsystem for collecting and accumulating information 

flows from the ecosystem depends on the actions of the end user. To illustrate the 

subsystem's behavior, a functional diagram is the most convenient way to depict its 

operation and the interaction between individual elements. The functional scheme of 

the subsystem is presented in Figure 12. 



 

 

Fig. 12 – Functional diagram of subsystem operation 

 

The functional scheme clearly demonstrates that it accurately represents the 

intended set of functions for the subsystem. Once connected to the access point created 

by the subsystem and configured appropriately, it initiates the export of data to the 

chosen cloud data storage. Users have the option to select ThingSpeak, NarodMon, or 

export data using the MQTT protocol. Among these options, ThingSpeak is the most 

popular choice due to its extensive capabilities for data storage and manipulation. 

In this particular version of the subsystem for collecting and accumulating 

information flows from the ecosystem, it enables monitoring of temperature, humidity, 

atmospheric pressure, and carbon dioxide levels in the air. In the future, there may be 

opportunities to expand its functionality to include monitoring of water, power 

consumption of connected devices, and other parameters. 

  



 

3. SOFTWARE IMPLEMENTATION OF THE "SMART OFFICE" 

INFORMATION SYSTEM 

 

3.1 Selection of programming language and development tools 

 

To practically implement the monitoring of an IT company's ecosystem, the 

Arduino IDE was selected as the development environment, and the ESP8266 ESP-

12E microcontroller was chosen as the hardware platform. The subsystem's interface 

is implemented through a web page, designed to be user-friendly and not requiring 

extensive programming knowledge. 

The most popular and freely available development environments for the 

ESP8266 platform are ESPLoer and Arduino IDE. The main difference between these 

environments lies in the list of compatible microcontrollers and the programming 

languages they support. Many developers opt for Arduino IDE due to its user-friendly 

nature and convenience for writing code, as it utilizes the widely-used open 

microcontroller programming language, Processing. On the other hand, ESPLoer 

requires the Lua scripting language and is compatible with microcontrollers that 

support it. 

Throughout the development of the ecosystem monitoring system, various tools 

and development components were utilized, including: 

Processing: An open-source programming language based on Java, designed for 

creating images, animations, and interfaces. It provides a lightweight and efficient 

toolkit. 

Lua: A fast and compact scripting programming language with open-source code 

written in C. Lua is commonly embedded as a scripting language in various projects. 

It combines a simple procedural syntax with powerful data description capabilities, 

utilizing associative arrays and extensible language semantics. Lua employs dynamic 

typing and translates language constructs into bytecode that runs on a register-based 

virtual machine with an automatic garbage collector. The interpreter, written in C, can 

be easily integrated into projects in C and C++ languages. Lua is distributed under the 

MIT license. 



 

 

Arduino IDE: A software development environment specifically designed for 

microcontrollers from the Arduino Uno, Leonardo, Mega, and other families. It can be 

used to create autonomous interactive objects or to connect with software running on 

a computer, such as Adobe Flash, Processing, Max/MSP, Pure Data, and 

SuperCollider. 

The ESP8266 chip-based board features Tensilica's L106 Diamond series 32-bit 

processor. Some boards include a +5V or +3.3V linear voltage regulator. The chip 

supports interfaces such as SPI, I²C, I²S, and UART, and it incorporates a 10-bit ADC. 

At a conceptual level, all boards can be programmed via USB, thanks to the 

FTDI FT232R USB-to-Serial converter chip. In the NodeMCU platform version, the 

board can be directly programmed by connecting it to a computer via USB, eliminating 

the need for external USB-to-Serial converters. By default, the ESP8266 

microcontroller board does not have an onboard USB-to-Serial converter, so a separate 

converter board must be connected to program it. The Arduino IDE development 

environment is utilized for programming these boards. For debugging purposes, the 

COM port monitor shown in Figure 13 is employed, allowing the microcontroller to be 

connected and facilitating the observation of service messages to troubleshoot and 

resolve any issues if necessary. 

 

Fig. 13 - COM port monitor 

 



 

Boards based on the ESP8266 microcontroller offer the advantage of utilizing a 

significant number of I/O pins for external circuits. The ESP8266 microcontroller is 

renowned for its high integration, as it incorporates multiple elements on a single chip, 

eliminating the need for additional components on the board and reducing costs 

compared to other systems. 

The development of modern ecosystem monitoring subsystems entails the 

creation of various components and modules that are essential for fulfilling their 

intended functions, tailored to meet the needs of the target audience. Selecting the 

appropriate components and modules is a crucial stage in the product creation process. 

Without functional components and modules, the subsystem would be unable to 

provide the necessary information to its users. 

 

3.2 Development of structural elements 

 

The primary element in ecosystem monitoring is the user interface, which 

becomes accessible after connecting to the system. It serves as the platform for all 

system manipulations and settings. 

The subsystem can be divided into the following structural modules: 

Wireless network initialization module. 

Web server startup module (refer to listing 3.2). 

Data transmitter initialization modules. 

Display module for data visualization. 

Data export module to cloud storage. 

 

The wireless network initialization module functions by creating an access point 

through which the end user or system administrator can configure the system. This 

module employs the "ESP8266WebServer" library, which provides the necessary 

functions for web server operation. By creating a wireless access point, users can 

connect to it and perform the required actions. The resulting output is then sent via the 

HTTP protocol to the web browser, generating the web page. The entire process is 



 

displayed on the connected OLED display, allowing users to monitor the subsystem's 

status at any time. 

 

The web server creation module is responsible for initializing the web interface 

after successful user connection to the access point. 

 

   Listing 3.2 is a fragment of the web server creation module 

void initWebServer() 

{ 

   Serial.println("Server: starting"); 

   WebServer.on("/", webRoot); 

   WebServer.on("/display", webDisplay); 

   WebServer.on("/cloudSetup", cloudSetup); 

   WebServer.on("/wifiNoScanSetup", wifiNoScanSetup); 

   WebServer.on("/wifiSetup", wifiSetup); 

   WebServer.on("/sensors", webSensors); 

   WebServer.on("/reboot", webReboot); 

   WebServer.on("/styles.css", webStyles); 

   WebServer.on("/main.js", webJs); 

   WebServer.on("/main_onload.js", webJs2); 

   WebServer.onNotFound(handleNotFound); 

   WebServer.begin(); 

   Serial.println("Server: started"); 

} 

 

The module is responsible for creating hypertext pages on the web server, 

forming the user interface. These pages include various settings pages such as system 

network settings (wifiNoScanSetup and wifiSetup), sensor settings (sensors), data 

export settings (cloudSetup), display settings (display), a reboot system link, a 

stylesheet defining the site's design, and JavaScript scripts. 



 

A separate module was developed for initializing the data transmitters based on 

the user's configuration. This module handles requests to the data provider libraries and 

activates them according to the user's settings. Once successfully initialized, the system 

starts displaying data from the data providers. The data export module receives data 

from the sensors, obtained through another module, and sends them to a remote web 

server in the appropriate format required by the chosen cloud service. The subsystem 

supports various data export methods, including exporting data to ThingSpeak, the 

"NarodMon" service, and using the MQTT protocol. 

The data display module is responsible for presenting all stages of the 

subsystem's operation. This includes initializing the web server, creating an access 

point for configuration, and displaying readings from the data sensors on the connected 

and configured OLED display through the user interface. 

The development of all these modules ensures the necessary functionality of the 

subsystem and creates a user-friendly interface. The complete code listing of the 

subsystem can be found in Appendix B, while the operational algorithm of the IT 

ecosystem monitoring subsystem is provided on the "Working Algorithm" poster. 

 

3.3 Development of the subsystem interface 

 

A user-friendly interface is essential for the seamless operation of any 

subsystem, as it determines whether people will utilize it regularly. 

After defining the functionality of the "Subsystem for monitoring the company's 

IT ecosystem," interface layouts for its pages were developed. The main page contains 

general information that allows users to assess if the system has been properly 

configured and view data from activated sensors. 

The main page includes the following elements: 

- Web interface menu 

- System identifier 

- IP address and MAC address of the monitoring system 

- Available memory 



 

- Readings from temperature, relative humidity, atmospheric pressure, and CO2 

sensors 

- Data from the analog data transmitter 

 

The "Settings" page is designed for performing basic system configurations 

necessary for its correct operation. It includes fields for specifying: 

- Access point name 

- Password for the access point created by the system 

- Deep sleep mode switch 

- SSID (wireless network name) 

- Password for connecting to the wireless network 

- Static IP addressing mode status 

- Main gateway 

- Network mask 

 

This page is crucial for setting up the system, as it contains key parameters that 

users need to specify for the stable and reliable operation of the subsystem. The final 

step for the user is to enable or disable the data transmitters connected to the monitoring 

system on the "Data Transmitters" page, as shown in Figure 14. 

 



 

 

Figure 14 – Layout of the "Data Providers" page 

 

The "Data Transmitters" page provides functionality for managing the connected 

transmitters within the subsystem. 

On the "Cloud Storage" page, users can configure the export of data from the 

subsystem to various cloud services or the MQTT server of the broker. This involves 

specifying settings for the MQTT server, password, and corresponding topic. The page 

includes the following fields: 

- NarodMon switch 

- ThingSpeak switch 

- MQTT switch 

- API key for ThingSpeak 

- Data export interval 

- MQTT server 

- MQTT user 

- MQTT password 

- MQTT topic 

Users can navigate between different functionalities of the website by selecting 

the appropriate items in the menu. The subsystem's interface is designed to be user-

 

 

 

 

 

 

 

 

 

 

             

 

Налаштування Давачі даних Головна 

Прапорець BME/BMP 

Status BME/BMP 

Type 

Список 

Прапорець DHT Status 

Дисплей 

Кнопка 

DHT Type Список 
  

DHT Pin Список 
  

DS18B20 Status 

DS18B20 Pin 

MH Z-19 Status 

Прапорець 

Список 
  

Прапорець 

 

Хмарні сховища 



 

friendly and accessible, even for non-specialists. The color scheme of the website is 

neutral, devoid of bright colors, and ensures proper display on any device. 

Figure 15 illustrates the main page of the subsystem's web interface. 

 

Fig. 15 – Main page of the subsystem interface 

To ensure the web interface's versatility in configuring the subsystem and 

viewing sensor data from any device, including personal computers, laptops, 

smartphones, and tablets, an adaptive design approach was implemented. This design 

approach enables the website to automatically adjust the placement and sizes of 

components based on the device type and screen size. 

Implementing an adaptive design enhances the accessibility of the web interface 

across various devices. It ensures that users can comfortably interact with the interface 

regardless of the device they are using. The adaptive design allows for optimal 

utilization of screen space, providing a seamless user experience. 

Figure 16 illustrates the adaptability of the design, showcasing how the interface 

adjusts to the screen's expansion. 



 

 

Fig. 16 - Responsiveness of web interface design 

 

The inclusion of responsive design support eliminates the necessity of creating 

a separate version of the web interface specifically for mobile devices. This ensures 

that the web interface can seamlessly adapt to different screen sizes and device types, 

providing an optimal user experience across various devices. 

 

3.4 Functional testing of the subsystem 

 

Functional testing focuses on assessing the system's external behavior, 

including its functions, features, and interaction with other systems. These tests can 

be conducted at different levels, such as component/module testing, integration 

testing, system testing, and acceptance testing. 

Functional testing aims to verify the overall functionality of the system's 

interface. This includes: 

- Checking the operation of mandatory site functions. 



 

- Testing the performance of user interface forms. 

- Verifying the functionality of hyperlinks. 

 

Testing the system's main functions should commence with a verification of its 

ability to create an access point upon power-on. This access point serves as the user's 

gateway to the system. To ensure security and prevent unauthorized changes to system 

settings, the access point is protected by a password. The next stage of testing involves 

confirming that the system successfully receives data from enabled and connected data 

transmitters, as depicted in Figure 17. Enabling or disabling data sensors can be 

achieved by checking the corresponding box next to the sensor's name and selecting 

the sensor type or the microcontroller output to which it is connected. 

 

Fig. 17 – Management of data providers 

 

After turning on the sensors, the subsystem must be rebooted so that it will 

initialize the new sensors on the next startup. Now, on the main page of the subsystem 

shown in Figure 18, you can observe the data received from the sensors that have been 

turned on. 



 

 

Fig. 18 – Received data from enabled data transmitters 

 

The subsystem's key functionality includes the ability to export data to different 

cloud storage platforms or any MQTT server associated with a broker. To enable these 

functions, users are required to obtain an authorization key from the cloud storage 

provider's website and enter it in the designated settings section. Alternatively, when 

using the MQTT protocol, users need to provide the web server address, username, 

password, and topic on the server, as illustrated in Figure 19. Additionally, users are 

required to specify the desired data export interval. 



 

 

Fig. 19 - Data export settings 

 

Upon completing the aforementioned settings, the subsystem requires specific 

data to establish a connection to the global network. Users can configure these settings, 

such as the name of the wireless network (SSID) and its password. 

The subsystem also supports static IP addressing mode, which can be enabled 

by selecting the checkbox in the "Static IP Mode" field. When enabling this mode, 

users must provide the static IP address, primary gateway, and netmask. After entering 

these details, the subsystem needs to be rebooted. Upon the next power-on, the 

subsystem will establish a connection to the access point, taking into account the static 

IP addressing. 

 



 

Once access to the subsystem settings is gained, users have the ability to control 

the creation of an access point if a successful connection to the global network is 

established. They can also modify the name and password of the access point created 

by the subsystem. 

The final step in testing the system's operation is to view the exported data on 

one of the available cloud data repositories, such as ThingSpeak. Users need to log into 

their profile and access the data view of their channel, as illustrated in Figure 20. 

 

 

Fig. 20 - Viewing data on the ThingSpeak cloud storage site 

 

Successful appearance of the subsystem's data in the cloud storage interface 

confirms a successful configuration, indicating that the subsystem is ready for 

operation. 

 

3.5 Testing the interface template layout 

 

The web interface of the monitoring system should be accurately displayed on 

any device, ensuring cross-browser compatibility and adaptability. Popular web 



 

browsers, including Google Chrome, Safari, Mozilla Firefox, Internet Explorer, and 

Opera, each follow general guidelines for rendering page markup. However, they may 

process the code differently based on their respective rendering engines. Testing the 

adaptability of the web interface was conducted using developer tools, specifically 

those integrated into the Google Chrome browser. Figure 21 illustrates the display of 

the system's web interface on a typical laptop screen. 

 

Fig. 21 – The view of the web interface on the screen of a typical laptop 

 

The template's adaptability was tested by emulating the screen of an Apple 

iPhone, as depicted in Figure 22. When viewed on a mobile phone screen, it is evident 

that the website menu has been reorganized to accommodate the narrower screen 

width. The menu now spans across two rows to ensure optimal visibility and usability. 



 

 

Fig. 22 – iPhone template adaptability testing 

 

The adaptability testing can conclude at this point, as it has considered the 

display of the template on various popular screen resolutions, and it has been observed 

to be correctly displayed across all scenarios. 

 

3.6 Security Testing 

 

Security testing is a crucial strategy employed to ensure the system's security 

and analyze potential risks associated with protecting applications from hacker attacks, 

viruses, and unauthorized access to sensitive data. The security strategy is based on 

three fundamental principles: confidentiality, integrity, and availability. 

In the subsystem, access security to the settings is ensured through password 

authentication when connecting to the access point, which is created upon system 

startup and allows access to the web interface. The access point utilizes the WPA2 

encryption algorithm, which is a secure protocol designed to replace the outdated WEP 

protocol. It addresses the vulnerabilities of WEP, such as encryption key reuse, by 

implementing TKIP (Temporary Key Integrity Protocol). 

The subsystem's interface provides the option to change the access point's 

password and name. This can be done through the corresponding fields in the system 

settings, as depicted in Figure 23. 



 

 

Fig. 23 – Changing the password and name of the access point 

 

To access the subsystem, users are required to input a valid password. Upon 

successful authentication, they will gain access to the web interface of the subsystem. 

Based on the test results, it can be concluded that the subsystem effectively fulfills its 

tasks and offers a user-friendly web interface for configuration. 

 

3.7 Utilizing IT Ecosystem Monitoring for the Company 

 

In recent years, there has been a significant rise in the popularity of various 

systems capable of connecting to the Internet of Things (IoT). The number of such 

systems continues to grow annually. Experts estimate that by 2021, the global IoT 

market value will reach $7.1 trillion, with approximately 25 billion connected devices. 

This estimate does not even include devices like tablets, smartphones, and laptops. 

The designed monitoring system aims to collect information flows within the 

company's IT infrastructure. The placement of sensors for monitoring is illustrated in 

Figure 24. By installing the required data providers in appropriate locations and 

configuring them for use within the subsystem, the IT office's ecosystem can be 

effectively monitored. 



 

 

Fig. 24 – Scheme of the first tier of the 4th floor of the Smart office of IT 

company 

 

The first tier of the subsystem consists of three modules, each equipped with 

different data providers. Module U1 is positioned in the open-space area, gathering 

data on temperature and humidity. Module U2 is situated in a separate room exposed 

to direct sunlight and equipped with an air conditioner. It collects data on carbon 

dioxide levels, temperature, and humidity, enabling assessment and analysis of the 

working conditions for IT employees in terms of air quality. Module U3 is strategically 

placed in a corner section, aiming to detect any cold spots within the office. 

The second tier, illustrated in Figure 25, also comprises multiple modules 

equipped with different data providers. Module U3 is located in the office of the IT 

manager, monitoring temperature, humidity, atmospheric pressure, and carbon dioxide 

levels. Additionally, module U4 is situated in a corner section, allowing for the 

identification of potential heat losses within the room. 



 

 

Figure 25 – Scheme of the second tier of the 4th floor of the Smart office of IT 

company 

 

The installation of an ecosystem monitoring subsystem within the company's IT 

infrastructure enables remote monitoring of various parameters. By accessing the 

collected data, users can analyze the state of the IT office's ecosystem and take 

necessary actions to normalize it whenever required. 

  



 

4. OCCUPATIONAL SAFETY AND HEALTH 

Occupational safety and health issues are considered for the design and 

development phase of climate data analysis and visualization system. 

Occupational safety is a system of legal, socio-economic, organizational and 

technical, sanitary and hygienic and treatment and prevention measures and tools 

aimed at preserving human life, health and ability to work. Working conditions at the 

workplace, safety of technological processes, machines, mechanisms, equipment and 

other means of production, condition of collective and individual protection means 

used by the employee, as well as sanitary and living conditions must meet the 

requirements of the law. An employee has the right to refuse the assigned work if a 

work situation has arisen that is dangerous to his life or health or to the people around 

him, or to the work environment or the environment. He must immediately notify his 

immediate supervisor or employer. The existence of such a situation is confirmed, if 

necessary, by labor protection specialists of the enterprise with the participation of a 

representative of the trade union of which he is a member or a person authorized by 

employees on labor protection (if the trade union was not established), as well as an 

insurance expert [12]. The task of labor protection is to minimize injuries and illnesses 

of the employee while ensuring comfort with maximum productivity. The main 

objectives of labor protection are the formation of specialists with the necessary 

knowledge and practical skills on legal and organizational issues of labor protection, 

industrial sanitation, safety, fire safety. 

 

4.1. General characteristics of the room and workplace 

 

The development of the analysis and visualization system is performed in a room 

located on the fourth floor of an eight-storey building with general and local lighting. 

The room has one-sided lighting, the windows are oriented to the east, the windows 

have shutters. White ceiling with a reflection coefficient of 0.7, light brick walls with 

a reflection coefficient of 0.5. There are 4 people working in the room, in accordance 

with this we obtain input data for the analysis of potentially dangerous and harmful 

production factors, which are given in table. 4.1. 



 

 

Table 4.1 

Incoming data 

Room parameters Value 

Length x width x height 6.6 x 6.1 x 2.7 m 

Area 40.26m² 

Volume 108,70 m³

 Workplace number Specifics of work 

I  workplace Front-end programmer (web 

application client development specialist) 

II workplace Back-end programmer (specialist in 

the development of the server part of web 

applications and database design) 

III workplace Business analyst (also acts as a 

product manager) 

IV workplace UI-UX web designer 

Technical means (quantity) Name and characteristics 

Monitor (4 pcs.) HP 22Xi / 21.5 "/ 1920x1080px / IPS 

Computer (4 pcs.) HP ProBook 440 G6, 14 "IPS screen 

(1920x1080) Full HD, Intel Core i7-8565U 

(1.8 - 4.6 GHz) / RAM 16 GB / SSD 256 

GB 

Floor cooler (1 piece) CRYSTAL YLR3-5V208 

Air conditioner (1 piece) DEKKER DSH105R / G / 26m2 / 

2,65kW- 

2.9 kW / 25x74.5x19.5 cm / 9 kg 

General purpose luminaries 

(3 pcs.) 

The lamp raster built-in 4x18W 

Local lamps (4 pcs.) Delux Decor TF-05/1 x 40W 

 

According to NPAOP 0.00-7.15-18, the area S 'allocated for one workplace with 

a personal computer must be at least 6 m2 and the volume - at least 20 m3. There are 

4 workplaces in the room, which fully meets the required standards. 

We calculate the actual values of these indicators by dividing the volume of the 

room and the total area by the number of employees. 

Therefore, based on the results obtained in terms of area and volume, the room 

meets the standards. 

 



 

 

Table 4.2 

Workplace characteristics 

№
 

The name of the parameter Value 

in fact Normative 

1. Height of a working surface, mm 780 680 – 800 

2. Width of a working surface, mm 1500 not less 

than 600 

3. Depth of a working surface, mm 750 not less 

than 600 

4. Height of space for legs, mm 750 not less 

than 600 

5. Width of space for legs, mm 800 not less 

than 500 

6. Depth of space for legs, mm 750 not less 

than 450 

7. Seat surface height, mm 480 400 – 500 

8. Seat width, mm 500 not less 

than 400 

9. Seat depth, mm 500 not less 

than 400 

10. Height of a basic surface of a back, mm 550 not less 

than 300 

11. Width of a surface of a back, mm 470 Not less 

than 380 

12. Length of armrests, mm 300 not less 

than 250 

13. Width of armrests, mm 60 50 – 70 

14. Distance from eyes to the screen, mm 650 600 – 700 

 

It is possible to draw a conclusion that the sizes of a workplace of the 

programmer correspond to the established norms, proceeding from the set parameters. 

 

4.2 Analysis of potentially dangerous and harmful production factors in 

the workplace 

When creating a system of analysis and visualization, the work is performed 

sitting without physical effort, so it belongs to the category of light Ia. 



 

Premises for work must be equipped with heating, air conditioning or supply and 

exhaust ventilation in accordance with DBN B.2.5-67: 2013. Normalized parameters 

of the microclimate, ionic composition of air, content of harmful substances meet the 

requirements of LTO 3.3.6.042-99, GN 2152-80, GOST 12.1.005-88, DSTU GOST 

12.0.230: 2008 and DSTU GOST 12.4.041: 2006. Ventilation is understood as a set of 

measures and means designed to ensure meteorological conditions and cleanliness of 

the air environment that meet hygienic and technical requirements at permanent places 

and service areas. The main task of ventilation is to remove polluted, humid or heated 

air from the room and supply clean fresh air. 

The sources of noise in the room are the fan of the system unit, laptop and air 

conditioner. The sound generated by the fan and air conditioner can be classified as 

constant. 

According to DBN B.2.5-28: 2018 the work belongs to the category of visual 

works. The use of natural, artificial and mixed lighting is envisaged. 

The computer is a single-phase consumer of electricity powered by 220V AC 

from a network with grounded neutral. IBM PC refers to electrical installations up to 

1000V closed version; all conductive parts are in the casings. According to the method 

of protecting a person from electric shock, computers and peripherals must meet 1 class 

of protection. 

Technical methods of protection against electric shock is reduced to the use of 

current of safe voltage, protection in case of accidental touching current-carrying parts 

and against excessive currents, protection in case of voltage transfer to non-current-

carrying metal parts of the installation. 

Safe voltage is obtained from the high voltage grid (110-120 V) by means of 

step-down transformers. 

Protection against contact with live parts of the installation is achieved by means 

of insulation, fencing off the use of blocking safety devices and inaccessibility of the 

location of the installations. 

Switchboards are placed in closed metal casings-boxes. 

Safety alarm is used in the form of posters and inscriptions. The best light alarms 

are double, which in the presence of voltage lights a red light, and in its absence - green. 



 

Protection against excessive currents - short circuits and overload currents, 

which can cause insulation to ignite, is provided by fuses and circuit breakers, and 

protection against voltage transfer to live parts by means of protective earthing and 

protective disconnection. 

Fire prevention is achieved by eliminating the formation of sources of ignition 

and combustible environment. 

Fires of the following classes are possible in this room: A - combustion of solids, 

E - combustion of live electrical installations. 

  



 

CONCLUSIONS 

 

The main goal of this work was the development of a Smart office using IoT. 

An analysis of the subject area has been conducted, and the objectives of the 

coursework have been established. The requirements for the subsystem responsible for 

collecting and aggregating information within the ecosystem have been outlined. The 

necessary hardware components have been selected, and the subsystem's structure has 

been designed, including the development of a schematic diagram to ensure its reliable 

performance and successful task execution. The subsystem's behavior in response to 

user actions has been defined. 

A programming language and appropriate development tools have been chosen 

to meet the project's requirements and provide the necessary functionality. The 

structural elements of the subsystem and its web interface in configuration mode have 

been developed. Functional testing has been performed to ensure proper operation 

across various devices, and the layout of the interface template has been evaluated. 

Security testing has also been conducted to ensure the subsystem's protection. 

Furthermore, potential applications of the subsystem for collecting and 

accumulating information within the company's IT premises have been described. The 

created subsystem fully satisfies the requirements and successfully accomplishes all 

assigned tasks. The obtained results have been analyzed, and the developed subsystem 

has been tested for monitoring the company's IT ecosystem using IoT technologies. 

The implemented subsystem enables the collection of diverse data types and their 

storage in various cloud storage platforms. 



 

REFERENCES 

1. Asghar M., Mohammadzadeh N., «Design and simulation of energy 

efficiency in node based on MQTT protocol in Internet of Things» // International 

Conference on Green Computing and Internet of Things. – 2015. – С. 1413-1417.  

2. Bass A., Bauer M., Fiedler M., Kramp T., van Kranenburg R., Lange S., 

Meissner S. Enabling Things to Talk. Springer-Verlag GmbH, 2013. – P. 325. 

3. Gubbi J., Marusicet S., Buyya R., Palaniswami M. Internet of Things 

(IoT): A vision, architectural elements, and future directions. Future Generation 

Computer Systems. – 2013. – №. 7. – С. 1645–1660. [сайт]. - URL: 

10.1016/j.future.2013.01.010. 

4. Heather Flanagan, “Digital Preservation Considerations for the RFC 

Series,” January 2015, Internet Draft, work in progress, draft-flanagan-rfc-

preservation-03. 

5. Internet of Things Global Standards Initiative: [WEB]. – URL: 

http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx 

6. Internet of Things Global Standards Initiative: [WEB]. – URL: 

http://www.itu.int/en/ITU-T/gsi/iot/ Pages/default.aspx. 

7. Kang D., Park M. Lin S.W., Martin R.A., Miller B.W., Durand J. et al. 

Industrial internet reference architecture technical report. IIC, 2015. 

8. Lobaccaro G, Carlucci S, Lofstrom E. A review of systems and 

technologies for smart homes and smart grids. Energies, 2016. – 348 с. 

9. Shih C., Chou J., Designing CPS/IoT applications for smart buildings and 

cities / C. Shih, J. Chou // IET Cyber-Physical Systems: Theory & Applications. – 

2016. – № 1. – С. 3-12. 

10. Wortmann F., Flüchter K. Internet of things. Business & Inform. Syst. 

Eng, 2015. – № 3. – С. 221–224 . 

11. Xia F., Yang L.T., Wang L., Vinel A. Internet of things. Int. J. of 

Commun. Syst. – 2012. – Vol. 25. – № 9. – С. 1101–1109. 

12. Yih-Fang Huang; Werner, S.; Jing Huang; Kashyap, N.; Gupta, V., 

"State Estimation in Electric Power Grids: Meeting New Challenges Presented by the 

http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx


 

Requirements of the Future Grid," Signal Processing Magazine, IEEE , vol.29, no.5, 

pp.33,43, Sept. 2012. 

13. Tomoiagă, B.; Chindriş, M.; Sumper, A.; Sudria-Andreu, A.; Villafafila-

Robles, R. Pareto 

Optimal Reconfiguration of Power Distribution Systems Using a Genetic 

Algorithm Based on NSGA-II. Energies 2013, 6, 1439-1455. 

14. F.R. Yu, P. Zhang, W. Xiao, and P. Choudhury, "Communication 

Systems for Grid 

Integration of Renewable Energy Resources," IEEE Network, vol. 25, no. 5, 

pp. 22-29, Sept. 

2011.  

15. “Values and Principles”. Principles. Internet Society, 2015. 

http://www.internetsociety.org/who-we-are/mission/values-and-principles. 

 



 

Start 

Checking the 

availability of all 

components and preparing 

for installation 

 

Installing the 

ESP8266 microcontroller 

on the breadboard 

 

 Installing the power 

board on the breadboard 

 
Connecting the 

microcontroller to the 

power board 

 
Connecting the 

necessary sensors to the 

system 

 Connecting the 

USB to Serial converter for 

downloading the firmware 

to the ESP8266 memory 

I 

APPENDIX A 

Algorithm for compiling the monitoring system 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 



 

 Test inclusion of the 

monitoring system 

Т

ак 

Н

і 

Checking the correctness of 

the connection of the 

microcontroller and data 

transmitters 

 Connecting to the Wi-Fi 

access point created by the 

system and setting it up 

 Data export to cloud storage 

Т

ак 

Н

і 

Check settings and 

try again 

End 

I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

APPENDIX B 

 

Subsystem code fragment 

 
#include <ESP8266WiFi.h> 

#include <ESP8266WiFi.h> 

#include <ESP8266WebServer.h> 

#include <WiFiClient.h> 

#include <ESP8266mDNS.h> 

#include <ESP8266HTTPClient.h> 

#include <ESP8266HTTPUpdateServer.h> 

#include "Adafruit_MQTT.h" 

#include "Adafruit_MQTT_Client.h" 

#include <DHT.h> 

#include <Wire.h> 

#include <SPI.h> 

#include <Adafruit_Sensor.h> 

#include <Adafruit_BME280.h> 

#include <DallasTemperature.h> 

#include <LiquidCrystal_I2C.h> 

#include "SSD1306.h"  

#include "OLEDDisplayUi.h" 

#include <SoftwareSerial.h> 

//#include <PubSubClient.h> 

#include "MQ135.h" 

#include "JsonConfig.h" 

#include "WebCommon.h" 

#include "Common.h" 

extern "C" { 

#include <user_interface.h> 

} 

ESP8266WebServer WebServer(80); 

ESP8266HTTPUpdateServer httpUpdater; 

const int maxConnectAttempts = 20; 

JsonConfig config; 

#define MAX_WIFI_COUNT 50 

WiFiData wiFiDatas[MAX_WIFI_COUNT]; 

 

SensorData data1; 

// Data wire is plugged into port 2 on the Arduino 

#define TEMPERATURE_PRECISION 12 // resolution 

SensorData data2; 

// arrays to hold device address 

DeviceAddress insideThermometer; 

#define SEALEVELPRESSURE_HPA (1013.25) 

Adafruit_BMP085 bmp; 

Adafruit_BME280 bme; // I2C 

 

SensorData data3; 

SensorData data4; 

#define MH_Z19_RX D6 

#define MH_Z19_TX D5 

SoftwareSerial MH_Z19Serial(D6, D5); // define MH-Z19 



 

SensorData data5; 

 

SSD1306  display(0x3c, D2, D1); 

OLEDDisplayUi ui     ( &display ); 

 

#define AIO_SERVER      "io.adafruit.com" 

#define AIO_SERVERPORT  1883                   // 8883 for 

MQTTS 

#define AIO_USERNAME    "razzner" 

#define AIO_KEY         "408905b770614823984b0ac73344b7ca" 

 

// Create an ESP8266 WiFiClient class to connect to the MQTT 

server. 

WiFiClient mqtt_client; 

// Setup the MQTT client class by passing in the WiFi client 

and MQTT server and login details. 

Adafruit_MQTT_Client mqtt(&mqtt_client, AIO_SERVER, 

AIO_SERVERPORT, AIO_USERNAME, AIO_KEY); 

 

Adafruit_MQTT_Publish reboot_log = 

Adafruit_MQTT_Publish(&mqtt, AIO_USERNAME "/feeds/home-err-log"); 

Adafruit_MQTT_Publish sensor_err_log = 

Adafruit_MQTT_Publish(&mqtt, AIO_USERNAME "/feeds/sensor-error-

log"); 

 

const char* host = "api.thingspeak.com"; 

String mac = getMacString(); 

 

void wifiSetup() 

{ 

  Serial.println("\r\nServer: request SETUP"); 

 

  bool config_changed = false; 

  String payload = WebServer.arg("ap_name"); 

  if (payload.length() > 0) 

  { 

    payload.toCharArray(config.ap_name, 

sizeof(config.ap_name)); 

    config_changed = true; 

  } 

  payload = WebServer.arg("ap_toogle"); 

  if (payload.length() > 0) 

  { 

    payload.toCharArray(config.ap_toogle, 

sizeof(config.ap_toogle)); 

    config_changed = true; 

  } 

  payload = WebServer.arg("ap_pwd"); 

  if (payload.length() > 0) 

  { 

    payload.toCharArray(config.ap_pwd, sizeof(config.ap_pwd)); 

    config_changed = true; 

  } 

  payload = WebServer.arg("sta_ssid"); 

  if (payload.length() > 0) 



 

  { 

    payload.toCharArray(config.sta_ssid, 

sizeof(config.sta_ssid)); 

    config_changed = true; 

  } 

  payload = WebServer.arg("sta_pwd"); 

  if (payload.length() > 0) 

  { 

    payload.toCharArray(config.sta_pwd, 

sizeof(config.sta_pwd)); 

    config_changed = true; 

  } 

  //    payload = WebServer.arg("hidden_toogle"); 

  //    if (payload.length() > 0) 

  //    { 

  //        payload.toCharArray(config.hidden_toogle, 

sizeof(config.hidden_toogle)); 

  //        config_changed = true; 

  //    } 

  payload = WebServer.arg("deepsleep_toogle"); 

  if (payload.length() > 0) 

  { 

    payload.toCharArray(config.deepsleep_toogle, 

sizeof(config.deepsleep_toogle)); 

    config_changed = true; 

  } 

  payload = WebServer.arg("static_ip_toogle"); 

  if (payload.length() > 0) 

  { 

    payload.toCharArray(config.static_ip_toogle, 

sizeof(config.static_ip_toogle)); 

    config_changed = true; 

  } 

  payload = WebServer.arg("static_ip"); 

  if (payload.length() > 0) 

  { 

    payload.toCharArray(config.static_ip, 

sizeof(config.static_ip)); 

    config_changed = true; 

  } 

  payload = WebServer.arg("static_gateway"); 

  if (payload.length() > 0) 

  { 

    payload.toCharArray(config.static_gateway, 

sizeof(config.static_gateway)); 

    config_changed = true; 

  } 

  payload = WebServer.arg("static_subnet"); 

  if (payload.length() > 0) 

  { 

    payload.toCharArray(config.static_subnet, 

sizeof(config.static_subnet)); 

    config_changed = true; 

  } 

  String ssid_list, ssid_h_name; 



 

  int numSsid = WiFi.scanNetworks(); 

  // print the name for each network found: 

  for (int thisNet = 0; thisNet < numSsid; thisNet++) { 

    String ssid_str = WiFi.SSID(thisNet) + " (" + 

WiFi.RSSI(thisNet) + " dBm)", 

           ssid_name =  WiFi.SSID(thisNet), 

           rssi = String(WiFi.RSSI(thisNet)); 

    ssid_list += renderParameterList(ssid_name, ssid_str, 

rssi); 

  } 

  if (WiFi.status() == WL_CONNECTED) 

  { 

    ssid_h_name = "<p>Ви підключені до мережі <b 

id='ssid_name'>" + String(config.sta_ssid) + "</b></p>"; 

  } 

  else { 

    ssid_h_name = ""; 

  } 

  String data = 

    renderTitle(config.ap_name, "Налаштування WiFi") + 

FPSTR(stylesInclude) + FPSTR(headEnd) + FPSTR(bodyStart) + 

renderMenu() + 

    "<h2>Налаштування WiFi</h2>" + 

    ssid_h_name + 

    "<div class='container'>" + 

    renderParameterRow("Створювати AP", "ap_toogle", 

config.ap_toogle) + 

    renderParameterRow("Назва AP", "ap_name", config.ap_name) 

+ 

    renderParameterRow("Пароль доступу до AP", "ap_pwd", 

config.ap_pwd, false, true) + 

    //        renderParameterRow("Прихований SSID", 

"hidden_toogle", config.hidden_toogle) + 

    renderParameterRow("Режим DeepSleep", "deepsleep_toogle", 

config.deepsleep_toogle) + 

    "<hr/>" + 

    "<div class='input-group'><label class='input_label' 

for='sta_ssid'>SSID</label><select id='sta_ssid' class='form-

control'>" + 

    ssid_list + 

    "<select></div>" + 

    renderParameterRow("Пароль", "sta_pwd", config.sta_pwd, 

false, true) + 

    "<p>Для збереження внесених змін, необхідно 

перезавантажити систему.</p><hr/>" + 

    renderParameterRow("Режим статичного IP ", 

"static_ip_toogle", config.static_ip_toogle) + 

    renderParameterRow("Статичний IP", "static_ip", 

config.static_ip) + 

    renderParameterRow("Основний шлюз", "static_gateway", 

config.static_gateway) + 

    renderParameterRow("Маска мережі", "static_subnet", 

config.static_subnet) + 

    "<hr/>" + 



 

    "<a class='btn btn-default marginTop0' role='button' 

onclick='saveFormData(\"/wifiSetup\");'>Зберегти</a>" + 

    "</div>" + 

    "</div>" + 

    FPSTR(scripts) + 

    FPSTR(bodyEnd); 

 

  WebServer.send(200, "text/html", data); 

   

  if (config_changed) 

  { 

    config.saveConfig(); 

  } 

 

  Serial.println("Server: request SETUP sent"); 

} 

void webStyles() 

{ 

  Serial.println("\r\nServer: request STYLES"); 

 

  String stylesText = String("") + FPSTR(styles); 

  WebServer.send(200, "text/css", stylesText); 

 

  Serial.println("Server: request STYLES sent"); 

} 

void webJs() 

{ 

  Serial.println("\r\nServer: request Scripts"); 

 

  String Scripts = String("") + FPSTR(scripts_content); 

  WebServer.send(200, "text/css", Scripts); 

 

  Serial.println("Server: request Scripts sent"); 

} 

 

void initWebServer() 

{ 

  Serial.println("Server: starting"); 

  WebServer.on("/", webRoot); 

  WebServer.on("/display", webDisplay); 

  WebServer.on("/cloudSetup", cloudSetup); 

  WebServer.on("/wifiNoScanSetup", wifiNoScanSetup); 

  WebServer.on("/wifiSetup", wifiSetup); 

  WebServer.on("/sensors", webSensors); 

  WebServer.on("/reboot", webReboot); 

  WebServer.on("/styles.css", webStyles); 

  //  WebServer.on("/some.js",webJs3); 

  WebServer.on("/main.js", webJs); 

  WebServer.on("/main_onload.js", webJs2); 

  WebServer.onNotFound(handleNotFound); 

  WebServer.begin(); 

  Serial.println("Server: started"); 

} 

 

int connectWiFi() 



 

{ 

  Serial.println("Wifi: connecting"); 

  int connectAttempts = 0; 

   

  while (connectAttempts < maxConnectAttempts) 

  { 

    Serial.printf("Wifi: connecting, attempt %d\r\n", 

connectAttempts); 

    if (WiFi.status() == WL_CONNECTED) 

    { 

      if (atoi(config.display_toogle) == 1) { 

        display.clear(); 

        display.setTextAlignment(TEXT_ALIGN_CENTER); 

        display.setFont(ArialMT_Plain_10); 

        display.drawString(64, 10, "WiFi: CONNECTED"); 

        display.drawString(64, 20, "SSID:" + 

String(config.sta_ssid)); 

        display.drawString(64, 30, "with IP:" + 

getIpString(WiFi.localIP())); 

        display.display(); 

      } 

      Serial.println("Wifi: connected"); 

      renderWiFiStatus("On", 255, 255, 255); 

      return 1; 

    } 

     

    delay(500); 

    connectAttempts++; 

    if (atoi(config.display_toogle) == 1) { 

      display.clear(); 

      display.setTextAlignment(TEXT_ALIGN_CENTER); 

      display.setFont(ArialMT_Plain_10); 

      display.drawString(64, 10, "WiFi: Connecting..."); 

      display.drawString(64, 20, "SSID: " + 

String(config.sta_ssid)); 

      display.drawString(64, 30, "Attempt " + 

String(connectAttempts)); 

      display.display(); 

    } 

    yield(); 

  } 

 

  Serial.println("Wifi: timeout"); 

  renderWiFiStatus("Timeout", 255, 0, 0); 

  return 0; 

} 

 

void handleWiFiEvent(WiFiEvent_t event) 

{ 

  switch (event) 

  { 

    case WIFI_EVENT_STAMODE_CONNECTED: 

      Serial.println("Wifi event: 

WIFI_EVENT_STAMODE_CONNECTED"); 

      renderWiFiStatus("Linking", 255, 255, 0); 



 

      break; 

    case WIFI_EVENT_STAMODE_DISCONNECTED: 

      Serial.println("Wifi event: 

WIFI_EVENT_STAMODE_DISCONNECTED"); 

      renderWiFiStatus("Off", 255, 0, 0); 

//      sta_disc_flag = 1; 

      break; 

    case WIFI_EVENT_STAMODE_AUTHMODE_CHANGE: 

      Serial.println("Wifi event: 

WIFI_EVENT_STAMODE_AUTHMODE_CHANGE"); 

      break; 

    case WIFI_EVENT_STAMODE_GOT_IP: 

      Serial.println("Wifi event: WIFI_EVENT_STAMODE_GOT_IP"); 

      Serial.print("Wifi: connected, IP = "); 

      Serial.print(WiFi.localIP()); 

      Serial.print(", MAC = "); 

      Serial.print(mac); 

      Serial.println(); 

      renderWiFiStatus("On", 255, 255, 255); 

//      sta_disc_flag = 0; 

      break; 

    case WIFI_EVENT_STAMODE_DHCP_TIMEOUT: 

      Serial.println("Wifi event: 

WIFI_EVENT_STAMODE_DHCP_TIMEOUT"); 

      break; 

    case WIFI_EVENT_SOFTAPMODE_STACONNECTED: 

      Serial.println("Wifi event: 

WIFI_EVENT_SOFTAPMODE_STACONNECTED"); 

      renderAPStatus("Connected", 255, 255, 255); 

      break; 

    case WIFI_EVENT_SOFTAPMODE_STADISCONNECTED: 

      Serial.println("Wifi event: 

WIFI_EVENT_SOFTAPMODE_STADISCONNECTED"); 

      renderAPStatus("Off", 255, 255, 255); 

      break; 

    case WIFI_EVENT_SOFTAPMODE_PROBEREQRECVED: 

      break; 

    case WIFI_EVENT_MAX: 

      Serial.println("Wifi event: WIFI_EVENT_MAX"); 

      break; 

  } 

} 

 

void initWiFi() 

{ 

  Serial.println("Wifi: starting"); 

 

  //  renderWiFiStatus("Off", 255, 0, 0); 

  //  renderServerStatus("-", 255, 255, 255); 

  //  renderAPStatus("Off", 255, 255, 255); 

 

  delay(1000); 

  WiFi.mode(WIFI_STA); 

  WiFi.onEvent(handleWiFiEvent); 

  WiFi.begin(config.sta_ssid, config.sta_pwd); 



 

  if (atoi(config.static_ip_toogle) == 1) 

  { 

    Serial.println("Wifi: use static IP"); 

    IPAddress staticIP = stringToIp(config.static_ip); 

    IPAddress staticGateway = 

stringToIp(config.static_gateway); 

    IPAddress staticSubnet = stringToIp(config.static_subnet); 

    WiFi.config(staticIP, staticGateway, staticSubnet); 

  } 

  else 

  { 

    Serial.println("Wifi: using DHCP"); 

  } 

 

  Serial.println(String("Wifi: connect to '") + 

config.sta_ssid + "' with password '" + config.sta_pwd + "'"); 

 

  connectWiFi(); 

 

  if (WiFi.status() == WL_CONNECTED) 

  { 

    if (atoi(config.ap_toogle) == 1) { 

      Serial.println(String("Wifi: connected, creating AP ") + 

config.ap_name); 

      Serial.println(String("with password:  ") + 

config.ap_pwd); 

      WiFi.mode(WIFI_AP_STA); 

      //          if(atoi(config.hidden_toogle) == 1) { 

      //          Serial.println("AP options: hidden "); 

      //          WiFi.softAP(config.ap_name, config.ap_pwd, 

5, 1); 

      //          } 

      //          else { 

      WiFi.softAP(config.ap_name, config.ap_pwd, 5); 

      //          } 

      Serial.print("Wifi: connected, IP = "); 

      Serial.print(WiFi.localIP()); 

      Serial.println(); 

    } 

    startup_oled_time = millis(); 

  } 

  else 

  { 

    if (atoi(config.display_toogle) == 1) { 

      display.clear(); 

      display.setTextAlignment(TEXT_ALIGN_CENTER); 

      display.setFont(ArialMT_Plain_10); 

      display.drawString(64, 10, "WiFi: not connected"); 

      display.drawString(64, 20, "created access point"); 

      display.drawString(64, 30, "SSID: " + 

String(config.ap_name)); 

      display.drawString(64, 40, "Pass: " + 

String(config.ap_pwd)); 

      display.display(); 

      startup_oled_time = millis(); 



 

    } 

    Serial.println(String("Wifi: not connected, creating AP ") 

+ config.ap_name); 

    Serial.println(String("with password:  ") + 

config.ap_pwd); 

    WiFi.mode(WIFI_AP); 

    WiFi.softAP(config.ap_name, config.ap_pwd, 5); 

  } 

 

  Serial.println("Wifi: started\r\n"); 

 

  initWebServer(); 

 

  if (!MDNS.begin(config.ap_name)) 

  { 

    while (1) 

    { 

      delay(1000); 

      yield(); 

    } 

  } 

  MDNS.addService("http", "tcp", 80); 

} 

 

void initSensors() 

{ 

  if (atoi(config.sensor_dht_on) == 1) 

  { 

    uint8_t pin = (uint8_t)atoi(config.dht_pin); 

    uint8_t type = (uint8_t)atoi(config.dht_type); 

    DHT dht(pin, type); 

    dht.begin(); 

  } 

  if (atoi(config.sensor_ds18b20_on) == 1) 

  { 

    uint8_t pin = (uint8_t)atoi(config.ds_pin); 

    OneWire oneWire(pin); 

    // Pass our oneWire reference to Dallas Temperature. 

    DallasTemperature sensors(&oneWire); 

    sensors.begin(); 

    sensors.getAddress(insideThermometer, 0); 

    sensors.setResolution(insideThermometer, 

TEMPERATURE_PRECISION); 

  } 

 

  if (atoi(config.sensor_bosch_on) == 1) 

  { 

//    uint8_t bosch_adr = strtol(config.sensor_bosch_adr, 

NULL, 16); 

    String bosch_type(config.sensor_bosch_type); 

    if (bosch_type == "bme280") { 

      if (bme.begin()) { 

        bme280initialized = true; 

      } 

    } 



 

    else { 

      if (bmp.begin()) { 

        bmp180initialized = true; 

      } 

    } 

  } 

} 

 

// Function to connect and reconnect as necessary to the MQTT 

server. 

// Should be called in the loop function and it will take care 

if connecting. 

void MQTT_connect() { 

  int8_t ret; 

 

  // Stop if already connected. 

  if (mqtt.connected()) { 

    return; 

  } 

 

  Serial.print("Connecting to MQTT... "); 

 

  uint8_t retries = 3; 

  while ((ret = mqtt.connect()) != 0) { // connect will return 

0 for connected 

    Serial.println(mqtt.connectErrorString(ret)); 

    Serial.println("Retrying MQTT connection in 2 

seconds..."); 

    mqtt.disconnect(); 

    delay(2000);  // wait 1 seconds 

    retries--; 

    if (retries == 0) { 

      // basically die and wait for WDT to reset me 

      return; 

    } 

  } 

  Serial.println("MQTT Connected!"); 

} 

 

SensorData getdhtData() 

{ 

  uint8_t pin = (uint8_t)atoi(config.dht_pin); 

  uint8_t type = (uint8_t)atoi(config.dht_type); 

  DHT dht(pin, type); 

   

  float h = dht.readHumidity(); 

  float t = dht.readTemperature(); 

 

  // Check if any reads failed 

  if (isnan(h) || isnan(t)) { 

    Serial.println("Failed to read from DHT sensor!"); 

    if (WiFi.status() == WL_CONNECTED) { 

      MQTT_connect(); 

      String err = "\nMAC:" + mac + "\nDHT Err: Failed to read 

from sensor, get NaN"; 



 

      const char *mycharp = err.c_str(); 

      sensor_err_log.publish(mycharp); 

    } 

 

    dht_err_flag = true; 

  } 

  else { 

    dht_err_flag = false; 

  } 

  SensorData data; 

  if(dht_err_flag == false) { 

    data.humidity = h; 

    data.temp = t; 

    data.pressure = 0; 

    data.adc = 0; 

  } 

  else { 

    data.humidity = 0; 

    data.temp = 0; 

    data.pressure = 0; 

    data.adc = 0; 

  } 

  return data; 

} 

 

SensorData getDS18B20Data() 

{ 

  uint8_t pin = (uint8_t)atoi(config.ds_pin); 

  OneWire oneWire(pin); 

  // Pass our oneWire reference to Dallas Temperature. 

  DallasTemperature sensors(&oneWire); 

  sensors.requestTemperatures(); 

  float t = sensors.getTempCByIndex(0); 

  SensorData data; 

  data.humidity = 0; 

  data.temp = t; 

  data.pressure = 0; 

  data.adc = 0; 

  return data; 

} 

 

SensorData getMHZ19Data() { 

  SensorData data; 

   

  byte cmd[9] = {0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0x00, 

0x00, 0x79}; 

  // command to ask for data 

  char response[9]; // for answer 

 

  MH_Z19Serial.write(cmd, 9); //request PPM CO2 

  MH_Z19Serial.readBytes(response, 9); 

   

  if (response[0] != 0xFF) 

  { 



 

    Serial.println("Wrong starting byte from Z19 co2 

sensor!"); 

  } 

 

  if (response[1] != 0x86) 

  { 

    Serial.println("Wrong command from Z19 co2 sensor!"); 

  } 

 

  int responseHigh = (int) response[2]; 

  int responseLow = (int) response[3]; 

  int ppm = (256 * responseHigh) + responseLow; 

 

  if(ppm < 100 || ppm > 15000) { 

    Serial.println("Too much ppm value. Reset ESP"); 

    ESP.restart(); 

  } 

  data.co2 = ppm; 

  return data; 

} 

 

SensorData getAnalogSensorData() 

{ 

  float a = analogRead(A0); 

  SensorData data; 

  String str(config.adc_type); 

 

  if (str == "mq135") { 

    #define RZERO 324 

    MQ135 gasSensor = MQ135(A0); 

    //      float rzero = gasSensor.getCorrectedRZero(19,34); 

    //      delay(3000); 

    float ppm = gasSensor.getCorrectedPPM(19, 34); 

    delay(1000); 

    data.adc = ppm; 

  } 

  else 

  { 

    data.adc = a; 

  } 

  data.humidity = 0; 

  data.temp = 0; 

  data.pressure = 0; 

  return data; 

} 

 

SensorData getBoschData() 

{ 

 

  SensorData data; 

  String bosch_type(config.sensor_bosch_type); 

 

  if (bosch_type == "bme280") { 

    if (bme280initialized) { 

      data.temp = bme.readTemperature(); 



 

      data.pressure = bme.readPressure() * 0.007500637554192; 

      data.humidity = bme.readHumidity(); 

      data.adc = 0; 

      return data; 

    } 

  } 

 

  else if (bosch_type == "bmp180") { 

    if (bmp180initialized) 

    { 

      data.temp = bmp.readTemperature(); 

      data.pressure = bmp.readPressure() * 0.007500637554192; 

      data.humidity = 0; 

      data.adc = 0; 

    } 

    return data; 

  } 

} 

 

void renderRowValue(String value, int row, int r = 0, int g = 

255, int b = 0) 

{ 

  if (isRebooting) 

  { 

    //do nothing if rebooting 

    return; 

  } 

 

  while (value.length() < 10) 

  { 

    value += " "; 

  } 

} 

void sendSensorsData() 

{ 

  // Use WiFiClient class to create TCP connections 

  WiFiClient client; 

  const int httpPort = 80; 

  if (!client.connect(host, httpPort)) { 

    Serial.println("connection failed"); 

    return; 

  } 

  String url = "/update?key="; 

  url += config.thing_speak_api_key; 

 

  if (atoi(config.sensor_dht_on) == 1 && dht_err_flag == 

false) { 

    String dht_temp = (String)getTempForJson(data1.temp), 

           dht_humidity = 

(String)getHumidityForJson(data1.humidity); 

    url += "&"; 

    url += config.dht_t_field; 

    url += "="; 

    url += dht_temp; 

    url += "&"; 



 

    url += config.dht_h_field; 

    url += "="; 

    url += dht_humidity; 

  } 

 

  if (atoi(config.sensor_ds18b20_on) == 1) { 

    String ds18b20_temp = (String)getTempForJson(data2.temp); 

 

    url += "&"; 

    url += config.ds18b20_field; 

    url += "="; 

    url += ds18b20_temp; 

  } 

 

  if (atoi(config.sensor_bosch_on) == 1) { 

    String bosch_temp = (String)getTempForJson(data3.temp), 

           bosch_pressure = 

(String)getPressureForJson(data3.pressure); 

 

    url += "&"; 

    url += config.bosch_t_field; 

    url += "="; 

    url += bosch_temp; 

 

    url += "&"; 

    url += config.bosch_p_field; 

    url += "="; 

    url += bosch_pressure; 

 

    String bosch_type(config.sensor_bosch_type); 

    if (bosch_type == "bme280") { 

      String bosch_hum = 

(String)getHumidityForJson(data3.humidity); 

      url += "&"; 

      url += config.bosch_h_field; 

      url += "="; 

      url += bosch_hum; 

    } 

  } 

 

  if (atoi(config.sensor_analog_on) == 1) { 

    String adc_val = (String)data4.adc; 

    url += "&"; 

    url += config.adc_field; 

    url += "="; 

    url += adc_val; 

  } 

 

  if (atoi(config.sensor_mhz19_on) == 1) { 

    String co2_val = (String)data5.co2; 

    url += "&"; 

    url += config.mh_z19_field; 

    url += "="; 

    url += co2_val; 

  } 



 

// 

//  if (atoi(config.sensor_mhz14a_on) == 1) { 

//    String co2_val1 = (String)data6.co2; 

//    url += "&"; 

//    url += config.mh_z14a_field; 

//    url += "="; 

//    url += co2_val1; 

//  } 

 

 

  Serial.print("Requesting URL: "); 

  Serial.println(url); 

 

  // This will send the request to the server 

  client.print(String("GET ") + url + " HTTP/1.1\r\n" + 

               "Host: " + host + "\r\n" + 

               "Connection: close\r\n\r\n"); 

  delay(10); 

 

  // Read all the lines of the reply from server and print 

them to Serial 

  while (client.available()) { 

    String line = client.readStringUntil('\r'); 

    Serial.print(line); 

  } 

} 

 

void sendNarodmon() 

{ 

  // Use WiFiClient class to create TCP connections 

  WiFiClient client; 

  const int httpPort = 8283; 

  String fw_ver(config.firmware_ver); 

   

  if (!client.connect("narodmon.ru", httpPort)) { 

    Serial.println("connection failed"); 

    return; 

  } 

 

  client.print("#"); 

  client.print(WiFi.macAddress()); // МАС ESP8266 

  client.print("#"); 

  client.print("ESP8266 [MonSystem v."); // Назва пристрою 

  client.print(fw_ver); 

  client.print(" ]"); 

  client.println(); 

 

  if (atoi(config.sensor_dht_on) == 1 && dht_err_flag == 

false) { 

    String dht_temp = (String)getTempForJson(data1.temp), 

           dht_humidity = 

(String)getHumidityForJson(data1.humidity); 

 

    client.print("#T1#"); 

    client.print(dht_temp); 



 

    client.print("#DHT Temp#"); 

    client.println(); 

    client.print("#H1#"); 

    client.print(dht_humidity); 

    client.print("#DHT Humidity#"); 

    client.println(); 

  } 

 

  if (atoi(config.sensor_ds18b20_on) == 1) { 

    String ds18b20_temp = (String)getTempForJson(data2.temp); 

 

    client.print("#T2#"); 

    client.print(ds18b20_temp); 

    client.print("#DS18B20 Temp#"); 

    client.println(); 

  } 

 

  if (atoi(config.sensor_bosch_on) == 1) { 

    String bosch_temp = (String)getTempForJson(data3.temp), 

           bosch_pressure = 

(String)getPressureForJson(data3.pressure); 

 

    client.print("#T3#"); 

    client.print(bosch_temp); 

    client.print("#BMP/E Temp#"); 

    client.println(); 

    client.print("#P1#"); 

    client.print(bosch_pressure); 

    client.print("#BMP/E Pressure#"); 

    client.println(); 

 

    String bosch_type(config.sensor_bosch_type); 

    if (bosch_type == "bme280") { 

      String bosch_hum = 

(String)getHumidityForJson(data3.humidity); 

      client.print("#H1#"); 

      client.print(bosch_hum); 

      client.print("#BME Humidity#"); 

      client.println(); 

    } 

  } 

 

  if (atoi(config.sensor_analog_on) == 1) { 

    String str(config.adc_type); 

    String adc_val = (String)data4.adc; 

 

    if (str == "mq135") { 

      client.print("#CO2#"); 

      client.print(adc_val); 

      client.print("#MQ135 (CO2)#"); 

      client.println(); 

    } 

    else { 

      client.print("#ADC#"); 

      client.print(adc_val); 



 

      client.print("#ADC pin#"); 

      client.println(); 

    } 

  } 

 

  if (atoi(config.sensor_mhz19_on) == 1) { 

    String co2_val = (String)data5.co2; 

    client.print("#MH-Z19#"); 

    client.print(co2_val); 

    client.print("#CO2, ppmT#"); 

    client.println(); 

  } 

   

//  if (atoi(config.sensor_mhz14a_on) == 1) { 

//    String co2_val = (String)data6.co2; 

//    client.print("#MH-Z14A#"); 

//    client.print(co2_val); 

//    client.print("#CO2, ppmT#"); 

//    client.println(); 

//  } 

   

  client.println("##"); 

  Serial.println("\r Sensors data send to narodmod.ru \r"); 

  // Read all the lines of the reply from server and print 

them to Serial 

  while (client.available()) { 

    String line = client.readStringUntil('\r'); 

    Serial.print(line); 

  } 

} 

 


