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Summary. The process of diffusion of admixture particles in a multiphase randomly nonhomogeneous
body with spherical inclusions of different materials with commensurable volume fractions of phases is
investigated. According to the theory of binary systems, a mathematical model of admixture diffusion in a
multiphase body with spherical randomly disposed inclusions of different radii is constructed. The dense packing
of spheres with different radii is used to modeling the skeleton of the body. The contact initial-boundary value
problem is reduced to the mass transfer equation for the whole body. Its solution is constructed in the form of
Neumann series. On the basis of the obtained calculation formula, a quantitative analysis of the mass transfer of
admixture in the body with spherical inclusions, which are filled with materials of fundamentally different physical
nature, but commensurable volume fractions, is carried out. It is shown that in modeling skeleton by spheres of
one characteristic radius averaged concentration values coincide for different cases of radius, such as when
characteristic radius equals to the average value of the radii of inclusions; or to the radius corresponding the
smallest spherical inclusion; or to the radius of an order of magnitude smaller than this value.
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Statement of the problem. Research and control of mass transfer properties in
structures with a complex internal structure play an important role in the manufacture of
composite materials, catalysts, membranes, industrial adsorbents, predicting and researching
the spread of pollution in objects of the natural environment [1, 2]. This is due primarily to the
fact, that the presence of internal nonhomogeneities, in particular, in the form of spherical
inclusions (in the form of pores or grains) in the structure, has a significant effect on the
chemical and physical interaction of solids with gases and liquids. At the same time, the pore
space, as a rule, is modeled in the form of a random structure [3], while the physical
characteristics and sizes of nonhomogeneities in it can be different, which makes it necessary
to consider the medium as multiphase one.

Analysis of the available investigations. There are various approaches to modeling
physical processes in structures with internal nonhomogeneities depending on the specific
properties that should be investigated. In particular, if the velocity field is known, the random
walk method is simple to implement to study the phenomenon of diffusion [4, 5]. The lattice-
Boltzmann method has become widely used in recent years. Thus, in the paper [6] this method
was applied to solve the diffusion equation in porous medium which was modeled by two-
dimensional Voronoi diagrams. The study [7] deals with a combination of lattice-Boltzmann
and random walk methods, which was used to track the motion of particles in a body with
structural nonhomogeneities generated by the Monte-Carlo and Jodrey-Tory methods. Along
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with many advantages of the lattice-Boltzmann method, it is worth noting that its
implementation requires significant computer performance, and its use on moving boundaries
and for multiphase or multicomponent models is complicated. Besides, in practice structures
with internal nonhomogeneities are characterized by a concentration function jump of the
admixture substance at the boundaries of phase contact, whereas nonideal contact conditions
are not imposed in the works reviewed, that are certain simplification of the corresponding
mathematical model.

An approach to the mathematical description of mass transfer processes in multiphase
randomly nonhomogeneous media, based on the construction of a solution in the form of
Neumann integral series and its further averaging over an ensemble of phase configurations,
while explicitly taking into account the jump of the concentration function and the equality of
fluxes on random phase boundaries, is proposed in papers [8—10].

The Objective of the work is to investigate the process of migration of admixture
substance in a multiphase body with randomly located spherical inclusions of different
materials under the condition of commensurable volume fractions of phases and to establish the
main regularities of the distributions of the random field of admixture concentration on the basis
of the developed approach [8].

Formulation of the problem. Consider the migration of admixture particles in the

stochastic nonhomogeneous layer of thickness z, that contains of N +1 phases of different

density, in which the diffusion coefficients of admixture particles can differ significantly, but
are constant within each phase. We assume that the volume fraction of none of the phases is
dominant, that is, in the medium the basic phase cannot be separated. The coordinates of all
simply connected domains are unknown. At the same time, we accept that the spherical
inclusions in the body disposed under the uniform distribution and they are located completely
inside the domain of the body. Respectively, on its outer surfaces one of the phases, namely the
skeleton, is placed. Consider that one or several characteristic radii of inclusions of one phase
can be singled out, and the radii of spheres of different phases can be either different or coincide,
in particular, for some materials. Moreover, if there are several characteristic radii of spherical
inclusions of the same material, we shall consider such spheres as different phases, but with the
same diffusion coefficients and density.

If a convective mechanism is absent, the process of mass transfer of the admixture

substance in such body is described by the diffusion equations for each phase k (k = O,_N):

oc, (r,t)
b S SR
Pk ot

o%c, (F 1) .\ d%c, (F 1) . d%c, (F 1)

N L S A . LSO I

k

where c, (r,t) is the concentration of the admixture substance in the kth phase; p, is the
density of the k th phase; d, is the kinetic coefficient of transfer of the migrating substance in

kth phase (d, =D,p,, D, is the diffusion coefficient of particles in the kth phase);
r =(x,y,z) isaradius-vector of the running point; t is the time.

In the notation used, k =0 corresponds to the material of the body skeleton, that is
Co(F,1) = Cygieton (M1 1) ; k=) (j=1,N) corresponds to the spherical inclusion of different
materials, and in the case of porous bodies to its porous components of different radii:
C;(F,t) = Cj pore (T, 1) . Thus, spherical pores can be filled with air (gas), liquid, their mixture or

vapor-gas mixture, however, with one substance within one phase, and their physical
characteristics and geometric parameters are such that the condition of constancy of the
coefficients in simply connected domains is satisfied. It is also possible to implement the case

ISSN 2522-4433. Bicuux THTY, Ne 1 (101), 2021 https://doi.org/10.33108/visnyk_tntu2021.01 .............cooccevvee e 29



Mathematical modeling diffusion of admixture particles in a strip with randomly located spherical inclusions of
different materials with commensurable volume fractions of phases

when part of the phases, for example j=1,m, is inclusions (solid phase), the other part
j=m, N is spherical pores of different radii and/or of different materials.

Let the admixture substance in the body be absent at the initial moment of time, at the
upper boundary of the body z =0 a constant value of the admixture concentration C. is kept,
and at the lower boundary it be equal to zero. Namely, the following conditions are given

Co(F. 1), =¢ (F,t)\tzo =0, j=1,N, ?)

Co(F.1)|,_, = =const , (:O(r,t)|Z=ZO =0; ¢ (F0)],, ., <K<o (k= oON). (3

In addition, we assume the conditions of non-ideal contact for the concentration of the
migrating substance at the boundaries of the phases contact [8], which are a consequence of the
ideal contact conditions for the chemical potentials of admixture particles in these phases

chj(r't)‘rerjl_o :KICI(r't)|FEFj|+O’ (4)

) j,I=0,N, j=I. (5)

rel"j|+0’

deJVC] (F,t)‘Fer“_o = p|d|VC| (F,t)

Here «, = Ay, (k=0,N); v, is the coefficient of activity; I';, is the interphase
boundaries where the phases j and | are in contact [11, 12].
In order to model the skeleton of the body (matrix) with a dense packing of spheres, we

N

use M spheres of different radii R, (j=0.N), ij =M (Fig. 1) [13]. In particular, m,
j=0

different characteristic radii (R, ...R,, ) are used for the skeleton (matrix), m, different radii

(Rm0+1...Rm0+m1) are used for spherical inclusions of the first phase, m, different radii

(Rmo+m1+1“‘Rmo+m1+mz) are used for spherical inclusions of the second phase, etc.
Inclusions of the phase N are modeled with my different characteristic radii

( Rm0+...+mN_1+1 e Rm0+...+mN_1+mN ), here Rm0+...+mN,1+mN = Ry . We assume that two

spheres of inclusion phases can be arbitrarily close, but at the same time a
minimum amount of the skeleton material remains between them, that is, two spheres
can touch, but the spherical inclusions cannot intersect. The sphere that belongs
to the skeleton can contact with other spheres of the skeleton and/or with spheres of inclusions,
moreover, they can have different radii. We consider the case when spheres
of all radii, both the skeleton and pores, are distributed in the volume of the medium
behind a uniform distribution. In what follows, we will consider spheres of different
(but characteristic) sizes as different phases.
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Figure 1. Modeling an element of the multiphase body with spherical
inclusions by dense packing of spheres

Note that at the boundaries of spheres, which simulate the skeleton of the body
(1=1;m,) and do not contact spheres of the phases of inclusions, there are no jump
discontinuities of the concentration function and of its derivative, then

KoC (T )] =xoCia(F )],y (i=Lmy-1);

PodoVe; (F,t)‘ o Podovcm(r,t)‘ e (i=Lmg—1).

For spheres that correspond to the phases of inclusions and are in contact only with each
other within one phase, we have:

1,G; (T, )| = KlCiJrl(F,t)|F€FJr0 (i=mg+Lmg+m —1);

rel'-0

P10, Ve (F’t)‘ om0 Pldlvcnl(r’t)‘ cpae (i=mg +Lmg+m; —1),

1,C; (F, 1) | =G g (F0)], 1, (i=mg+m +Lmg+m +m,-1);

rer’-0

p2d,Ve; (7 1) o= P20,V (7, 1) .y (i=mgrm+Lmg +my +m, 1),

rer-o0

pndy Ve (T, 1) = PN VC (7, 1) oy (i=mpr i amy LM 1),
That is, in the general case ( j =1 N ) we can write the contact condition for spheres of

one phase in the form

KGED | = K6

j-1 j
i=Zm +1;Zm :
rer+0 k k
k=0 k=0
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j-1 i
pjdjVCi(r,t)‘FEF_o =pjdjVCi+1(r,t)‘Fer+o |=§mk +1,§mk y

whence

G0 o =Cin(F D s VE(ED) s VG (F 1) o li=my M 1),

Then, taking into account the contact interaction between the different phases, the
conditions of nonideal contact (4)—(5) for the concentration function will take the form

KJCJ(F’t)‘rerj,_o =%K,C (F’t)|rerj,+o’ jI=LM; ©)

pjdjVCj(F,t)‘ Feril-0 pd, Ve (r,t) h1=LM, (7

Felj+0’

here T';, are the sections of interphase boundaries where phases j and | are in contact. Note

that the case j =1 is taken into account here, that is, the case of contact interaction of spheres
of the same phase.

In the case when inclusions are in contact only with the matrix, conditions (6) - (7) can
be written as

K|C|(r,t)|rer,pj—o zKijPj(r’t) Fely, +0 ®)

pldlvcl(f:!t)‘renp__ozppjdpjvcpj (F,t) Fer, +0’ (9)
J Pj

Kpjcpi (r’t)‘Fe]"lpj—O :chl(r,t)|Fer|pj+0’ (10)

Pp,dp; Ve, (M1 _ - =pid, Ve (F.1) ety +0° (11)
j ]

Pj

j-1 j
Here I =Lmg; p; =D mc+L) m, j=IN.
k=0 k=0
Solving the contact initial-boundary value problem. We reduce the contact problem
of diffusion (1), (8)—(11) to the diffusion equation for the whole body. For this purpose, we take
into consideration a random function of the spatial coordinate c(r,t), which describes the

concentration in the whole body:
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¢;(F.t), Felv,) j=1M

o(F, 1) = i1 j -
satisfies conditions (8)-(11), Fel}, , p; = > m +L> my, j=1,N.
k=0 k=0

Here V; is the volume of the phase j (multiconnected domain).
re (\/)
J H
. 14] for
, e (V) [14]

1,
Using a random operator (the structure function) nij(F)={0
j

- d., relV;),
j=1L M, we can represent the diffusion coefficient d(r) :{0] - (\(/ J) and the density
relV)

pj. Telvy)

0, F§E<Vj)’

coefficient p(r) = { in the form

M N M nj
d®)=> > dmy(),  pF)=D D pjmy(F). (12)

==l j=1 i=1

Considering that the function c(r,t) has discontinuities of the first kind we have
Ve(r.0) = Ve(F 0+ [e(F O]y, 8(F-F;, ), (13)
and the value Ac(r,t) is found as
Ac(F,0) = {ac(F, 0} + [Ve@ 0], 8(F— )+[c(F.0l, V8T, ). (14)

Here 1. is the radius-vector of points of the boundary T'; ; {...} are the domains of
]

continuity of the function; I is the jump of the function on the boundary T

j-1 j L
p; = ka +1;ka . j=L N, and it differs from zero only if spheres of different material
k=0 k=0
are in contact; §(r) is Dirac delta function.
The coefficients of the problem are constant in the limits of each phase, and the
coefficient d(r) is a piecewise constant function and has discontinuities of the first kind on the

contact boundaries, then
Vd(F) =[d(O)]er, 30T, ) (15)

Since the equation of mass balance is satisfied for the whole body, using the expression
for the admixture flux, we can present the diffusion equation for the body as a whole in the
form
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=Vd(F)Vc(F,t) +d(F)Ac(F,t). (16)

o(F) —ac(rt’t)

Then, taking into account relations (13)—(15), expression (16) can be represented as

P02~ fg(Oac(r.0}+ O, Fero), a7 )+

+d@, [er.0), Vo -1, )+[dO], e, 8°F -7 ). (17)

j-1 j L
Here P :ka +1;Zmk , J=LN.
k=0 k=0

By using the representation of the characteristics of the medium (12) and the condition
of continuity of the body, equation (17) can be written in the form

M Nj
L(F,t)c(F,t):zz L; (F,t)c(F,1) =0, (18)

j=1 i=1

where in the general case

Ly (R0 = 0y () Sy A= [V, [7..], 56 -7, -

- % [d(O], [ ]r, v8(F ~F;, ) - % [d®], [, 8°F - F,). (19)

In equation (19) we add and subtract the deterministic operator L,(F,t), whose
coefficients are quantities averaged over the volume of the body.

_ 0
La(rft):paa_daAf

M M
where p, = Z:vjpj ;dy = Zvidi ; v; Is the volume fraction of spheres of the radius R;.
j=1 j=1

For the operator L, (r,t) we take into account the symmetry along the axes x and vy,
then we obtain

L, (F,t)=L . 0 d o 20
a(Ft)= a(zyt)—paa_ aaz_g- (20)

Provided the condition of continuity of the body, equation (18) takes the form

L, (F,t)c(F,t) = LS(F,t)c(r,t), (21)

34 ... ISSN 2522-4433. Scientific Journal of the TNTU, No 1 (101), 2021https://doi.org/10.33108/visnyk_tntu2021.01


https://doi.org/10.33108/visnyk_tntu2021.0

Olha Chernukha, Yurii Bilushchak, Anastasiia Chuchvara

where the operator L2 is as follows

M n; M nj
HE R NOETD) WM ES) YCREP) PN
j=1 i=1 j=1 i—1

M N -
%ZZN(F)]E,- V..,
j=1 i=1
CERTE S 3 (N R CTRRES 3l 0 N BRI
x (r—rrij)+5jz_;; O [, (r—rrij)+5jz_;; O, -], 8% (F =)

Interpreting the right-hand side of equation (21) as a source, the solution of the problem
(21), (2), (3), (8)—(11) can be represented as the sum of the solution of a homogeneous initial-
boundary value problem and the convolution of the Green's function with the source as

t
o(F,t) = ca(r,t)+Hﬂea(r,F',t,t')Lf;‘(F’,t’)c(?’,t’) dr'dt’. (22)
0V

Here c,(r,t) solution of a homogeneous equation with the operator (20) and boundary
conditions (2), (3), which, taking into account the symmetry over the variables x and y, has
the form

da 2
2~ 1 T, et
c,(z,t)=c. 1- 225 e ra s YqZ |, (23)
ZO ZO g=1 yq

G, (F,r",1,t") is the deterministic Green's function of problem (21), (2), (3) with a point
source, given by the following relation

pa [ =XV +(y-y’ 2 0t)

R (-t ad, | t—t' J - o . . , 2
P tt)=—— 7 ¢ "0 e = sin(y.z)sin(y.z"), (24)
)= Td (D) Z; (ys2)sin(y,2)

G,(

where y, =qn/zy; Vs = yq‘qzs; O(t) is the Heaviside step function [15].

The solution of the integro-differential equation (22), which is equivalent to
the original contact initial-boundary value problem, is sought by the iteration method
in the form of the Neumann infinite integral series. As the zero approximation we take the
solution of the homogeneous diffusion problem with averaged characteristics (23), then we
obtain
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c(F,t) =c,(z, t)+”ﬂ@ (F,F',t,1)L2(F,t')c, (2, t)dF'dt +
”j G, (F,F L, t)L2(F' t’)IIIIGa( UL (P E)e, (27, 1) dF dtdFdt +
0V

[lfe.crronen](fecrroten:
0V

JIJ. G (—’” —’W t” tﬂl) La(—~m t”l)ca(Zm,tll!)df:wdtmdf:”dt!IdF!dtI+. L.

(25)

The first term of the Neumann series (25) c,(r,t) describes the field of admixture

concentration in the layer with averaged parameters, the second member of this series
corresponds to the perturbations that occur if spherical inclusions filled with one substance
within one of the j th phase, are placed alternately in such body. The third term describes the

pairwise mutual influence of spherical inclusions on the concentration field, etc.
Restricting ourselves to the first two terms of the Neumann series (25)

c(F 1) ~c, (2, t)+”j G, (F, 7', L,U)L2(F,t)c, (z/,t')dFdt’,

we average the admixture concentration field over the ensemble of phase configurations.
The function ¢,(z',t') and its derivative are continuous functions, then, taking into

account the form of the operator L2, we obtain

C(F 1) ~ G4 (2, t)+”j G, (F, *',t,t)zz[(pa oy e (z' )

—l i=1 (26)
~(d, —d. )Lzzt)} 5 (F)drdt.
0z

Assuming that spherical inclusions with different fillers are located in the body with the
uniform distribution function, we average expression (26) over the ensemble of phase

configurations. Also, we note that <Ca (z,t))conf =c,(z,t), and as arandom variable we consider

the radius-vector of the center of the sphere r;; .

Then we get
e (Vm) ‘ *,J‘ [0;R;] o
e )_{0, reb) o ropfemr,] “nalr =) o
Here j=1M;i=1n;
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Given that the density of the uniform distribution function is 1V , and only the function
n;; depends on the radius-vectors of the centers of the spheres, the second term in (27) can be
represented as:

{03 oS0

j=1 i=l (28)

~(dy —a Tt Ca(,zzt)}mn,,( dr;dFdt’.

By passing to the spherical coordinate system, as well as taking into account the relation

Anm 4nmRY v, _ _
= , for expression (28) we obtain

Ui
3V 3R} R}

M t o o | 2R; , 3 ,
Jeont ZVJII J. I [%—1] G, {(Pa—pj)aa%—(da—dj)zz(?;‘}dz’jL
j=1 Z 0-0w-o| 0 J (29)
+ J?G {(pa p,)a —(d, - )azfg}dz’ dy’dx'dt’ .

2R; oz

Thus, the general formula (29) for determining the averaged over the ensemble of phase
configurations concentration field of the migrating substance in a layer with randomly located
spheres of N different physical characteristics (phases) with M different characteristic radii
under the condition of the uniform distribution of inclusions is obtained

0 3
(c(F.1)) o =Cal2, t)+ivjjjj j(__lJ G, {(pa— , ac,

= 0 —00 —0

(30)

o%, |, % ac o%, | L,
—(da—dj)azlg}dz +2.£-Ga{(pa—pj)a—t‘f‘—(da—dj)azé}dz dy'dxdt’.

Note that formulae (28) and (30) are valid for arbitrary initial and boundary conditions.

Substituting the expressions for the Green's function G,(r,r'.t,t") (24) and the

concentration in the homogeneous layer with averaged characteristics Cy (r.t) (23) into formula

(30), we obtain the calculation formula for the averaged over the ensemble of phase
configurations particle concentration in a multiphase randomly nonhomogeneous body with the
uniform distribution of spherical inclusions and commensurable volume fractions of phases
under boundary conditions of the first kind

M 2cv nPK] &2
(e(F.1) o = Cal, t)+Z—desm y.z) (AS‘ 9ayitlpa (31)

paZO
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2
S feinvin])

q;tS

where

Kde :dj _da_J; ysiq =Y * yqa ASJ = yS{ZO—ZRj —Bg(2y5)+

sin(4y,R;j) | .
2y ’

S

_ o . sin(2R;ys,) sin(2R;yZ)
A = iy B )~ B (i) -
( q s) ysq ysq

i 113 2 R; 6 ).
Bl(w)=—| =| R?-= 2R 0)—1) + —| R? —— [sin(2R;
e () R?|:(DZ( ' o2 j(COS( ](o) ) ® [ . (ozjs ( Jm)}
is the function of the independent variable .

Numerical analysis of diffusion in the randomly nonhomogeneous body with
spherical inclusions of different materials. We carry out a quantitative study of the mass
transfer of the admixture in the body with spherical inclusions and commensurable volume
fractions of phases, assuming that the materials of the phases of inclusions have a
fundamentally different physical nature (for example, solid and gas mixture). Calculations

are performed in the dimensionless variable ¢=z/z, and ©=dgt/ z& [16] according to the
calculation formula (31), in which the accuracy of calculating the series by s is 107", and by
q equals 107°. We assume that the skeleton of the body has a dimensionless diffusion
coefficient d, =0.001 and density p,=1.05; inclusions that correspond to the solid phase

have the characteristics 91=0.1 and P1=3; for inclusions with the gaseous filler coefficients

d2-0.8 and P2=0.15 are taken, i.e. the body has a three-phase structure (N =2). This order
of the ratios of the diffusion coefficients and density of the skeleton material and inclusions
corresponds to the materials existing in nature. However, in order not to reduce the generality
of studies of the basic regularities of the distribution of the admixture substance
concentration, we consider the structure as a kind of abstract material, and the exact
characteristics of the medium are set depending on the specific application problem.
Suppose there are 3 types of spheres with different radii for modeling a skeleton
packing, 3 types of spheres of different radii for describing inclusions of the first phase and 2
types of spheres for modeling inclusions of the second phase. In the notation of the problem,

we have my=3, m;=3, m,=2, hence M =8. Characteristic radii and volume fractions of each
phase is written in the form of vectors Ro = (R;,R,,R;), R1 = (R,,Rs,Rg), R2 = (R;,Rg) and
Vo =(Vq,Vo,V3), Vi=(V4V5Y5), V,=(v;,Vg). Basic characteristics for calculations are
Ro=(1072;10"2:5.10"), Ri=(10"%5-10"210%), R2 = (1072;107%), and the values of the
volume fractions are v, =(0.15; 0.1, 0.05), v;=(0.15;0.15;0.1), v, =(0.2; 0.1). Thus, inclusions of

the solid phase occupy 40% of the body volume, inclusions with gas filler take up 30% of the
body volume, 30% is the body skeleton.

38 ... ISSN 2522-4433. Scientific Journal of the TNTU, No 1 (101), 2021https://doi.org/10.33108/visnyk_tntu2021.01


https://doi.org/10.33108/visnyk_tntu2021.0

Olha Chernukha, Yurii Bilushchak, Anastasiia Chuchvara

Figure 2 shows distributions of the admixture concentration in the body with spherical
inclusions at dimensionless times 1 =0.3; 0.4; 0.5; 0.6; 0.8 (curves 1-5). Dashed lines (curves
a) are plotted for the homogeneous body (without spherical inclusions) with characteristics
averaged over the volume of the body, solid lines (curves b) correspond to functions of
admixture concentration averaged over the ensemble of phase configurations. Here the

characteristics averaged over the body volume are d,=0.2803, p,=1.53.

Figure 3 illustrates the behavior of the concentration of admixture particles averaged
over the ensemble of phase configurations and of the concentration in the homogeneous body
with characteristics averaged over the body volume for different values of the volume fraction

of spherical inclusions at a constant value of the volume fraction of the base phase (v,=0.3).
Curves 1-4 are plotted for the values of the total volume fraction of solid inclusions 0.1; 0.35;
0.4; 0.5 (the volume fraction of the gaseous phase is 0.6; 0.35; 0.3; 0.2). In this case, the
distributions of particles for each characteristic radius are as follows: v, =(0.04;0.04;0.02),
V,=(04,02) for curves 1, Vv;=(0.150.150.05), V,=(0.20.15) for -curves 2,
v; =(0.15; 0.15; 0.1), v, =(0.2; 0.1) curves 3, v; =(0.2,0.2,0.1), v, =(0.13;,0.07) curves 4, and
the characteristics averaged over the volume of the body are d,=0.2503; 0.3153; 0.2803;

0.2103 and p,=0.63; 1.3825; 1.53; 1.825, respectively (curves 1 a—4 a, Fig. 3). Hereinafter,

the calculations are performed at the dimensionless moment of time t=0.5.

Note that for small times of the diffusion process, the averaged concentrations of the
migrating substance in the body with spherical inclusions are convex upward functions
(curves b, Fig. 2), and smaller values of dimensionless time represent greater global maximum

of the function {c(c,t))/c. . The concentration function of the admixture substance in a body

without spherical inclusions with characteristics averaged over the volume of the body is a
monotonically decreasing function, convex downward, the value of which increases with
increasing dimensionless time t (curves a, Fig. 2).

An increase in the volume fraction of spherical inclusions of the solid phase with a
simultaneous decrease in the volume fraction of spherical inclusions with gaseous filler
causes a decrease in the concentration of the migrating substance in a homogeneous body
(curves a, Fig. 3). But the increase in the number of spherical inclusions of the solid phase
with a simultaneous decrease in the number of inclusions of the second phase increases the
value of the averaged concentration in the body first (curve 2 b, Fig. 3), and then the value of
the averaged concentration of the migrating substance decreases (curves 3 b and 4 b, Fig. 3).

Figure 4 illustrates distributions of the function (c(g,7))/c. for different numbers of
characteristic radii of spheres filled with gaseous substance under condition of the constant
volume fraction of the second phase (v, = 0.3). Curve 1 (dashed line) is plotted for the basic
values of parameters, that is, for two characteristic radii of the spherical inclusions of the
second phase R» =(1072;107%), which correspond to the volume fractions v, =(0.2; 0.1);
Curves 2 and 3 correspond to the averaged concentration in the body, in which three
characteristic radii of inclusions of the second phase R2=(107%;107:5-10"%) and
R2 =(1072;107%;5.1072) are distinguished for the same distribution of volume fractions
Vv, =(0.17; 0.08;0.05). Curves 4 and 5 in Fig. 4 are plotted for the same set of characteristic
radii of inclusions filled with gaseous substance R = (107%;107%;3-:1072), but for different
distributions of volume fractions which relate to the inclusion of each radii,
v, =(0.1 0.05;0.15) and V, =(0.12;0.09;0.19). Curves 6 and 7 correspond to the averaged
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admixture concentration in the body, in which four different characteristic
radii of inclusions of the second phase Rz=(10%;10"%5-1072;3-107%) and
R2 =(1072;107%,5-10%;5-1072) are distinguished, herewith volume fractions equals
v, =(0.1 0.05;0.05;0.1). Curve 8 (Fig. 4) is plotted for a structure in which
spherical  inclusions  with a gaseous filler of five different radii
R2=(10"2:10"%;3-10%;5-107%;5-107%) are distinguished with corresponding volume
fractions v, =(0.1, 0.02; 0.01;0.02; 0.15) .

(c(6,1))/cs {e(c,1))/ s

2 / 2 /
2 1b 2 1b

05 aSSSes ™ 05 RSN
\:\:5;:~\ 5 \:\"\5-‘7:~\ 5
2a SSEEsss 2a SSIESsssE
o S GRS 0 Rt

0 0,25 0,5 0,75 C1 0 0,25 0,5 0,75 C1
Figure 2. Distributions of admixture Figure 3. Distributions of admixture
concentration at different moments concentration for various volume

of dimensionless time fractions of inclusions

For given basic values of input parameters of the problem, a change in the number
of characteristic radii of spherical inclusions of a solid phase causes negligible changes in
the averaged concentration of admixture substance throughout the body. Namely, 8th or 9th
significant digits change, which are beyond the accuracy of calculating the sum of the series
according to the calculation formula (31). On the other hand, a change in the number of
characteristic radii of spheres filled with a gaseous substance with a constant volume
fraction of the second phase causes both quantitative and qualitative changes in the behavior

of the average concentration function (c(c,t))/c. (Fig. 4). In particular, the separation of
the third characteristic radius for inclusions of the second phase can both decrease (curves
2 and 3, Fig. 4) and increase almost twice (curve 4, Fig. 4) the value of the averaged
concentration. In this case, for the characteristic radii of spheres with gaseous filler 5-107
and 5-107% with the same distribution of volume fractions between spheres of different
phases and radii the values of the average concentration differ by no more than 2% (curves

2 and 3, Fig. 4). A similar situation is observed in the case of the separation of four different
characteristic radii, which have the same distribution of volume fractions of the body

(curves 6 and 7, Fig. 4), the difference between the values of function (c(g,7))/c~ reaches

no more than 1.5%. However, for the same set of characteristic radii of inclusions filled
with a gaseous substance, but different distributions of volume fractions correspond to the
inclusion of each radius, the difference in the values of the averaged admixture
concentration in the body can reach up to 61% (curves 4 and 5, Fig. 4). Consequently, values
of the function of the averaged concentration of the migrating substance in the body are
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most sensitive to the values of the volume fractions attributable to spherical inclusions with
gaseous substance, while the values of the characteristic radii have a less effect.

(e(¢,1))/cx {c(5,7))/cx
24 1,6

1a, 5a, 5b

0 0,25 0,5

Figure 4. Distributions of admixture concentration for ~ Figure 5. Distributions of admixture concentration for
different number of characteristic radii of the second different number of phases
phase

An increase in the number of phases due to solid or gaseous inclusions for the given
parameters of the problem decreases the value of the averaged concentration (Fig. 5). In this

case, the function (c(g,7))/c« in a four- and five-phased body with two and three gaseous

phases, respectively, is a convex upward function, the value of which is greater than
concentration in a homogeneous body with characteristics averaged over the body volume
(2 b and 3 b, Fig. 5). For structures with two or three phases of solid inclusions, the function
of the averaged concentration is a monotonically decreasing function, the value of which is
less than the admixture concentration in a homogeneous body (4 b and 5 b, Fig. 5).
Investigation of the influence of dense skeleton packing by spheres of different
radii on the averaged concentration of migrating substance. Let us study the dependence
of the averaged admixture concentration on different variants of modeling the skeleton of the
structure by dense packing of spheres of various radii. Table 1 and Table 2 show the calculated
data of the concentration of migrating substance in the body with characteristics averaged

over the body volume c, (g, t)/c. and the averaged concentration in the body ¢, (¢, t)/c. for

the basic values of the input parameters of the problem from the previous subsection, namely,
when the body skeleton is modeled by spheres of three characteristic radii

Ro =(1072;107%;5-10"%) with volume fractions V, =(0.15; 0.1; 0.05). Table 1 shows a
comparison of the distribution of the averaged concentration cl(g,r)/c* with the values of
the averaged concentration in the structures, the skeleton of which is modeled by spheres of
the same characteristic radius. In particular, ¢,(c,7)/c« is calculated for the characteristic
radius of the skeleton R,=0.00342, which is the average value of the characteristic radii of

spherical inclusions of the solid R; and gaseous R2 phases; c3(c,t)/c« corresponds to the
values of the averaged concentration in the structure, the skeleton of which is modeled by
spheres of radius R,=0.0001 (radius of the smallest inclusion); ¢,(g,t)/C« is calculated for
the characteristic radius R, =0.00001 (radius of an order of magnitude less than the radius of

the smallest spherical inclusion). Note that the calculation is performed at the moment of time
1 =0.5 and for the volume fraction of the skeleton v;,=0.3.
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Table 1

Concentration the admixture for one characteristic radius of spheres modeling the skeleton of the body

S

c, (g 1)/c.

C; (G: 15)/0*

C, (G’ T)/C*

c;(c,1)/c.

Cy (G’ T)/C*

0.000

1.0000000000

1.0000000000

1.0000000000

1.0000000000

1.0000000000

0.125

0.7680683640

1.2525973378

1.2525973375

1.2525973375

1.2525973375

0.250

0.5553011051

1.4505938655

1.4505938648

1.4505938648

1.4505938648

0.375

0.3762075985

1.5459639522

1.5459639514

1.5459639514

1.5459639514

0.500

0.2376997718

1.5038349082

1.5038349073

1.5038349073

1.5038349073

0.625

0.1391803560

1.3089366674

1.3089366667

1.3089366667

1.3089366667

0.750

0.0736476687

0.9689403508

0.9689403503

0.9689403503

0.9689403503

0.875

0.0310415720

0.5155704435

0.5155704433

0.5155704433

0.5155704433

1.000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

In Table 2, values C,(c,t)/c+ and cz(g,7)/c. are calculated for the case of two
characteristic radii of the skeleton balls, namely Ro =(107%;107*), but different ratios of
volume fractions for these two radii v, = (0.15; 0.15) and V,, = (0.05; 0.25) , respectively; values
c,(c,7)/c. correspond to the averaged concentration of the migrating substance in the body,
the skeleton of which is modeled by three characteristic radii Ro = (107%;107*:107°) with
volume fractions v, = (0.05; 0.1, 0.15)..

Table 2

Concentration of the admixture for several characteristic radii of spheres modeling the skeleton of the body

S c,(c1)/c.

C1 (Q, T)/C*

CZ (Q; T)/C*

C3 (Q!T)/C*

C4 (Q; T)/C*

0.000

1.0000000000

1.0000000000

1.0000000000

1.0000000000

1.0000000000

0.125

0.7680683640

1.2525973378

1.2525973375

1.2525973386

1.2525973378

0.250

0.5553011051

1.4505938655

1.4505938648

1.4505938669

1.4505938655

0.375

0.3762075985

1.5459639522

1.5459639514

1.5459639539

1.5459639522

0.500

0.2376997718

1.5038349082

1.5038349073

1.5038349099

1.5038349082

0.625

0.1391803560

1.3089366674

1.3089366667

1.3089366689

1.3089366674

0.750

0.0736476687

0.9689403508

0.9689403503

0.9689403518

0.9689403508

0.875

0.0310415720

0.5155704435

0.5155704433

0.5155704441

0.5155704435

1.000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

Note that for the given input parameters of the problem, in particular, within a given
accuracy, the differences between the averaged concentrations of admixture particles in the
body whose skeleton is modeled by a dense packing of spheres of one, two and three radii are
reached at maximum in 10th significant digit, which is a negligible value (Tables 1 and 2). At
the same time, in the case of modeling the body skeleton with spheres of the same radius, values
of the averaged concentration of migrating particles are coincide for the characteristic radius
which is the average value of inclusions radii, for radius corresponds to the smallest spherical

42 ... ISSN 2522-4433. Scientific Journal of the TNTU, No 1 (101), 2021https://doi.org/10.33108/visnyk_tntu2021.01


https://doi.org/10.33108/visnyk_tntu2021.0

Olha Chernukha, Yurii Bilushchak, Anastasiia Chuchvara

inclusion and for the radius an order of magnitude smaller than this value (Table 1). Therefore,
to simplify the calculations in modeling the skeleton of a body with a dense packing of spheres,
we can recommend using a model with one characteristic radius of the skeleton, which is, for
example, the characteristic radius of the smallest spherical inclusion.

Let us carry out a comparative analysis of the concentration of a migrating substance in
the body for two models of admixture diffusion, namely, for a model in which there is a phase
with a prevailing volume fraction [13] and a model with a proportional volume fractions
considered in this work. The following values of the input parameters of the problem are

accepted: ©=0.5; diffusion coefficients are equal to d, =0.1; d; =0.5; d, =1.5; the densities
of the materials are p,=1.15; p;=1.3; p, =1.05; radii of the spherical inclusions are as follows
R1=(102;5-103;10"%), R2 =(1072;10"%) and values of the corresponding volume
fractions are v; = (0.1 0.05; 0.05), v, =(0.15; 0.05).

In Table 3 values c(c,7)/c. correspond to the model of diffusion in a body with a «solid
base», values c;(c,7)/c« (j=14) are calculated by formula (31) and correspond to the

structure in which the skeleton is modeled by dense packing of spheres. In particular,
¢, (G, t)/Cx is calculated for Ro = (107%), V, = (0.6); C,(c,7)/C« is calculated for the average

radius of all spherical inclusions Ro = (5,4-107%), Vo =(0.6); c3(g,7)/c« is calculated for
two characteristic skeleton radii Ro = (1072;107*) ,V, = (0.2; 0.4); C4(c,7)/C« is calculated
for three characteristic radii of the skeleton of the body Ro =(107%;107*;5-107%),
7, = (0.2; 0.25; 0.15).

Table 3

Comparative analysis of the admixture concentration for the solid base of the body and
the skeleton modeled by spheres

c;(c,1)/c.

S c(s, )/cC.

G, (G: 15)/0*

C, (G’ T)/C*

Cy (G’ T)/C*

0.000

1.0000000000

1.0000000000

1.0000000000

1.0000000000

1.0000000000

0.125

1.4862779512

0.9971033015

0.9971033015

0.9971033003

0.9971033003

0.250

1.8794913482

0.9756563795

0.9756563795

0.9756563774

0.9756563774

0.375

2.1007476893

0.9199103250

0.9199103250

0.9199103223

0.9199103223

0.500

2.0973336259

0.8193057314

0.8193057314

0.8193057284

0.8193057284

0.625

1.8507490100

0.6700897356

0.6700897356

0.6700897328

0.6700897328

0.750

1.3794931927

0.4759100997

0.4759100997

0.4759100976

0.4759100976

0.875

0.7362778234

0.2472826969

0.2472826969

0.2472826957

0.2472826957

1.000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

Note that values of the averaged concentration of the migrating substance
for two models of admixture diffusion in a body with spherical inclusions differ by almost
three times, while values of the concentration in a body whose skeleton is modeled by a
dense packing of spheres of different radii are less one. In addition, as in the case of calculations
for the structure with solid and gaseous inclusions, the use of different variants of dense packing
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of the body skeleton affects no more than the 9th significant digit of the value of averaged
admixture (Table 3).

Conclusions. In the paper the process of migration of admixture substance in a
multiphase body with spherical inclusions in the case of absence a prevailing volume fraction
of any phase is investigated. The mathematical model for describing the process of mass
transfer is built according to the theory of binary systems, and the contact initial-boundary value
problem is formulated in a three-dimensional formulation taking into account the jumps of the
unknown function and its derivative at the phase boundaries. The body skeleton is modeled by
a dense packing of spheres of different characteristic radii for the application of a unified
approach to studying multiphase randomly nonhomogeneous bodies. The differential equation
of mass transfer for the whole body is constructed, as well as an integro-differential equation
equivalent to the obtained boundary value problem, the solution of which is found in the form
of the Neumann series. Restricting ourselves to the first two terms of this series, the procedure
of averaging over the ensemble of phase configurations with the uniform distribution function
of spherical inclusions in the body is carried out. The calculation formula for the averaged field
of particle concentration in the multiphase body with spherical inclusions of different materials
and different characteristic radii is obtained. The analysis of the dependence of the migrating
substance concentration in the body with spherical inclusions with commensurable volume
fractions of phases on the parameters of the media is carried out. In particular, the case of the
medium in which the materials of the phases of the inclusions have a fundamentally different
physical nature, such as the solid and gaseous mixture, is considered. It is shown that a change
in the number of characteristic radii, which simulate the spherical inclusions of the solid phase,
causes negligible changes in the averaged concentration of admixture throughout the body.
Whereas a change in the number of characteristic radii of spheres filled with a gaseous
substance, with a constant volume fraction of the second phase, causes both gquantitative and
qualitative changes in the behavior of the averaged concentration function. The influence of the
dense packing density of the skeleton by spheres with different radii is investigated. The
differences between the numerical results obtained for different variants of dense packing of
the body skeleton turned out to be negligible; therefore, it is recommended for this type of
problems to simplify calculations use a model with one characteristic skeleton radius, for
example, equal to the characteristic radius of the smallest spherical inclusion. On the other hand,
a comparison of the models of mass transfer in a medium with a solid skeleton and in the
skeleton simulated by dense packing of spheres showed significant differences in the values of
the concentration of the migrating substance. This means that during the study of filtration and
mass transfer processes in soils, which are usually considered as a dense packing of
microgranules (fictitious soil model), the adequacy of modeling the skeleton of the media by a
solid body is questionable, and therefore requires further research.
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MATEMATUYHE MOJEJIOBAHHSA JU®Y3Ii JOMIIIKOBUX
YACTHHOK Y CMY3I 3 BUITAJIKOBO PO3TAIIIOBAHUMHA
KYJbOBUMH BKIIIOYEHHAMMU PI3BHUX MATEPIAJIIB 3A

CINIBBUMIPHUX OB’€EMHUX YACTOK ®A3

Ouibra Yepnyxa®?; ¥Opiii Binymak'?; Anacracis YUyusapa®

Yenmp mamemamuunozo modenoeannsa Incmumymy npukiadnux npooiem
mexanixu i mamemamuxu imeri A. C. Iliocmpueaua HAH Yxpainu,
JIvsis, Ykpaina
2Hayionanvuuti ynisepcumem «JIveiscoka nonimexuixay, Jlvsie, Ykpaina

Pesrome. Jlocniosiceno oughysito OOMIUKOBUX YACMUHOK Y 6a2amopasHomy unaodko80 HeoOHOPIOHOMY
Mini 3 KYIbOSUMU GKIIOUEHHIMU PIZHUX MAMEPIAi6 3a YMOBU CRIGGUMIDHUX 00 eMHUX uacmok ¢gas3. 3a meopicio
OiHapHux cucmem noOYO00BAHO MamemMamuyHy Mmooernv Ougysii oomiwku y 0OazcamogazHomy mini 3i
chepuuHUMU BUNAOKOBO PO3MAULOBAHUMU BKIIOYEHHAMU DI3HUX paodiycis. s MoOeno8anHs cKeiema mind
BUKOPUCTNAHO WINbHY YNAKOBKY KYIb pPIi3H020 padiyca. 3 6UKOPUCMAHHAM anapamy meopii y3a2anbHeHux
@yHKYiti ompumano ougpeperyianore piGHAHHI MACONEpPeHeCeHHs Ol MiNa 8 YoMy, sKe 8Paxo8ye Cmpubox
wykanoi ¢Qynxyii ma ii noxionoi Ha eunadkogux ecpaumuysax nodiny ¢as. Tpaxkmyryu HeoOHOpPIOHICMb
CMpYKmypu mina AK SHYMPIWHI Odcepend, OMpUMAHIU Kpanosill 3a0ayi NOCMAgieHo y 8i0noeioHicmb
exegiganenmue inmezpo-ougepenyianvie pieHanHs. Po38’130K yb02o pIGHAHHA 3HAUOEHO Y  6ueanli
inmeepanvroco psady Heilimana po3xaiaoom 8 oKoi po3e’s3Ky 0OHOPIOHOI Kpaiiosoi 3adaui 3 ycepeoHenumu
xapaxkmepucmuxamu cepedosuwya. Ilposedeno npoyedypy ycepeonenns 3a amcamodnrem xKoumieypayii ¢as 3
PIBHOMIPHOIO (DYHKYIEIO PO3NOOINY mMa OMpUMAHO (OpMYNY Ol 6UHAYEHHS YCEPEeOHeH020 3d aHcambiem
KOH@ieypayiti paz nons KoHyeHmpayii miepyrouoi peyosuHu y wiapi 3 Uunaoko8o po3mMaulo8aHUMU KyIamu
PIBHUX Pi3uunux Xapakmepucmuk (¢as) 3 pizHUMU XAPAKMEPHUMU paodiycamu 3a YMOS8U PI6HOMIDHO20
PO3n00iny 6KUeHsb 6 OLlAHYl mina. Ha ocrosi ompumanoi po3paxyHkoeoi opmyau npogedeHo KilbKicHe
00CNI0NHCEHHS MACONEPEeHeCeH s OOMIWKY Y Mili 3 KYIbOGUMU GKIIOUEHHAMU, SKI 3aN06HeHi mMamepianamu
NPUHYUNOBO pi3HOI izuynol npupoou, ane cniggUMIpHUX 00 €MHUX uYacmok. Takodc O0CHiOHCeHO 6Naus
WITbHOCMI YNAKOBKU CKellema KyIamMu Pi3Ho2o padiyca Ha ycepeOHeHy KOHYeHmMpayilo Miepyuol peuosutu.
Iokazano, wo y 6unaoky MoOen8aHHs CKelemd Mild KyIamu O0OHO20 paoiyca 3HAYEHHS YCepeOHeHOI
KOHYyeHmpayii mizpyouoi peuosunu O XaApakmepHozo paoliycd, Wo € CepeoHbolo BeIUYUHOI0 padiycie
BKIIOUEHDb, padiyca, Wo 8i0N06I0ac HAUMEHUWOMY KYIbOBOMY BKIIOUEHHIO i padiyca HA NOPAOOK MEHUO020 6i0
yiel enuyunu, cnienaoaome.

Kniouosi cnosa: mamemamuune MoOeniosanHs, 6azamogasna 6unaokoea cmpykmypd, Kyib0ge
BKIIOYEHHS, KOHYEHMPAYish OOMIWKU, WITbHA YRAKOBKA KYIAMU, YcepeOHeH s 3a ancambiem Kongizypayii ¢as,
o0uUCTeHHA.
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