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INTRODUCTION 

 

The course «Discrete mathematics» is in the list of natural and scientific 

subjects of formation of bachelors of specialties 123 «Computer Engineering», 

122 «Computer Science and Informational Technologies» and is one of the basic 

subjects of mathematical courses of this cycle. 

The proposed material consists of the following chapters: «Foundations of set 

theory»; «Combinatorics»; «Boolean algebra»; «Elements of graph theory». 

To master the subject «Discrete mathematics», the student should have the 

knowledge of mathematics on the level of high school and some other main notions 

from the Higher Mathematics course. 

The methodical instructions from the subject «Discrete mathematics» consist 

of references (manuals, tutorials and monographs), which can be used to more in-

depth mastering of material, or for deeper studying of certain theoretical notions and 

practical examples.  
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1. FOUNDATIONS OF SET THEORY 
 

1.1. Examples of tasks. 

Task 1. Explain, why }4,3,2,1{3 , but }2,1},3,2{},3,2,1{{}2,1{  . 

Solution.  

The set }4,3,2,1{  consists of four elements, one of which is 3, therefore, one 

can write }4,3,2,1{3 .  

The set }2,1},3,2{},3,2,1{{  consists of four elements: the set }3,2,1{ , the set 

}3,2{ , object (the element of the set) 1 and object (the element of the set) 2. In such 

elements composition set }2,1{  does not occur, therefore,  

}2,1},3,2{},3,2,1{{}2,1{  . 

Task 2. Let the set }24,21,18,15,12,9,6,3{A  is given. Describe this set using 

the set-builder notation. 

Solution.  

The set A  via the set-builder notation is defined as follows: 

{ | 0 24 and is a multiple of 3}A x x x   . 

Task 3. Prove, that the sets }2,4,5,2{A  and }2,4,5{B  are equal. 

Proof.  

Two sets A  and B  are equal if and only if each element of A  is an element of 

B  and vice versa. For the given sets this condition is true, therefore, they are equal, 

namely, BA . 

Task 4. Prove that the empty set is a subset of any set. 

Proof.  

Let’s assume that there exists the set A  such that A . This means that   has 

such element a  that is not in A . And this is not possible since   does not contain 

any element. 

Task 5. Let },,,,,{ dgfcbaA  , },,,,{ lkgcbB  . Find BA , BA , BA \ , 

BA . 

Solution. 

},,,,,,,{ lkdgfcbaBA  , },,{ gcbBA  , },,{\ dfaBA  , 

},,,,{)(\)( lkdfaBABABA  . 

Task 6. Let }1sin|{
1

 xxM , 








 kxM 


2
2

2 , where Zk  . Prove that 

21 MM  . 

Solution.  

Step 1. Let’s show that 21 MM  . 
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. ,2
2

1sin 2121 MMMxZkkxxMx  


 

Step 2. Let’s show that 12 MM  . 

.1sin,2
2

1212 MMMxxZkkxMx  


 

As a result of 1 and 2 one can conclude that 21 MM  . 

Task 7. Prove that    BABAA \ , where A  and B  are the sets. 

Solution.  

Step 1. Let’s show that    BABAA \  

   and or and or \x A x A x B x A x B x A B x A B             

       .\\ BABAABABAx   

Step 2. Let’s show that     ABABA  \  

   \ or \x A B A B x A B x A B          

( and ) or ( and ) and ( or )x A x B х А х В х А х В х В           

     and or \x A x B x B x A A B A B A           

As a result of 1 and 2 one can conclude that    BABAA \ . 

Task 8. Prove the following identity )()()( CABACBA  . 

Proof.  

Let )( CBAx  , then Ax  or CBx  . If Ax , then x  belongs to the 

union of A  with any other set, namely, BAx   and CAx  , therefore, x  є is 

an element of intersection BA  and CA , namely, )()( CABAx  .  

If CBx  , then Bx  and Cx , therefore, BAx   and CAx  , 

namely and in this case x  is an element of intersection of this sets.  

Thereby, it was proven that )()()( CABACBA  . In the same way 

one can prove the statement )()()( CABACBA  . According to the 

definition of identity of the sets we can get the necessary identity 

)()()( CABACBA  . 

Task 9. Prove the identity AAA  . 

Proof.  

The identity AAA   can be proven using the following transformations by 

employing the identities of the sets algebra: 

AAAAAAAAAUAAAA  )()()()( . 

Task 10. List all subsets of the set }4},5,3,2{},3,1{{A . 

Solution.  
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The number of subsets can be determined via the formula n2 , where n  is the 

number of elements of the set A , therefore, 823  . Let’s list all the subsets of the set A :  

}4},5,3,2{},3,1{{},4},5,3,2{{},4},3,1{{}},5,3,2{},3,1{{},4{}},5,3,2{{}},3,1{{, . 

Task 11. List  the elements of the Cartesian product of two sets: }3,2,1{X  і 

}1,0{Y . 

Solution. 

)}1,3(),1,3(),1,2(),0,2(),1,1(),0,1{(YX ; 

)}3,1(),2,1(),1,1(),3,0(),2,0(),1,0{( XY . 

Task 12. Let Х is a set of the points of the segment ]1,0[ , and Y is the set of all 

points of  the segment ]2,1[ . Determine the set of points of YX  . 

Solution.  

YX   is as set of points of the square ]2,1[]1,0[   with the vertices in the points 

)2,1(),1,1(),2,0(),1,0( . 

Task 13. Find the domain and range of the following relations: 

a) )}5,(),4,(),2,(),1,(),2,(),1,{( dcccaa ;  

b) 2{( , ) | , R and }x y x y x y  , where R  is a set of real numbers. 

Solution.  

In the task a) the domain range of the relation is a set },,{ dca , the range of the 

relation is a set }5,4,2,1{ ; In task b) the domain range of the relation is a set 

{ | and 0}x x R x  , the range of the relation is a set R  (the set of all real numbers). 

Task 14. Let the following sets are given },,,,{
54321

xxxxxX  ; 

},,,{
4321

yyyyY  , as well as the following relation on this sets: 

),,(),,(),,(),,(),,(),,(),,(),,(),,({
344323134232123111

yxyxyxyxyxyxyxyxyxR 

}),(),,(
4525

yxyx . Determine the quotient set RY \ . 

Solution. 

It is obvious that },{)(
311

yyxR  ; },,{)(
4312

yyyxR   and so on.  

Let’s write down the quotient set according to all elements of the set X in the 

following form: 

 

1x  2x  3x  4x  5x  

},{
31

yy  },,{
431

yyy  },,{
421

yyy  }{
3

y  },{
42

yy  

 

The union of all sets of the second row of the table form the quotient set 

}},{},{},,,{},,,{},,{{\
42342143131

yyyyyyyyyyyRY  .  
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Task 15. Let the following set is given },,,{ A  і and let the relation 

AAR   is defined in the following form:  

)},(),,(),,(),,(),,(),,(),,(),,{( R . 

Determine whether R  is an equivalence relation. 

Solution. 

R  is not reflexive, namely, A , but R ),( . 

R  is not symmetric, since R ),( , але R ),( .  

R  is not antisymmetric, since R ),(  and R ),( , but  .  

R  is not transitive, since R ),(  і R ),( , but R ),( . 

Therefore, the relation R  is not an equivalence relation. 

Task 16. Let }2,1,0,1,2{ A , and }5,4,3,2,1,0{B . The relation 

BAf   is given as )}5,2(),2,1(),1,0(),2,1(),5,2{( f . Determine whether this 

relation is a function. 

Solution.  

The relation f  is a function from A  to B , since BAf  , and each of its 

elements A  is present as a first component of the tuple from f exactly once. 

Task 17. Let A  and B  is a set of real numbers, and the function BAf :  is 

defined as 2)( xxf  . Check whether this function is surjective, injective and 

bijective? 

Solution.  

Function is not surjective, since there no such real number a , for which 

1)( af . Function is not injective, since )2()2(  ff , but 22  . It can be noticed 

that if A  and B  are the sets of positive real numbers then the function BAf :  is 

injective and surjective. 

 

1.2. Tasks for self-study 

Task 1. Describe each of the following sets:  

a) { | is divisible by 2 and is divisible by 3}A x N x х  ;  

b) { | and }A x x A x B   ;  

c) { | and }A x x A x B   . 

Task 2. List the elements of the set 2{ | is integer and 100}x x x  . 

Task 3. List the elements of the set  

{ | is vowel of English alphabet}X x x . 

Task 4. Describe the set },,,,,,,,,{ jihgfedcba  using the set builder notation. 
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Task 5. List the subsets of the set  . 

Task 6. List the subsets of the set },,,{ dcba . 

Task 7. Determine the number of elements in each set:  

a) }}{,{  ; b) }}}{,{{  ; c) }}},{,,{},,{,,},{,{ babababa ;  

d); }}3,2,1{,3,2,1{ ; e) }}}{,{},{,{  .  

Task 8. Let the set of first 20 positive integers is the universal set. Write down 

the following subsets of this set: A  is the subset of even numbers; B  is the subset of 

odd numbers; C  is the subset of squares of numbers; D  is the subset of prime 

numbers. 

Task 9. Determine whether the sets A  and B  are equal (if not, then why?):  

а) }4,5,2{A , }2,4,5{B ;  

б) }2,4,2,1{A , }4,2,1{B ;  

в) }5,4,2{A , }3,4,2{B ;  

г) }6},5,2{,1{A , }6},2,5{,1{B ;  

д) }6},5,2{,1{A , }6,5,2,1{B . 

Task 10. Prove that )()\()\( BAABBABA  , where A  and B  are 

the sets. 

Task 11. Let }7,6,5,4,3,2,1{A , }10,9,8,7,6,5,4{B , }10,8,6,4,2{C , 

and }10...,,3,2,1{U . Determine the sets: 1) CA ; 2) BA ; 3) )( CBA  ; 4) 

CBA  )( ; 5) )( BA ; 6) BA ; 7) BA ; 8) BA . 

Task 12. Determine whether there exist such sets A , B , C , that  BA , 

CA ,  CBA \)( ? 

Task 13. Prove the following identity BAABA  )( . 

Task 14. Prove the identity BABA  . 

Task 15. Prove the following identities using the equivalent transformations: 

)\(\)\(\ ABBBAA  ; )\(\)\(\)\( CBCACBA  . Check the result using the 

Venn’s diagrams. 

Task 16. What is the relation between A  and B , if  ABBA \\ ? 

Task 17. Show that the following identities are true:  

 а) BABBA  ; b) CBCBACBA  )()( . 

Task 18. Prove the following identities:  

a) BAABA  )\( ; b)  )\( ABA ; c) BABAA \)(\  ;  

d) )\()\()(\ CABACBA  . 
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Task 19. Prove the equality of two sets using the Venn’s diagrams 

BABA  )( . 

Task 20. Build the Venn’s diagram for each of the given sets and mark theparts 

that corresponds to these sets:  

1) BA ; 2) )( BA ; 3) BABA  )( ; 4) )( CBA  ; 5) ACB  )( ;  

6) )( CAB  ; 7) )( CBA  . 

Task 21. Find the following sets a) }{ ; b) }{}{  ; c)  \}}{,{ ; 

d) }}{{\}}{,{  . 

Task 22. Find the Cartesian product of the sets },,{ X , Y  and 

},,,,,{ fedcbaZ  . 

Task 23. Let }41|{  xNxB  and }04|{ 2  xNxC , where N  is the 

set of positive integers. Which elements comprise the sets CB  і BC  ? 

Task 24. 

Two sets are given },,,,,{
654321

xxxxxxX   і },,,{
4321

yyyyY  , and the binary 

relation is defined )},(),,(),,(),,(),,(),,(),,{(
35153424221221

yxyxyxyxyxyxyxA .  

For the given relation: 

a) Determine the domain and the range;  

b) Find the matrix and build a graph;  

c) determine the symmetrical (inverse) relation 1A . 

Task 25. Let X  is a set of students, Y  is a set of subjects. The relation xAy , 

where Xx  and Yy , means «the student x  studies subject y ». Describe the domain, 

range, and inverse relation. 

Task 26. Given the relations 
1

R  and 
2

R  on the set }4,3,2,1{A  ( 2

1
AR   

and 2

2
AR  ): )}1,2(),3,1(),2,1(),1,1{(

1
R ; )}3,2(),2,2(),4,1(),3,1(),1,1{(

2
R .  

Find the relation 
21

RR  , 
21

RR  , 
21

\ RR , 
12

\ RR , 
1

R , 
2

R , 
21

RR   and 

determine their cardinality.  

Task 27. Let }5,4,3,2,1{A , }9,8,7,6{B , }13,12,11,10{C , 

},,,{ D  and BAR  , CBS  , DCT   are defined as follows: 

)}8,2(),6,5(),6,4(),7,1{(R , )}13,8(),10,7(),11,6(,)10,6{(S , 

)},13(),,12(),,13(,),10(),,11{( T . Determine RS  , 1SS  , RST  )( . 

Task 28. Let 2

21
,},4,3,2,1{},,,{ BPBAPBcbaA  .  

Set the relation )}4,(),2,(),1,(),4,(),1,(),3,(),2,{(
1

cccbbabP   and 

)}4,4(),4,3(),2,3(),3,3(),4,2(),2,2(),4,1(),2,1(),1,1{(
2
P  using the graphs, find the 
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matrix of inverse relation 1

21
)( PP  . Using the matrix of relation 

2
P , check whether 

it is reflexive, symmetric, antisymmetric, and transitive.  

Task 29. Show that the given binary relation is reflexive, symmetric and not 

transitive: }1||,,|),{(  yxRyxyxP   

Task 30. For the given set },,,,{ edcbaA , VUTS ,,,  are the relation on A , 

where 

)},(),,(),,(),,(),,(),,(),,{( acdeecdbcbbaaaS  ; 

)},(),,(),,(),,(),,(),,(),,{( bcedeedbcbabbaT  ; 

)},(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,{( accaddccbcabeebbcbaabaU  ; 

)},(),,(),,(),,(),,(),,(),,(),,(),,{( accaddbcabeebbcbbaV   

Which of the relations VUTS ,,,  is transitive? Which of the relation VUTS ,,,  

is antisymmetric? 

Task 31. Let the set },,,,{ edcbaA  is given. Describe the relation R , which 

is defined on the set A , that is reflexive and symmetric, and not transitive. 

Task 32. 

Let }6,5,4,3,2,1{A  and the relation AAR   is the set 

)}.2,4(),1,4(),3,5(),5,3(),4,2(),1,2(),4,1(),2,1(),6,6(),5,5(),4,4(),3,3(),2,2(),1,1{(R

Show that the relation R  is an equivalence relation. 

Task 33. Which of the following relations R  is the partial order on the 

set },,,{ dcbaA ? 

a) A  is the set of humans, and a relation R  is defined as xRy , if x  is older than y ; 

b) A  is the set citizens of Ukraine, and a relation R  is given as xRy , if x  has 

the bigger ID number than y ; 

c) A   множина цілих чисел, R  визначено як xRy , якщо yx 2 . 

Task 34. Given the relation on the set of integers Z : 

}20;20;1)(;Z,|),{(  yxyxyxyxP .  

Check whether this relation is a partial order. 

Task 35. Let’s consider the relation of perpendicularity of straight lines on the 

set of straight lines on the plane. Determine whether this relation is the equivalence 

relation on this set. 

Task 36. Let’s consider the relation of parallelism of straight lines on the set of 

straight lines on the plane. Determine whether this relation is an equivalence relation 

on this set. 

Task 37.  The following relations are given:  

a) 422  xy ;   b) 433  xy ;   c) 5y ;   г) 22  xy .  
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Which of the following relations is the function, if x  and y  are real numbers, x  

belongs to the domain, and y  belongs to the range? 

Task 38. 

Let A  is a set of all citizens of Ukraine. Show, which of )(xf  are the functions 

is they mean: a) ( ) father off x х ; b) ( ) son off x х ; c) ( ) brother off x х ; d) 

( ) husband off x х . 

Task 39. Let RRf , where R  is a set of real numbers. Find the domain and 

range of the functions:  

a) 3)(  xxf ;  

b) 
2

1
)(




x
xf ;  

c) 
4

1
)(

2 


x
xf ;  

d)
4

1
)(

2 


x
xf  ;  

e) ||)( xxf  . 

Task 40. Let X  is a set of the unordered triples ),,( cba  of natural numbers. 

The relation YXf :  maps each such triple ),,( cba  into the sum cba  .  

Find the preimage of each of the first six natural numbers. 

Task 41. Find out which of the given functions, which domain and range 

coincide with the real number axis is injective, surjective, have the inverse 

function? 

a) ||)( xxf  ;  

b) 4)( 2  xxf ;  

c) 6)( 3  xxf ;  

d) ||)( xxxf  ; 

e) )2)(2()(  xxxxf . 

 

2. BOOLEAN FUNCTIONS AND THEIR TRANSFORMATIONS. NORMAL 

FORMS OF BOOLEAN FUNCTIONS REPRESENTATION 

2.1. Examples of tasks 

Task 1. Determine the cardinality of the set of binary words on which the 

Boolean function is defined ),,,,,(
654321

xxxxxxfy  . 

Solution.  
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The number of arguments of the given Boolean function is equal to 6 ( 6n ). 

The cardinality of the set of binary words, on which the Boolean function is defines 

),,,,,(
654321

xxxxxxfy  , is calculated by the formula nnB 2||  .  

In total, the number of all binary words, on which the Boolean 

function ),,,,,(
654321

xxxxxxfy   is defined, is equal to 642|| 66 B  words.  

Task 2. Determine the number of Boolean function which depends on the 5 

Boolean variables. 

Solution.  

The number of all Boolean functions, which depends on n  Boolean variables, is 

equal to 
n22 , therefore, the number of all Boolean functions that depends on 5 

Boolean variables 
521

,...,, xxx , is equal to 4294967296222 3222 5


n

. 

Task 3. Build the truth table of the Boolean function 

))(()~(),,( zxyyxzyxf   and determine its ordinal number. 

Solution.  

Let’s build the truth table of the Boolean function 

))(()~(),,( zxyyxUzyxf   (Table 2.1). Let’s use the additional 

notations )~( yxA   і zxyB  )( . Therefore, BAU  . 

Table 2.1 is a truth table of the Boolean function 

))(()~(),,( zxyyxzyxf   

 

x  y  z  )~( yxA   )( xy   z  zxyB  )(  BAU   

0 0 0 1 1 1 0 1 

0 0 1 1 1 0 0 1 

0 1 0 0 0 1 0 0 

0 1 1 0 0 0 1 1 

1 0 0 0 1 1 0 0 

1 0 1 0 1 0 0 0 

1 1 0 1 1 1 0 1 

1 1 1 1 1 0 0 1 
 

The binary code, which corresponds to the values of this function, is equal to 

11010011 (the last column of Table 2.1). 

The binary number 
2

11010011  has the following form in the decimal number 

system: 
 

 0641281212020212021212),,( 01234567

10
zyxf

10
211=19+192=1+2+0+0+16 . 
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The ordinal number of the function is  211
10

. 

Task 4. Build the truth table for the binary function ),( yxf  with the ordinal 

number 14. 

Solution.  

Let’s find the binary number that corresponds to the decimal number 14.  

Let’s write down this binary number as a sum of powers of number 2, namely, 

2

0123

10
11102021212124814  . 

Therefore, ),(
14

yxf  corresponds to the binary number 
2

1110 . 

Let’s build the truth table, for this let’s write down the obtained number in the 

column of function value in such a way, that the least significant digit was in the last row.  

Table 2.2  Truth table of the function ),(
14

yxf  

x  y  ),(
14

yxf  

0 0 1 

0 1 1 

1 0 1 

1 1 0 
 

Task 5. Check whether the formulas U  and B  are equivalent, if zxB ~ , and 

))(()~( zxyyxU  ? 

Solution.  

Let’s build the truth table for the formula U  (Table 2.1) and the formula B  

(Table 2.3). Let’s check the equivalence of the formulas using these tables. 

 

Table 2.3  The generalized truth table of the functions, given by formulas U  and B  

x  y  z  B  U  

0 0 0 1 1 

0 0 1 0 1 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 0 0 

1 0 1 1 0 

1 1 0 0 1 

1 1 1 1 1 
 

The analysis showed that the truth tables of the functions does not coincide (the 

columns U  and B  differs), therefore, the formulas are not equivalent. 

Task 6. Check whether the following identities are true: 

а) )(~)()~( zxyxzyx  ; 
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б) )(~)()~( xzxyzyx  . 

Solution.  

a) Using the equivalent transformations, let’s transform the right and left part of 

identity zyyzxzyx  )~( . At first, let’s transform the left side:  

 

 )()()()()(~)()~( zxyxzxyxzxyxzyx  

zyyzxzyxyzxzxyxyzxyxzx  . 

 

The left and the right side of the identity are equal, therefore, the identity holds. 

b) Let’s transform the left side of identity: 

)()()~( zyyzxzyxxyzzyyzxzyx  .  

Let’s transform the right side of identity: 

 

 zyyxzxxzyxzxyxzyxzxyxzxyxzxyx )()()(~)(

zyzyxzyxzyx  . 

 

The result of transformations is )()( zyyzxzyyzx  . This fact can be 

checked using the truth table (Table 2.4), denoting )( zyyzxA  , 

)( zyyzxC  . 

 

Table 2.4  The truth table of the functions A  amd C  

x  y  z  yz  zy  zyyz   )( zyyzxA   )( zyyzxC   

0 0 0 0 1 1 0 1 

0 0 1 0 1 0 0 1 

0 1 0 0 0 0 0 1 

0 1 1 1 0 1 0 1 

1 0 0 0 1 1 1 1 

1 0 1 0 1 0 0 0 

1 1 0 0 1 0 0 0 

1 1 1 1 1 1 1 1 

 

The columns A  and C  differs, therefore, the identity does not hold. 

Task 7. Find the function, which is dual to the ),,( zyxf , if it is known that 

1),,( zyxf  only in the interpretations (001), (011), (111). 

Solution.  
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Let’s build the truth table of the function ),,( zyxf  (Table 2.5). Let’s generate 

the set of the inverse values (10101110) for the column of function ),,( zyxf values. 

If one writes this set in the reverse order, one gets, therefore, the column of values of 

the dual function *f . 

 

Table 2.5  Truth table of the dual functions 

x  y  z  ),,( zyxf  ),,(* zyxf  

0 0 0 0 0 

0 0 1 1 1 

0 1 0 0 1 

0 1 1 1 1 

1 0 0 0 0 

1 0 1 0 1 

1 1 0 0 0 

1 1 1 1 1 

 

Task 8. Find the Boolean function, which is dual to the Boolean function 

))(( vuzyxf  .  

Solution.  

Using the rule of finding the dual formulas of Boolean algebra (the duality 

principle), namely, to change all conjunctions into disjunctions, all disjunctions into 

conjunctions, writing down the parentheses, where it is necessary, so that the order of 

operations remained the same as it was, one can find the dual Boolean function 

)())(( ** vuzyxvuzyxf  . 

Task 9. The Boolean functions ),,( zyxf  and ),,( zyxg  are given by the truth 

tables (Table 2.6). Determine whether the given Boolean functions are self dual. 

 

Table 2.6 – The truth table of the functions ),,( zyxf  and ),,( zyxg  

x  y  z  ),,( zyxf  ),,( zyxg  

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 0 

0 1 1 1 1 

1 0 0 0 1 

1 0 1 0 1 

1 1 0 0 0 

1 1 1 1 0 
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Solution.  

It can be seen from the Table 2.6 that each value of the Boolean function 

),,( zyxf  is the negation of its symmetric value: for instance, the Boolean function is 

equal to zero on the interpretation )0,0,0( , namely, 0)0,0,0( f , the symmetric 

value is equal to one on the interpretation )1,1,1( , namely, 1)1,1,1( f . 

Therefore, the function ),,( zyxf  is self dual.  

For The Boolean function ),,( zyxg , there are some values of the function, that 

are not equal to the negation of their symmetric values, for instance, the Boolean 

function is equal to zero on the interpretation )0,0,0( , namely, 0)0,0,0( g , and the 

symmetric value of this function is also equal to zero on the interpretation )1,1,1( , 

namely, 0)1,1,1( g .  

Therefore, the function ),,( zyxg  is not self dual. 

Task 10. Write down the disjunctive decomposition of a function  

tzyxtzyxf  )(),,,(  by the variables zx, . 

Solution.  

Let’s use the theorem about the disjunctive decomposition of the Boolean 

function by k  variables: 

 

  ),0,,0(),,,(),,,( 00

21
,

21

21

tyfzxtyfzxtzyxf 



 

 ),1,,1(),0,,1(),1,,0( 110110 tyfzxtyfzxtyfzx  

),1,,1(),0,,1(),1,,0(),0,,0( tyfzxtyfzxtyfzxtyfzx   

 

Let’s calculate: 

 

0)00(),0,,0(  tytyf ; 

ttytyf  )10(),1,,0( ; 

0)01(),0,,1(  tytyf ; 

tytytyf  )11(),1,,1( . 

 

Let’s substitute ),0,,0( tyf , ),1,,0( tyf , ),0,,1( tyf , ),1,,1( tyf  in the formula 

for the disjunctive decomposition by the variables zx, : 

.)(00),,,( tyzxtzxtyzxzxtzxzxtzyxf   
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Task 11. Write down the conjunctive decomposition of a function  

zxyzyxf ),,(  by the variable x . 

Solution.  

Let’s use the theorem about the conjunctive decomposition of the Boolean 

function (by one variable): 

 

 )),,1(()),,0(()),,1(()),,0((),,( 10 zyfxzyfxzyfxzyfxzyxf

))(()1)(0( zyxzxzyxzyx  . 

 

Task 12. Represent the function yzyxzyxf  )(),,(  in the form of the 

perfect disjunctive normal form and perfect conjunctive normal form. 

Solution.  

Let’s build the truth table of the given function (Table 2.7). 

 

Table 2.7 – The truth table of the function yzyxzyxf  )(),,(  

x  y  z  )( yx  zy  zyyz   

0 0 0 0 0 1 

0 0 1 0 0 1 

0 1 0 1 0 0 

0 1 1 1 1 1 

1 0 0 1 0 0 

1 0 1 1 0 0 

1 1 0 0 0 1 

1 1 1 0 1 1 

 

PDNF ( PDNFf  ) is built on the ones of the function: 

 
0 0 0 0 0 1 0 1 1 1 1 0 1 1 1

PDNFf x y z x y z x y z x y z x y z xyz xyz xyz xyz xyz          . 

 

PCNF ( PCNFf  ) is built on the zeroes of the function: 

 
0 1 0 1 0 0 1 0 1( )( )( ) ( )( )( )PCNFf x y z x y z x y z x y z x y z x y z              . 

 

Task 13.  

Write down the constituents of zero and one corresponding to the interpretations 

of the Boolean function of three variables. 

Solution.  
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The constituent of zero and the constituent of one of Boolean function can be 

uniquely determined by the number of the corresponding interpretations. The 

constituent of zero of a function ),,( zyxf  is the elementary disjunction. The 

interpretation which turns this elementary conjunction into zero, turns into zero the 

function ),,( zyxf  as well. The constituent of one of the function ),,( zyxf  is the 

elementary conjunction. The interpretation, which turns into one this elementary 

conjunctions, turns into one the function ),,( zyxf  as well. 

The constituents of zero and one of the function of three variables is given at 

Table 2.8. 

 

Table 2.8 – The constituents of zero and one of the function of three variables 

),,( zyxf  

Number of 

interpretation 

Interpretation Constituent of 

one 

Constituent of 

zero x  y  z  

0 0 0 0 zyx  zyx   

1 0 0 1 zyx  zyx   

2 0 1 0 zyx  zyx   

3 0 1 1 yzx  zyx   

4 1 0 0 zyx  zyx   

5 1 0 1 zyx  zyx   

6 1 1 0 zxy  zyx   

7 1 1 1 xyz  zyx   

 

Task 14.  

Using the elementary transformations, transform the formula F into DNF 

)())))(((( txyztzxtytzyxF  . 

Solution.  

 )()))()((()())))(((( txyztzxtytzyxtxyztzxtytzyxF

 xyzzxxyttxyztzxtxytxyztzxtytzyx )))(((  

tzyxyzzyxt  . 

Task 15. Build PDNF of the function ))((),,( yzzyxxyzyxf  , using the 

rules of transformation of arbitrary formula of logic algebra into PDNF. 

Solution.  

Let’s use the rules of transformation of arbitrary formula of logic algebra into 

DNF.  
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Let’s move to the negation of variables by applying de Morgan law:  

 

 )())(()())(())(( zyzyxxyzyzyxyxzyzyxyx  

)))((( zyzyxxy  . 

 

Let’s build the disjunctive normal form, using the distributive law, the laws of 

idempotency and of contradiction:  

 

 zyzxyxyxzzyzxyzyyxyxzyzyxyx 0)()))(((

zyzxyxxy  . 

 

The Boolean function depends on three variables; therefore, the missing 

variables should be introduced into the elementary, by applying the law of the 

excluded third:  

 

zyxxzyyxzzyxzzyxzyzxyxyx )()()()(  . 

 

Using the distributive law, let’s open the parentheses and reduce the equal terms 

in order to get PDNF:  

 

zyxzyxzyxzxyxyzzyxzxyzyxzyxzyxzyxzxyxyz  . 

 

The obtained perfect disjunctive normal form of the given Boolean function:  

 

zyxzyxzyxzxyxyzzyxf ),,( . 

 

Task 16. Build the algorithm of a transition from the truth table of Boolean 

function into the PCNF. 

Solution.  

For the transition from the truth table of the Boolean function to the DCNF one 

can use the following algorithms: 

a) find all the interpretations in the truth table of Boolean function, on which the 

values of function are equal to zero; 

b) write down all the constituents of zero, that correspond to the obtained 

interpretations; 

в) obtain all PCNF of a function using the join by conjunction operation of the 

written constituents of zero. 
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2.2. Tasks for self-study  

Task 1. In how many times greater there are different binary words should be 

analyzed for the Boolean function ),,,,(
54321

xxxxxfy  , than for the Boolean 

function ),,(
321

xxxfy  ? 

Task 2. In how much many times greater one can built the Boolean function, 

that depends on 6th variables, than from the 4th variables? 

Task 3. Build the truth table of the following Boolean function and determine 

their ordinal number: 

a) )()~(),( xyyxyxf  ; 

b) )()()(),,( zyzxyxzyxf  ; 

c) )()()(),,( zyzxyxzyxf  ; 

d) )()(),( xyyxyxf  ; 

e) )~()|()(),,( zyzxyxzyxf  . 

Task 4. Check the following identities using the truth tables: 

a) )(~)()~( zxyxzyx  ; 

b) )(~)()~( zxyxzyx  ; 

c) )()()( zxyxzyx  ; 

d) )()()( zxyxzyx  ; 

e) )()()( zxyxzyx  . 

Task 5. Setting 11 x ; 02 x ; 03 x ; 04 x , find the values of the functions 

  3221 ~ xxxx   and  3221 ~ xxxx  . 

Task 6. Prove that the implication and equivalence can be determined via the 

other functions: 
2121

xxxx  ; ))((~
212121

xxxxxx  . 

Task 7. Using the main equivalences, prove the equivalence of the formulas U  

and B , if ))~()(()( yxyxyxU  , ))(( yxyxB  . 

Task 8. Find the dual formulas for the following functions: 

a) yxzyx  ))(( ; 

b) zxzyyx  ; 

c) ztyxyx  . 

Task 9. Determine whether the following functions are self dual: 

a) )()(),( xyyxyxf  ; 

b) )()()(),,( zyzxyxzyxf  ; 

c) )(),( yxxyxf  . 



22 

Task 10. Reduce the following expressions using the laws of Boolean logic. 

Then compare the following expressions with the given using the truth tables: 

a) ))(())))((())(( tyxzztyxytx  ; 

b) ))())((()())()(( yxzxyztyxzy  ; 

c) ))))(((())()(( xzyzztxzx  . 

Task 11. The Boolean function ),,( zyxf  is determined in the following way: it 

is equal to 1 when 1x , or, if y  and z  take different values, аnd the value of x  is 

less than the value of the variable z . In all other cases, the function is equal to 0. 

Build the truth table of the function ),,( zyxf  and write down the set 

3{( ) | ( ) R and ( , , ) 1}Q xyz xyz f x y z   . 

Task 12. Find the disjunctive decomposition of the following Boolean functions 

by the variables zx, : 

a) )))((( yzxzyzzx  ; 

b) )())())((( zxxzzyyx  ; 

c) ))()(( zxtytxyttxzx  . 

Task 13. Find the conjunctive decomposition of the following Boolean 

functions by the variables zx, : 

a) ))()(( yxzyxyxyzx  ; 

b) ))((()))((( ztyzxtzytzy  ; 

c) tyzxztzxtzyt  )))()(()(( . 

Task 14. Find the disjunctive decomposition of the Boolean function 

)()(),,,( xtzyxtzyxf   by the variable x . 

Task 15. Find the constituents of zero and ones of the Boolean function that 

correspond to the interpretation of the function of four variables. 

Task 16.  Using the equivalent transformations, transform the following 

formulas into DNF: a) ))(( zxzyxF  ; b) )()( zxyyxF  . 

Task 17. Represent the following functions in the form of PDNF and PCNF: 

a) )10001110(
f

 , where 
f

  is the column of the values of function from the 

truth table; 

b) )01100110(
f

 ; c) zyxzyxf  )(),,( ; d) ))((),( yxyxyxf  ; 

e) tzyxtzyxf  ))((),,,( ; е) ),,(
201

zyxf . 

Task 18. Construct the algorithm of transition from the truth table to the PDNF 

of the given function. 
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Task 19. Using the transformations in the form AAAxAAxA  ,  move 

from the given DNF 
3121321

),,( xxxxxxxf   to the PDNF. 

Task 20. Write down the PDNF for the function ),,(
321

xxxf , that has the null 

values on all odd binary interpretations. 

Task 22. Let the function ),,( zyxf  is given in the following way: 0),,( zyxf , 

when 1y  or zy  , and 1),,( zyxf  elsewhere. Using the truth table of the 

function write down the sey 
f

Q  such that 3{ | R and ( ) 0}fQ f      and write down 

the DCNF and DDNF of the given function. 

 

3. GRAPH THEORY 

3.1. Examples of tasks 

Task 1. Several persons (more than two) take part in the chess contest. In some 

moment it was revealed that only two chess players played the same number of 

games. Prove that in this case there is either only one player, that have played no 

game or only one which have played all games. 

Solution.  

Using the language of graph theory the task can be formulated as follows. The 

graph with n (n > 2) vertices has only two vertices of the same degree. Prove that there 

is either one vertex of degree 0 or only one vertex of degree n-1. Let’s consider all the 

possible negations of this statement. If one assumes that there are no vertices of the 

degree 0, as well as of degree n–1, then n vertices have the degree from 1 to n–2, 

therefore, there are either two pairs of vertices or three vertices of the same degree, that 

contradicts the statement. Therefore, there exists the vertices of either the degree zero 

or the degree n–1. Simultaneously this cannot be true. If there are two vertices of 

degree 0, then there remain n–2 vertices of pairwise different degrees from 1 to n–3, 

that is not possible. Also, there is not possible that when two vertices have the degree 

n–1 the other n–2 vertices have the pairwise different degrees from 2 to n–2. 

Task 2. 29 teams take part in a football championship in one turn. Prove that in 

any moment of time there exists the team which played the even number of games. 

Solution.  

In terms of the graph theory the task is as follows: prove that in any graph with 

29 there can be found one vertex of even degree.  Considering that number 29 is odd, 

and the number of vertices of odd degree is even then one can found at least one 

vertex of even degree. 

Task 3. Does the complete graph exists with the number of edges equal to  

           (a) 15;         (b) 18;           (c) 199…900…0 (k nines and k zeroes)? 
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Solution.  

a) The number of edges of the complete graph with n vertices is equal to n(n – 1)/2. 

The equation n(n – 1)/2 = 15 has the following roots 6 and –5. Therefore, there exists 

the complete graph with 6 vertices, the number of edges of which is equal to 15. 

b) The equation n(n – 1)/2 = 18 does not have natural roots, therefore, such 

complete graph does not exist. 

c) Let’s consider the equation n(n – 1) = 2 199…900…0 = 200…0 199…9 (k nines 

and k zeroes). The number in the right hand side of this equation can be expressed in the 

form 2 10k(2 10k – 1), therefore, n = 2 10k. Thus, such complete graph exists and has 

2 10k vertices. 

Task 4. Determine whether there exists the graph with six vertices, which 

degrees are equal to: 

a) 1, 1, 2, 3, 4, 4  b) 0, 0, 2, 3, 3, 4. 

Solution.  

a) Such graph does not exist, since the sum of degrees of all its vertices is odd. 

б) The graph with such degrees of vertices does not exist. According to the 

statement it has two isolated vertices (of degree zero), therefore, the maximum value 

of the degree of any of the other four vertices is 3, thus, this graph cannot have the 

vertex of degree 4. 

Task 5. How to determine the degree of certain vertex of graph G using its 

adjacency matrix A? 

Solution.  

The degree of vertex v with the number i is equal to the sum of elements of ith 

row of matrix A, since this sum determines the number of vertices, adjacent with the 

vertex v. 

Task 6. For the given graph construct the distance matrix. Find its center, 

radius, and diameter of the graph. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Solution.  

The distance matrix has the following form: 
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 a b c d e f g k 

a 0 1 2 2 3 3 4 5 

b 1 0 1 1 2 2 3 4 

c 2 1 0 1 1 1 2 3 

d 2 1 1 0 2 1 2 3 

e 3 2 1 2 0 1 2 3 

f 3 2 1 1 1 0 1 2 

g 4 3 2 2 2 1 0 1 

k 5 4 3 3 3 2 1 0 

         
 
 

In order to determine the center of the graph, let’s find the maximum distance 

from each of the vertices of graph. Let’s use the obtained distance matrix:  

 

5)( al , 4)( bl , 3)( cl , 3)( dl , 3)( el , 3)( fl , 4)( gl , 5)( kl . 
 
 

The lowest maximal distance from the vertices c, d, e, f, therefore, the center of 

the graph is a set of vertices {c, d, e, f}. R(G) = 3, D(G) = 5. 

 

Task 7. Graph is given 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

Determine the degrees of graphs vertices. Represent a graph using incidence 

matrix, adjacency matrix, and list of edges. 

Solution.  

Let’s determine the degrees of all graph vertices: 

deg(a) = 2; deg(b) = 3; deg(c) = 2; deg(d) = 3; deg(e) = 4; deg(f) = 3;  

deg(g) = 3; deg(k) = 2. 

1122223343232  i vdeg  
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The incidence matrix has the following form: 
  

2 3 4 5 6 7 8 9 10 11  1 
            

a 1 0 0 0 1 0 0 0 0 0 0 

b 1 1 0 1 0 0 0 0 0 0 0 

c 0 1 1 0 0 0 0 0 0 0 0 

d 0 0 1 0 0 0 1 1 0 0 0 

e 0 0 0 1 0 1 1 0 1 0 0 

f 0 0 0 0 1 1 0 0 0 1 0 

g 0 0 0 0 0 0 0 0 1 1 1 

k 0 0 0 0 0 0 0 1 0 0 1 
 

The adjacency matrix has the form: 
 

 
 a b c d e f g k 
         

a 0 1 0 0 0 1 0 0 

b 1 0 1 0 1 0 0 0 

c 0 1 0 1 0 0 0 0 

d 0 0 1 0 1 0 0 1 

e 0 1 0 1 0 1 1 0 

f 1 0 0 0 1 0 1 0 

g 0 0 0 0 1 1 0 0 

k 0 0 0 1 0 0 1 0  
 

The list of edges has the form: 

Edge 
 

2 3 4 5 6 7 8 9 10 11 1 
             

Vertex s a b c b a f d d e f k 
 e b c d e f e e k g g g 
             

 

3.2. Tasks for self-study 

Task 1. Suppose one has the set V that contains 3 documents. Build the graph of 

the relation Aa  that characterizes the presence of document a in the set A, where А 

takes all subsets of the set V. 

Task 2. Suppose the graph G = (V, E) is given: 

a) V = {1,2,3,4}, E = {(1,3),(2,3),(3,4),(4,1),(4,2)}; 

b) V = {a,b,c,d,e},E = {(a,d),(b,c),(b,e),(c,e),(d,b),(d,e),(e,a)};  



27 

c) V = {1,2,3}, E = {(1,2),(1,3),(2,3)}; 

Build the diagram, adjacency and incidence matrices for each of the given 

graph. 

Task 3. Prove that in any graph G =(V, E )  Ev
Vv

2)( 


 . 

Task 4. How many edges are in the graph with n vertices is all its vertices have 

the degree 2? 

Task 5. Prove that in any graph the number of vertices of odd degree is even. 

Task 6. Suppose there are p vertices of degree t in graph G with n vertices and 

m edges, and all other vertices has the degree t +1. Prove that p = (t +1) n  2m. 

Task 7. In certain company of n persons each person is acquainted with k and 

only k other persons. Whether some company is possible for 

a) n = 5, k = 2;            b) n = 5, k = 3. 

Task 8. Prove that there exists at least two vertices of the same degree in any 

graph with n vertices (n 2). 

Task 9. Build the graph with five vertices, which has only two vertices of the 

same degree. 

Task 10. Graph with five vertices has two vertices of the same degree. Can 

these two vertices have the degree 0 or the degree 4? 

Task 11. Given the subset of the domino tiles without duplicates. Formulate the 

conditions when one can assemble unique continuous chain from this tiles using the 

rules of this game. How the answer differs when duplicates are allowed? 

Task 12. Prove that there always exist three vertices which are either mutually 

adjacent or pairwise not adjacent in the arbitrary graph G with six vertices. (This is 

the mathematical formulation of the known task: prove that in a group of any six 

persons there exists either three persons which are not pairwise acquainted or three 

persons which are pairwise not  acquainted). 

Task 13. Determine whether exists the graph with six vertices, which degrees 

are equal to 

a) 2,3,3,4,4,4;               b) 2,2,2,4,5,5? 

Substantiate the answer. 

Task 14. Prove that all isomorphic graphs have the same number of vertices and 

the same number of edges. 

Task 15. Prove that in the isomorphic graphs the number of vertices of degree k 

is the same for the arbitrary k (k  0). 

Task 16. Prove that in the case when for some k (k  0) the number of vertices 

of degree k in the graphs G1 and G2 differs, then the graphs G1 are G2 not isomorphic. 



28 

Task 17. Prove that in the isomorphic graphs the number of simple cycles of 

length l is the same for arbitrary l. 

Task 18. Prove that the pairs of graphs that are shown on figure are isomorphic. 
 

 

 

a) 
 

 

 

 

 

 

b) 
 

 

 

 

 

 

Task 19.  Check whether the graphs G1 and G2 are isomorphic, that are given by 

their adjacency matrices A1 and A2. 

 

А1=



























001011

000111

100111

011011

111101

111110

        А2=



























001111

001110

110111

111011

111100

101100

 

       
 

 

Task 20. Prove that the graphs G1 and G2 are isomorphic if and only if the 

adjacency matrix (incidence matrix) of one of the graphs can be obtained from the 

adjacency matrix (incidence matrix) of the other graph by means of corresponding 

permutations of rows and columns. 

Task 21. The graph G is shown on the Figure. 

a) Find all the trails which goes from the vertex v1 to vertex v12. 

b) Find all the simple trails which goes from vertex v1 to vertex v12. 

c) Find the trail that goes from the vertex v1 to vertex v12 and contains all 

vertices of graph G. 

d) Determine whether there exists the simple trail in graph G that goes from the 

vertex v1 to vertex v12 and contains all the vertices of graph G? 
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e) Find the walk in the graph G, that leads from vertex v1 to vertex v12 and is not 

a trail. 

f) Find the walk in the graph G, which goes from vertex v1 to vertex v12, contains 

all vertices of graph G and is not a trail. 

g) Find any cycle in the graph G. 

h) Find all simple cycles of the graph G. 
 

   v10 
 

v2 
 

v6 
                                       v11 

 

 v7 
 

v1    
 

 
v5 

 v12 
 

v3 v8 v9 

 

v4 
 

   
  

 

 

Task 22. For the graph G, shown on the Figure, determine: 

a) the distances d (v1,v12), d (v2,v8), d (v10,v11); 

b) the eccentricity of all vertices; 

c) the diameter D(G); 

d) the radius R(G); 

e) the central vertices; 

f) the center. 

Task 23. Find the cycles of the given length in graph K5 

a) 3;              b) 4;                   c) 5. 

Which of these cycles are simple? 

Task 24. Determine whether exists the cycle of length 9 in the graph K5? Justify 

your answer. 

Task 25. Prove that any trail which leads from vertex v to the vertex w (v  w) 

contains the simple trail that leads from v to w. 

Task 26. Disprove the statement: is some trail that goes from vertex v to vertex 

w, contains the vertex u (u  v і u  w), than this trail contains the simple trail that 

goes from v to w and passes via u. 

Task 27. Prove that if for arbitrary three vertices v, w and u in the graph G there 

exists the trails, the first one goes from v to w, and the second goes from w to u, then 

there is a trail in graph G that goes from v to u. 

Task 28. Disprove the statement: if there exist the simple trails in the graph G 

for some three various vertices v, w and u, one of which goes from v to w, and the 
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second from w to u, then there exist the simple trail in the graph G that goes from v to 

u and passes through w. 

Task 29. Prove that any shortest trail that leads from the vertex v to the vertex w 

(v  w) is a simple trail. 

Task 30. Prove that arbitrary cycle contains the simple cycle. 

Task 31. Prove that when there are only two vertices of the odd degree in the 

graph G then these vertices are connected in the graph G. 

Task 32. What the diameter and radius 

a) of the complete graph Kn;                  b) of the complete bipartite graph Kn,m? 

Task 33. Determine the chromatic number of 

a) the complete graph  Kn; 

b) of the complete bipartite graph Kn,m; 

c) of an arbitrary bipartite graph; 

d) of the simple cycle of the length 2k; 

e) of the simple cycle of the length 2k+1, k N. 

Task 34. Determine the examples of graph which is Euler graph, but not 

Hamiltonian, and also of the Hamiltonian graph, which is not Euler. 

Task 35. Prove that for the arbitrary oriented graph G = (V,E ) the next 

statements are true: 

a)  Ev
Vv




 )( ;       b) 






 
VvVv

vv )()(  . 

Task 36. Does the oriented graph with three vertices exist, in which the out-

degree are equal to 2, 2, and 0, and the respective in-degree are equal to 2, 1and 1? 

Task 37. Determine the minimum and maximum possible number of edges in 

the connected bipartite graph with n vertices. 

Task 38. Let G = (V,E ) is the connected graph which is not a complete graph. 

Prove that there are 3 vertices u, v and w in the graph G such that (u,v)E and 

(v,w)E, though (u,w) E. 

Task 39. Prove that the diameter of graph G is equal to 1 if and only if the graph 

G is complete. 

Task 40. Justify the following way of finding the central vertices of the given 

tree T. Choose an arbitrary terminal vertex and find the one of the most distant from 

it. It is obvious that the vertex v is also terminal. Then let’s find the vertex w that is 

most distant from v; let’s build a simple trail L from v to w. This is the longest simple 

trail in tree T. If the length of L is even, then the middle vertex of L is the only central 

vertex of the tree T. If the length L is odd then both vertices of the middle edge in L 

are central for the tree T. 
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4. COMBINATORICS 

4.1. Examples of tasks 

Task 1. Given the set {1, 2, 3, 4, 5, 6, 7}. Build 10 arrangements of 4 elements 

from this set that are lexicographically next after the 4517. 

Solution.  

Let’s find in the arrangement 4517 the first number from the right which can be 

increased using the numbers which are to the right from it or using the numbers {2, 3, 

6} which are not in this arrangement.  

The number 7 does not suit, since it is the largest. Therefore, one increases the 

number «1» which can be substituted into one of the numbers {2, 3, 6, 7}. On the 

place of one we can put the smallest of these numbers, which is greater than it. One 

gets that the first 3 numbers are 452. One put the smallest number in place of 7 that is 

not in the arrangement, that is «1». As a result one gets the arrangement 4521 which 

is lexicographically next after 4517. 

Let’s repeat the previous actions: the last number, which can be increased is 

«1», which one increases on the one of the following numbers {3, 6, 7}, namely, «3», 

and one gets 4523 as a result. In the same way one can get the following numbers: 

4526 and 4527. 

Since the last digit in the arrangement «7» can not be increased then one can 

increase the following number «2» on the smallest which is simultaniously greater 

than «2», the rest of the numbers can be ordered in the ascending order (the numbers 

from the set), one gets the next arrangement 4531. 

If one continues the process, one gets 4532, 4536, 4537, 4561, 4562.  

Task 2. The set {1, 2, 3, 4, 5, 6, 7} is given. Build 5 combinations without 

repetitions from 4 elements that are lexicographically next after {1, 4, 5, 6}. 

Solution. 

The combination can be written without parentheses for the sake of simplicity, 

therefore, {1, 4, 5, 6} can be represented as 1456, bearing in mind that the numbers 

can be only in ascending order.  

Let’s build the next lexicographic combination after 1456. It is obvious that it 

can be obtained by increasing the last element, and one gets 1457. 

After the obtaining of next lexicographic combination after 1457, the last 

number cannot be increased (since 7 is the largest number in the set with the elements 

in the ascending order). Therefore, one increases the second digit from the right, 

namely, «5». One gets the first three numbers of the permutation146. Since the order 

of numbers in the permutation should be ascending then one can put the number on 

the last place that is greater than «6», then the next permutation is 1467. 
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Let’s build the next lexicographic combination after the 1467. The last number 

cannot be increased then one moves to «6». The number «6» cannot be increased as 

well, since one gets the first three numbers of the permutation equal to 147, and then 

the last number has to be greater than «7». Then one moves to the next number «4». 

It can be increased to «5», and the next numbers should be in the ascending order. 

From this follows that the next permutation should be only 1567.  

Using the previous considerations one can increase only the last element in the 

next combination, therefore, the first element of permutation will be «2». The next 

numbers are chosen in the ascending order б, and one gets 2345. 

Task 3. One needs to choose 7 developers from the twenty to work on the 

software project. In how many ways this can be done? How many ways there exists 

to build a list of seven developers from twenty? 

How many ways are there to assign 7 different tasks to the developers? How 

many ways are there to split the responsibility between the developers for the support 

of the project work, so that three are responsible for Unit tests, two are responsible 

for the continuous project integration and two for the delivery of intermediate 

versions to the client? 

It is known that the project manager sent 5 different emails with instructions to 

certain developers as a result of project work. In how many ways this can be done if 

neither addressee gets more than one email? In how many ways this can be done if 

each addressee can get more than one letter? 

Solution. 

The sample of a group of seven developers from the twenty does not have 

repetitions and order, therefore, it is a combination without repetitions and the 

number of its ways is equal to:  

 

77520
7! !13

!207
20 


C . 

 

If one arranges the list of developers, than the sample will be ordered, therefore, 

one can use the formula of arrangements without repetitions:  

 

390700800
!13

!207
20 A . 

 

In order to calculate the number of task assignments, let’s imagine that one has 

the fixed list of developers and one writes its task near each name. Changing the 
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order of the tasks whilst remaining the order of developers’ names fixed, one gets 

various variants of tasks assignments. Therefore, the samples are ordered, they do not 

have repetitions, and each of which contains all elements. Thus, this is the 

permutation without repetitions. 

 

5040!77 P  

 

In order to get the number of distribution of additional roles, let’s use the 

previous considerations. Therefore, the single difference with the previous task is rhat 

this variant deals with permutation with repetitions:  

 

210
!2!2!3

!7
)2,2,3(7 


P . 

 

Let’s calculate the number of ways to send the emails. In this case the sample is 

an arrangement of five persons from all seven project developers, In the case, is the 

email would be the same, we would have a combination, but here one sends the 

different emails to different persons, therefore, the sample is an arrangement. The 

sample cannot be also the permutation, since the emails were sent to only five 

persons. In the first case all addressee are different, therefore the arrangement does 

not have repetitions: 

 

2520
!2

!75
7 A . 

 

In the second case the addressee can repeat, so one can use the formula of 

arrangement with repetitions: 

 

168077
~ 55

7 A . 

 

Task 4. In how many ways one can choose two pairs of cards (two queens and 

two aces, two twos and two jacks, тощо)? The order of cards is not important. 

Solution.  

In order to calculate the number of ways, one builds the sequence of action, 

which can lead to two pairs.  

1) Let’s choose the rank of the card (ace, two, three and so on) for two pairs, 

namely, one determines whether these will be aces and threes, queens and jacks, or 
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other pairs. On this step we have not chosen the suits of the cards.  

2) Then one chooses the suits for one pair.  

3) Then the suit is chosen for the other pair.  

All action are made one after another, then one can find the number of ways to 

perform each action, and, using the product rule, multiply the obtained numbers. 

Let’s calculate the number of ways to perform the first action. There are 

13 ranks in a deck of 52 cards (ace, two, three and so on). The chosen ranks should be 

different, since one would get four cards of the same rank instead of two pairs. Also, 

the order of cards is not important, therefore, one should use the formula for 

combinations without repetitions. One gets two ranks from 13, and then the first 

action can be done in 2
13C  ways. 

Let’s calculate the number of ways to perform the second action. There are 4 

suits in the cards and there are no duplicates between the cards. Thus, the chosen suits 

will be different (without repetitions). The order of cards is not important, therefore, 

one should employ the formula for the combinations without repetitions. One chooses 

2 suits from 4, then the second action can be done in 2
4C  ways. 

Similarly, the third action can be done in 2
4C  ways. 

Therefore, all actions according to the product rule can be done in 

2808
12

34

12

34

12

12132
4

2
4

2
13 














 CCC ways. 

Task 5. How many different strings can be obtained from the word 

«misspelled», using all letters? How many such strings start from the letter «i»? 

Solution.  

Let’s determine the type of the sample which suits for this task. The letters in the 

new strings are ordered, therefore, their various arrangement gives different strings. 

Also, the strings will have the repetitions, though the repetition of the letter «s» will 

happen exactly twice, as well as the letters «e» and «l». Therefore, it is not the 

arrangement with repetitions, but the permutation with repetitions. 

Therefore, the number of such strings is equal to 

 

P(2,2,2,1,1,1,1) 453600
222

1...78910

!1!1!1!1!2!2!2

!10










              
 

 

If the letter «i» is on the first place, then we don’t consider it in the permutation, 

therefore, the number of such permutations is  
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P(2,2,2,1,1,1) 45360
222

1...789

!1!1!1!2!2!2

!9










             
 

 

Task 6. In the expansion  34 
53  aa find the term which does not depend on а. 

Solution.  

Let’s use the Newton’s binomial theorem: 

 

      k

k

k
k

n aaCaa






 
34

5
34

0

3
34

53  

 

In the term of Newton binomial expansion, that does not depend on a , the sum 

of powers of parameter a  should cancel out and should be equal to zero.  

 

    102

)34(5

3
34

53 




 aaaaa

kk
kk

 

 

From this one can find the sought expansion term k. Let’s write down the 

identity for powers: 

 

0
2

)34(5

3





kk
, 

 

From this one gets  

 

0
6

)34(152


 kk
 

17k = 510; 

k=30. 

 

Therefore, if one assumes that k = 0 in the binomial expansion determines the 

first term, when k = 1 one gets the second term, and so on, then when k = 30 one 

finds the 31st expansion term. 

Let’s calculate it: 

 

30

34

101030

34
2

)434(5

3

30

30

34 CaCaaC  



 

 

The sought expansion term is 31st and is equal to 30
34C . 
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Task 7. In the expansion  nyx   the coefficient of the fourth term is equal to 

969. Find n. 

Solution. 

If one assumes that when k = 0 one gets the first expansion term, when k = 1 one 

gets the second term and so on, then the coefficient of the fourth term is equal to  

 

6

)1)(2(

)!3(6

)1)(2()!3(

)!3(!3

!3 nnn

n

nnnn

n

n
Cn










 . 

 

Since it is equal to 969, then: 

 

58146969)1)(2(  nnn . 

 

In order to avoid solving cubic equation 05814 23 23  -  n n n ,  

one can find three consecutive natural numbers, which product is equal to 5814. One 

possible option is factorization of 5814. But the simplest way is to find the cubic root 

of the number 5814, to find approximately n, and then using the direct search method 

to find it.  

 

9814,1758143  . 

 

Searching the variants n = 19, 18, 17, one gets that:  

 

5814191817)1)(2(  nnn  

 

Therefore, n = 19. 

Task 8. How many persons there should be so that at least four of them were 

born at the same day of the week and at the same day of month? 

Solution.  

To find the number of variants, lets multiple the number of days in the week (7) 

on the number of days in the month (31), then one gets 217, that is the number of 

possible birthdays in various days of week and day of month.  

Thus, while gathering 217 persons, one cannot guarantee, that between them two 

of them were born on the same day of the week and on the same day of the month. If 

the number of such people is 218, then at least two persons are in this group.  
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Similarly, in the worst case, when gathering 6513217   persons one cannot 

guarantee, that at least 4 people were born on the same day of the week and on the 

same day of the month. According to pigeonhole principle, if one invites one more 

person then there will be 4 such people. Therefore, there should be at least 652 

persons. 

 

4.2. Tasks for self-study 

Task 1. Let М={1,2,3,4,5}. List all the arrangements and combinations without 

repetitions from the elements of the set М of 3 elements. 

Task 2. Arrange all the given permutations of the elements of the set {1, 2, 3, 4, 

5, 6} in lexicographic order: 456321, 231564, 132456, 156423, 165432, 543216, 

541236, 314562, 341526, 654312, 432561, 653412. 

Task 3. Find the lexicographically next for each of the permutations: 54123; 

1432; 12453; 45231; 6714235; 31528764. 

Task 4. Using the algorithm of construction of the lexicographically next 

permutation, write down the first 10 arrangements from 6 of 4 elements of the set {1, 

2, 3, 4, 5, 6}.  

Task 5. List all the arrangements without repetitions of two elements and 

arrangement with repetitions of two elements of the set {1, 2, 3, 4}. List all the 

combinations with repetitions of two elements from the same set. 

Task 6. List all the combinations without repetition of three elements of the set 

{1, 2, 3, 4, 5}. 

Task 7. List all the combinations with repetition of three elements of the set {1, 

2, 3, 4, 5}. 

Task 8. Calculate the number of permutations of the set {a, b, c, d, e}, that ends 

with the letter d and starts with the letter b. 

Task 9. In how many ways can the prize places (the first, the second, and the 

third) be determined in a run of 10 horses? 

Task 10. In how many ways one can host 12 students in 4 rooms of the hostel, if 

each room should contain 3 guests? 

Task 11. There is a group of n male and n female. In how many ways can they 

be arranged in a row, so that the male and female were one after another? 

Task 12. Suppose a set М={1, 2, 3, …, 19, 20is given. How many arrangements 

without repetitions exist from the elements of set М of four elements which contain: 

a) the number 13; 

b) the numbers 13 and 14, simultaneously; 

c) the numbers 13, 14 і 17, simultaneously; 
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d) the numbers 13, 14, 17 і 20, simultaneously; 

e) four consecutive numbers in the ascending order; 

f) three consecutive numbers in the ascending order? 

Task 13. How many ways are there to place five persons at the round table? 

Task 14. In how many ways can one form a pair of tiles from 28 dominoes that 

can be placed next to each other according to the rules of dominoes? 

Task 15. In how many ways can five men and five women be seated at a round 

table so that two men do not sit next to each other? 

Task 16. From the numbers 1, 2, 3, 4, 5, without repeating them, make all five-

digit numbers. How many numbers among them are, that: 

a) begin with the number 3; 

b) do not begin with the number 5; 

c) start with 54? 

Task 17. Natural numbers from 1 to 25 are given. In how many ways can one 

choose two numbers from them so that their sum is an even number? Three numbers? 

Four? 

Task 18. In how many ways can one put 9 books on the shelf: 

a) if there is one three-volume book among them, all the volumes of which must 

stand next to each other in random order; 

b) so that all volumes of the three-volume set are next to each other in ascending 

order of volume numbers? 

Task 19. How many participants are in a chess tournament, if it is known that 

each participant played with each of the others, and a total of 210 games took place? 

Task 20. In how many ways can 10 cards be removed from a deck of 52 cards 

so that among them are the following: 

a) exactly one ace; 

b) at least one ace; 

c) at least two aces? 

Task 21. In how many ways can one choose a pair of identical cards (two 

queens, two aces, etc.) from a deck of 36 cards? Three identical cards? Three cards of 

the same suit? 

Task 22. How many different strings of five letters can be formed from an 

alphabet that has 26 letters if repetitions are allowed? 

Task 23. How many different strings can be formed from the word 

MISSISSIPPI using all the letters? How many such strings begin and end with the 

letter S? In how many such strings are all four letters S next to each other? 

Task 24. The set contains 10 elements. Find the number of subsets of this set 
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that contain more than one element. 

Task 25. How many bit strings can be formed from seven zeros and four ones? 

Task 26. How many bit strings can be formed from eleven zeros and three ones, 

if each string must start with a one and each one must be followed by at least two 

zeros? 

Task 27. Build an expansion: 

     5) ( )a x y ;      5) ( )b x y ;     6) ( )c x y ;     6) ( )d x y . 

Task 28. Determine the coefficients in the expansion 9)( yx   near 

275472 ,, yxyxyx . 

Task 29. Determine the fifth term of the binomial expansion  n
a

x

x

a
 , if 

the ratio of the coefficient of the third term to the coefficient of the second term is 

equal to 11/2. The terms of the binomial are numbered from 1 to n + 1. 

Task 30. In the expansion of the binomial nxx )11(  , the coefficient of 

the third term is equal to 28. Determine the middle term of the expansion. 

Task 31. Determine the smallest value of the power n in the expansion nx)1(   

for which the ratio of two adjacent coefficients is equal to 7/15. 

Task 32. In the expansion of the binomial 1513 )(  aa , determine the term 

that does not depend on a. 

Task 33. How many rational members are contained in the expansion 

1004 )32(  ? 

Task 34. In the expansion of the binomial   nabaa  /3/
7 35  , determine the 

term containing 3a , if the sum of the binomial coefficients in odd places in the 

expansion is equal to 2048. 

Task 35. For what value of n, the coefficients of the second, third, and fourth 

members of the binomial expansion  nyx   form an arithmetic progression? 

Task 36. Let M be a finite set. Prove that there are as many subsets of the set M 

with an even number of elements as there are subsets with an odd number of 

elements. 

Task 37. Prove the binomial theorem algebraically using mathematical induction. 

Task 38. Prove that ).,( rnrPC r
n   

Task 39. Write down the expansion .)( 4zyx   

Task 40. Find the coefficient near 
523 zyx in the expansion .)( 10zyx   
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Task 41. Find the number of terms in the expansion .)...( 21
n

kxxx   

Task 42. How many people should be invited so that at least six of them were 

born under the same zodiac sign? 

Task 43. How many people must there be so that at least two of them were born 

on the same day of the week and in the same month (perhaps in different years)? 

Task 44. Let M be the set of ten natural numbers that do not exceed 50. Prove 

that there are at least two different five-element subsets of the set M such that the 

sums of their elements are equal. 

Task 45. How many elements does the union of five sets contain, if each of 

them contains 10,000 elements, each pair has 1,000 common elements, each three has 

100 common elements, each four has 10 common elements, and one element belongs 

to all five sets? 

Task 46. How many solutions does the equation х1 + х2 + х3 = 11 have, if х1, х2, 

х3 are non-negative integers smaller than 6? 

Task 47. Find the number of solutions of the equation х1 + х2 + х3 + х4 = 17, if 

х1, х2, х3, x4 are integers such that х1 ≤ 3, х2 ≤4, х3 ≤ 5, х4 ≤ 8. 

Task 48. Find the number of solutions of the following equations in non-

negative integers: 

a) 15321  xxx ; 

b) 174321  xxxx ; 

c) 15321  xxx  when .5,4,2
321
 xxx  

Task 49. Let 54321 ,,,, xxxxx  be non-negative integers. Find the number of 

solutions of the equation 1 2 3 4 5 14x x x x x      under the following conditions: 

a) 11 x ; 

b) 2
j

x  for j = 1, 2, 3, 4, 5; 

c) 100 1  x ; 

d) .5,41 ,30 321  xxx  

Task 50. Find the number of solutions of the inequality 15321  xxx  in non-

negative integers. 

Task 51. Find the number of positive integers less than 1,000,000 whose sum of 

digits is 19. 

Task 52. Find the number of positive integers less than 1,000,000 that have an 

exactly one digit 9, and the sum of their digits is 13. 

Task 53. From the numbers 1, 2, 3, 4, 5, without repeating them, make all five-

digit numbers. How many numbers among them: 
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a) begin with the number 3; 

b) do not begin with the number 5; 

c) start with 54? 

Task 54. In how many ways one can put 9 books on a shelf if there is one three-

volume book among them, all the volumes of which should stand next to each other 

in random order; 

Task 55. In how many ways one can arrange 28 different objects in four 

different boxes, so that there are 7 objects in each box? 

Task 56. In how many ways can you put 28 different postcards in 4 identical 

envelopes so that there are 7 postcards in each envelope? 

Task 57. An elevator with 9 passengers can stop on ten floors. Passengers leave 

in groups of two, three and four. In how many ways can this happen? 

Task 58. Twelve students were given two test options. In how many ways can 

they be seated in two rows so that there are no identical options next to each other, 

and those who sit one behind the other have the same option? 
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