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Summary. New solutions to the theories of thermoelasticity and elasticity in the Cartesian coordinate
system are found in this paper. New explicit partial solutions of thermoelasticity equations, when the temperature
field is defined by 3D or 2D harmonic functions, are constructed. Displacements, deformations, and stresses
determined by these partial solutions are called temperature functions. A simple formula for the expression of
normal temperature stresses is obtained and it is shown that their sum is zero. Separate cases when the temperature
depends on the product of harmonic functions of two variables on the degree of coordinate z are also considered.
Partial and general solutions are derived for them. General solutions of thermoelasticity equations (Navier’s
equations) through four harmonic functions, when the temperature field is given three-dimensional or
two-dimensional harmonic functions, are constructed. The thermoelastic state of the body is divided into symmetric
and asymmetric stress states. It is proposed to present the solutions of the theory of elasticity, which are expressed
by the product of the harmonic function of two variables to the degree of the coordinate. Polynomial solutions that
depend on three coordinate variables are recorded. An example of the application of the proposed solution is
given.
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Introduction. Thermoelastic materials under the influence of various temperature fields
are used in aerospace and other engineering [1-4]. Elastic bodies with applied power loads are
widely used in power engineering, technological and engineering structures [5, 6].

Overview of known static solutions of the equations of the theory of elasticity and
thermoelasticity and their application. The methods of solving static boundary value
problems in the elastic three-dimensional body are based mainly on the construction and
application of various representations of general solutions of the equations of the theory of
elasticity [1, 2, 5, 6]. It is known [1, 6] that the representation of the solution of Lamé equations,
which has been independently obtained by Papkovich and Neuber and contains four harmonic
functions, is often used. In paper [7], the general solution of the equations of the theory of
elasticity for the elastic isotropic body is constructed and it is proved that its stress state can be
expressed in terms of three harmonic functions. The advantage of this solution is that the
volume deformation is expressed only by one function. While investigating three-dimensional
static problems of the theory of thermoelasticity [1-4, 6], known solutions of the equations of
the theory of elasticity, with added specific temperature distribution of stresses given by the
thermoelastic potential are used. The vast majority of partial solutions of Navier’s equations of
the theory of thermoelasticity are constructed using thermoelastic potential [1-4]. In paper [6],
solutions of the equations of the theory of thermoelasticity for the linear distribution of
temperature without thermoelastic potential application are presented.

In the paper [8], a three-dimensional stationary temperature field is considered and
three-dimensional thermoelastic potential is used for the construction of a two-dimensional
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theory of thermoelastic plates. In the paper [9], temperature stresses in an elastic parallelepiped
with free faces are investigated and a semi-analytical algorithm for the solution of the three-
dimensional problem of thermoelasticity is proposed. In papers [10, 11] two-dimensional
calculation models for the calculation of the stress state of elastic plates without plane stress
hypotheses application are constructed on the basis of the general solution of the equations of
the theory of elasticity [7].

The objective of the paper is to find physically substantiated partial temperature
solutions of Navier’s equations with partial derivatives and to construct general solutions
of the theory of elasticity which describe the thermoelastic state of the body.

Statement of the problem and notation of static thermoelasticity equations. Let us
consider the general formulation of the three-dimensional static problem of the theory of
thermoelasticity for the three-dimensional isotropic body in the Cartesian coordinate system:
X| = X, Xp =Y, X3 = z. The initial temperature, when there are no stresses, is accepted equal to
zero. The temperature in the body varies within such limits that the elastic and heat-conducting
coefficients of the material can be modeled as constant.

Let’s use the Duhamel-Neumann relation to represent thermoelastic stresses [3, 6] in
homogeneous solid body

1 . .
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where G=E/2(1+v), E are shear and Young's modules, akzﬂ are elongation
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deformations, u, are elastic displacements, y, :a— P are relative shear deformations,
Xk X
j
e=¢g, +g,+&g IS volume deformation, v is Poisson's ratio, o is coefficient of thermal

expansion.

Let us substitute relation (1) into the equilibrium equation of the thermoelastic body and
write down the system of Navier’s differential equations with partial derivatives for elastic
displacements [1, 3, 6]

oe oT —
1-2v)V2u, +— =20+ v)o—, k=13,
(1-2v)Viuy o, L+ V) o 2
2 _ o I, G _
where V© = —-+—-+— is the Laplace operator. Let us assume that the body has the given
8X1 8X2 8X3

stationary temperature field without internal heat release that satisfies the Laplace equation

V3T =0. (3)

Functions that satisfy the Laplace equation (3) in three-dimensional or two-dimensional
cases will be called harmonic functions.

Let us construct the solution of the equations system (2), and (3) by harmonic functions.

Presentation of partial solutions of thermoelasticity equations systems when the
temperature is a three-dimensional or two-dimensional harmonic function

The system of Navier’s equations of the theory of thermoelasticity (2) will be considered
as the system of three-dimensional differential equations with non-zero right-hand parts, which
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are determined by the known three-dimensional harmonic temperature T(x,y,z) . The general
solution of the equations system (2) is presented as the sum of homogeneous and partial
solutions.

In order to find the partial temperature solution u' of the equations system (2), let us
analyze the known partial solutions of the equations of the theory of thermoelasticity. With
index «t» at the top, we will denote the partial solutions of system (2), which depend on
temperature. We assume that the surface of the body is not fixed, so free thermal elongation of
the thermoelastic body can occur.

If the temperature is constant T =T, =const, then the partial solution of the equations

system (1), (2) is
utjzaijo, j:1,_3, et=3aTo. 4

When the temperature depends linearly only on one variable x: T =t;x, then the
temperature displacements have the form [6]

ul :a(%xT—tlyz), ub =oyT, ul =azT, e' =3aT. (5)

From the above mentioned and physical considerations, the following patterns in the
distribution of temperature displacements emerge: they are accumulate according to the integral
law; if the temperature is directed to the constant value T,, then the temperature displacements
will coincide with the expressions (4); volume deformation of purely temperature
displacements (4), (5) and known solutions obtained without the displacements thermoelastic

potential of [2] are equal to: e' =3aT . Let us construct partial solution of the differential system
of equations (2)

. 89 o
uJ _gj-i-Blea 121131 (6)

where T, Q;=[Tdx;; j=13 are harmonic functions, 9(x,y,z)=PB(xy + Y€, +2Qg) is
biharmonic function, B=—%oc, By =goc . Indefinite integrals Q ; = [ Tdx; are defined in such away

as they are harmonic functions that are equal to zero when the temperature is zero. As we can see,
temperature changes are expressed by integrals of temperature. If we direct the temperature to a
constant value T,, then the solution (6) coincides with expressions (4). According to the specified

displacements (6), we determine the normal temperature deformations

2
etj:—a\;}JriaT, j:3,et=3ocT. (7
an 3

Let's add the shear strains to relations (7) and substitute them together in relation (1) and
find the temperature stresses

2
o =ZG{@+%aT}, e'=0,

2
an
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80,

1, m=j, j=13. (8)

Volume deformation and the sum of normal temperature stresses ©' = o} + o5 + o} is
determined by partial solution of the Navier’s equation (6)—(8) and are equal to

e' =divuj=3aT, @' = o} + 0% + 0} =0. 9)

Displacements, deformations, and stresses are called temperature ones if they are
determined by explicit partial solutions of the system of equations (2) and are equal to zero
when the temperature is zero.

For example: partial solutions (4)—(6) are temperature solutions.

In order to simplify the presentation of the solution, it is reasonable to divide the stressed
state of the thermoelastic body into symmetric (even) and asymmetric (odd) stress states
relativele to variable z . According to the dependencies (1), (8), the even variable z temperature

T(x,y,-z) =T(x,Y,z) generates an even variable z of normal th , j=1,3 and shear i, stresses,

and correspondingly odd shear stresses rtj3 j=12. For an odd temperature

T(x,y,—2)=-T(x,Y,z), the normal stresses will be odd and the shear stresses thg j=12 will be

even functions.
There are many problems where the temperature is modeled by the product of a
harmonic function of two variables X,y on the degree of coordinate z . Let us consider these

cases.
Construction of even partial solution for even temperature T =T(x, ).

Let us take into account that the movement in the direction of axis oz iS u} = azT(x,y) .

Let's construct the even partial solution of the system of equations (2) when the temperature
does not depend on variable z

29 3 =
uj :E+—agj, j=12, uy=o0zT, ' =3aT, (10)

where T, Qj:dexj;jzl,_z are  harmonic  functions of variables Xy,

3(x,Y) =—%a(le+ yQ,) is biharmonic function. If we direct temperature T (x,y) to constant

value T;, then the solution (10) coincides with expressions (4). Temperature displacements

utj , j=1,2 do not depend on the coordinate z.

According to the given displacements (10), we determine the deformations. Let's
substitute these deformations into relation (1) and find the temperature stresses

2 J—
th ZQG{QJFEQT}, j=12,05=0,©=0,
6xj2 2
=gz j=12, 1, =2G 0% (11)
3i = DR =1L4, T1p =
) Xj 6X16X2
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Therefore, in relations (11), only shear temperature stresses rg,- , j=1,2 depend linearly

on the coordinate z. All other stresses do not depend on z and are described by two-
dimensional harmonic functions.

Odd by variable z temperature T = zT;(x,y). In order to construct a partial solution
of the system of equations (2), we will use representation (6), which after mathematical
transformations will be reduced to the following form

oy . 9 5
uf :Eﬂspj, j=12, ug:B[EijldH ijldy)—Ezle], (12)

where expressions 9(x, y)=[3z[(%ij1der ijldy)Jr%zle], Q, =ZfT1de j=12, et =3aT

are modified, and all other coefficients are kept unchanged. According to the specified
displacements (12), we determine the deformations. Let's substitute these deformations in
relation (1) and find temperature stresses

2 _
oj =2G[g+loﬁ], j=12, 052—%GaT, ®=0,

8Xj
t 0 2 .=
rj3—GB@Tj[SxJ'Tldx+2yJ'Tldy)—22 Ti1+Gpy [Tydx;, j=1,2, (13)

2
T}.Z ZZGQ‘FB]_G[&‘F@S)_Z].
oxoy oy OX

Therefore, for all obtained partial solutions, the following physically substantiated
regularities are fulfilled:

el =3u0T, @' =0.

Presentation of the general solution of the equations of the theory of
thermoelasticity

The homogeneous solution of the system of equations (2) coincides with the general
solution of linear equations of the theory of elasticity. This solution is constructed in the paper
[7] using three harmonic functions. The homogeneous solution of the system of equations (2)
is determined by the following theorem:

Theorem [7]. The general solution of the system of equations of the theory of elasticity
(2), when T =0, can be presented in the following form

u = gradP — 41 — v)¥Xk + rot(¥2k), (14)

where P=29¥1+¥3; wi(xy,2), j=13 are three independent harmonic functions of three
variables.

It should be noted that two functions ¥?2, ¥, do not influence the volume deformation
value. Volume deformation is expressed only by function W! according the formula
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oV 1
=-2(1-2v )ax3 (15)

Let us use the general representation of deformation (14). We add partial solutions (6)
to it and obtain a general solution of the equations of the theory of thermoelasticity by four
harmonic functions

2
v .
U' ___( 1)J 0 +u1ja J:]-! )
OXj X3 j
oP
usz = 87_4(1_\/)\}’1 +U:t; . (16)

3

We add relation (8) to the general solution of the equations of the theory of elasticity in
stresses [7, 11] and obtain a general expression of normal

22
J—ZG{E—Z\/@P — (1] o ]m‘-

ox2 OXg 0% OXo I
1 _
63—26 Q—Z(Z V)— +(53, J:1,2 (17)
8X3 3

and shearing

22 .
tj=6| -1 2 Loyt |- I |ad 21,
X X3 OX3_ jOX3

2 2gy2 2gy?
T12=G|:2 o°P '|'a ki o :|+T§_2

- 18
MOXy x5 oxd (18)
stresses as the sum of elastic and temperature components [8]. Let us take into account formulas

(9), (15), (17), and find the sum of normal stresses and volume deformation of thermoelastic
body

ot
0=-2E——, e=—21-2v)®+3aT . (19)
A

The second equality (19) is also given in the paper [2].

In the case when the temperature depends on the product of a harmonic function of two
variables on the degree of coordinate z, there is the need to use elastic solutions (14), which
can also be presented in the form of products.

Let's specify the presentation of solution (14), when the displacements are described by
the product of the variable z degree on the harmonic functions of two variables X,y . In this

case, three-dimensional harmonic functions of three variables can be decomposed into series
by variable z . If we restrict ourselves to the second degree of variable z, then we obtain
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YK (x,y,2) = 2205 + 20F + ¢k —xj'(plédx, k=13, P= 3Py + 2°P, + ZP, + Py, (20)

where ¢(x,y), j=0,2 are harmonic functions of two variables, x[¢3dx is a biharmonic
function, Py=¢}, P,=o¢l+3, P =0¢o+¢; —x[e3dx, Py=0g—-x[p3dx. Functions (20) are
three-dimensional harmonic functions.

Harmonic polynomials Akj (x y,2) from three variables should be added to functions ¥
(20). Let's separate functions (20) and polynomials in such a way that they describe symmetric

Pl =z, WK (x,y,2) = 2205 + 0f —xj<p'§dx, k=23,
P=2%P,+ Py, e=-2(1-2v)o7, (21)

1 1
A'fz = a{‘mxi[z(zz +x,%)—§xi2]+a'2‘mxi(z2 —x%), ms=i=3,

and asymmetric

‘Plzzz(P]é+(p](-)_XI(P]édX! ‘{Jk(X,y,Z):Z(PIf’ k:ﬁa
P=z3P3+zP1, e=—4(1—2v)z<p12, (22)
k 1 2 201,
ANy = z7[— (X + -=Z
3 [2( y) 3 1

stress states by variable z .

Let us substitute functions (21), (22) into expressions (16)—(18) and find the components
of symmetric and asymmetric stress-strain states, respectively.

Let us give an example of practical problems solution due to the above mentioned
formulas.

Torsion of elastic bodies. Let us consider the prismatic body

[1={(x.y.2) e (-a,alx[-b,b]x[-h,h]},

to the ends z = +h of which only shear loads are applied to creating torques, and the side faces
are free from loads. This is the well-known problem of rectilinear rod torsion [6], which is
described by functions (22). For this problem, all normal stresses and temperatures are equal to
zero. From this condition and relation (19), we define two-dimensional harmonic functions

‘I’1=O,P=Z(pi’,‘{’2=z<p12. (23)
The known expression of elastic displacements for this problem is as follows:
= —0zy,Vv = 0zx, w = Oy (X, y), (24)

where o is the relative twist angle of the body cross-section, Ay(x,y)=0.
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In order to obtain ratio (24), displacement functions (22), (23) should be set in the
following form

P=20y(xYy), ¥3=2z¢} =02y, ¥2= —zj%cpfdy—eAZ , (25)

and set all other functions equal to zero. Let us substitute the displacement functions (25) into
relation (16) and obtain the representation (24). Let us substitute functions (25) into the
expression of normal (17) and shear (18) stresses and make sure that normal stresses are equal
to zero, and shear stresses are as follows

0 - . =
TjSZGe[aX_"V+(_1)JX3—j], =12, 1, =0. (26)
J

Stresses (26) coincide with stresses found in the paper [6].
Discussion of results. We determined two important regularities of the temperature

stresses distribution in the body: e' =3aT, ®' =0. We will show that they are closely related.

Let us substitute the expression e' =3oT in Duhamel-Neumann relation (1) and find a simple
relationship between temperature stresses and strains

ol = 2G(el —aT), k=13. (27)

If we sum relation (27), we obtain ®'=0.
The thermoelastic potential of displacements @ [1, 3] is widely used in the theory of
thermoelasticity [1, 3]

ut = gradd , (28)

This potential is partial solution of the system of equations (2). Volume deformation of
temperature displacements (28) is equal to

el = A0 :1'+—VocT : (29)
-V

The value of volume deformation (29) does not comply with known solutions of
thermoelasticity (4), (5) and expression (9). The thermoelastic potential of displacements
@ is defined implicitly as a partial solution of equation (29), which includes elastic
displacements. The known partial solutions of thermoelasticity equations (4), (5) do not
follow from the expression of thermoelastic displacements potential (28), (29).

Conclusions. It is determined that the sum of normal temperature stresses is
equal to zero, and volume deformation is equal to e=3aT; if the temperature does
not change in a certain spatial direction, then in this direction the normal temperature
stresses are zero. A simple relationship (27) between temperature stresses and
deformations is obtained. Symmetric and asymmetric by coordinate z elastic and
temperature states of the body are constructed. Harmonic functions which describe
displacements and stresses in these stressed-strained states are found. The obtained
formulas are used and the solution to the well-known problem of prismatic elastic
bodies torsion is recorded.
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MNOBYJ0OBA CTATUYHUMX PO3B’SI3KIB PIBHSIHb TEOPII
MPYXHOCTI H TEPMOIIPYKHOCTI

BikTop PeBenko

Inemumym npuxknadnux npobaem MexaniKu i Mamemamuxu
imeni A. C. Iliocmpueawa HAH Yxpainu, Jlveis, Yxpaina

Pe3ztome. 3uaiioeno 1nogi pos3s'sasku meopii mepMOnPYICHOCMI I NPYACHOCMI 6 OeKapmogiil cucmemi

Koopounam. {1 onucys8anHa mepMOnpy*CHO20 CIMAHY BUKOPUCTIAHO TIHIUHY CIAmu4Hy Mooenb mpusuMipHo2o
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i30mponHo20 mina ni0 Oi€l0 CMAYIOHAPHO2O MEeMNEPAMYPHO20 NOoAs 34 GIOCYMHOCMI 00 EMHUX CUL.
Bukxopucmano cnigsionowennsa [fioamens—Hetimana 0na noOanus mepmonpysCHUX HanpysHceHv 8 0OHOPIOHOMY
meepoomy mini. Ilicia niocmanosku mepmMonpysCHUX HANPYHCEeHb 8 PIBHAHHA PIBHOBASU MEPMONPYIHCHO20 Mind
s3anucano cucmemy ougepenyianrvHux pieHanb Hag’e 6 yacmuHHux noxioHux Opy2o2o NOPAOKY HA NPYHCHI
nepemiwgennsa. 3azanvhull po3e'azox cucmemu pisHaHb Hag’e Hnagedeno y 6uenadi cymu 0OHOPIOHO2O Ui
4acmko8o2o0 po3s’askie. Ilobydosano U @isuuHO OOIPYHMOBAHO HOBI AGHI HACMKOBI PO38'A3KU DIGHAHD
MEPMONPYAHCHOCI, KOU meMnepamypHe nojie 3a0acmbcs MpUSUMIpHUMU abO O0B0SUMIPHUMU 2aPMOHIYHUMU
Qyuxyiamu. Ilepemiuenns, depopmayii 1 Hanpys’cenns, AKI SUHAUAIOMbCA YUMU YACMKOBUMU PO368 A3KAMU,
Hazeani memnepamypuumu. Poszenanyma modenv degpopmosanozo mina 6azyemvcsa Ha nOOAHHI nepemiujens i
HAanpysiceHsb uepe3 Yomupu 2apMoHIuHi yHKYIL, mpu QYHKYIT Onucyioms NPYXICHULL CMaH i 00HA QYHKYis onucye
memnepamypui oeopmayii. Ompumano npocmy GOpMyRy Ons GUPANHCEHHS HOPMATLHUX MEeMNepamypHux
HAnpydicenb i NoKa3ano, wo ix cyma oopiguioe Hymio. Takodc po3enaHymo oKkpemi GURAOKU MEPMORPYICHO-
0ehopM0o6arn02o cmawy, KOJIU MeMnepamypa 3a1excums 6i0 000ymKy eapMOHINHOT yHKYIL 610 080X 3MIHHUX HA
cmeninb koopounamu I . 3HauoeHo 07 HUX 4acmkosi Ul 3a2anvhi poss'sasku. I[lobydosano 3aeanvhi po3s'szku
plsnans mepmonpysicnocmi (Navier’s equations) uepes vomupu capmoniunux Qynxyii, Koau memnepamypme noie
3a0a€MbCsE MPUBUMIPHUMU AOO 080BUMIDHUMU 2APMOHIYHUMU QYHKYIAMU. TepMOnpyIcHULl cmaH mina po30iieHo
HA CUMEeMPUYHUL [ HeCUMeMPUYHULL N0 KOOPOUHami 1 HANpYJjiceHi CMaHu. 3anponoHo8aHo nOOAHH: PO38 A3KIe
meopii’ npys*CcHOCMI, AKI UPAXCAIOMbCs Yepe3 00OYMOK 2apMOHIUHOI QYHKYII 6i0 080X 3MIHHUX HA CMENniHb
Koopounamu 1. 3anucaHo NOAHOMIANbHI PO38'A3KuU, AKI 3a1exicamsv 6i0 MpbOX KOOPOUHAMHUX 3MIHHUX.
Hagedeno npuxnad euxopucmarnis 3anponoHOBAHUX PO36'A3KIE O/l BUSHAYEHHS HANPYICEHO-0epOPMOBAHO20
cmany npusmu nio 0i€io 3yCUlb CKPYUy8aHHs.

Kniouosi cnosa: mino, cumempuynuti i HeCUMEMPUYHULL MEPMONPYICHULL CIAH, TEeMIIEpaTypHe ToJe,
HANPYJHCeHHs, nepemiujeHisl.
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