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Summary. The market of modern neurointerfaces, despite its active development, unfortunately, can offer 

users only a number of existing prototypes that have a relatively low accuracy and identification reliability of the 

human operator control effects. In addition, any neurointerface on the market must be individually tailored to 

each operator, which makes it difficult to objectify its accuracy, precision and reliability. The first step in solving 

the above problems is to conduct a comparative analysis of different price segments of the market of existing 

neurointerface technologies, as presented in this article. The market research revealed that despite the 

disadvantages of electroencephalography, it is one of the most accessible non-invasive methods of recording 

biological signals in neurointerface systems. To facilitate future research, the main advantages and disadvantages 

of known models and methods of signal analysis in neurointerfaces have been considered and analyzed. In 

particular, in the context of signal pre-processing, advantages and disadvantages of such methods as Common 

Average Referencing, Independent Component Analysis, Common Spatial Patterns, Surface Laplacian, Common 

Spatio-Spatial Patterns and Adaptive Filtering are considered. At the stage of evaluating the informative 

characteristics of the signal, the analysis of models and methods based on the models of adaptive parameters of 

autoregression, bilinear autoregression, multidimensional autoregression, fast Fourier transform, wavelet 

transformation, wave packet decomposition is performed. Besides, a comparative analysis of the most common 

methods of identification (recognition) of control effects of the human neurointerface operator, namely, the method 

of discriminant analysis, the method of reference vectors, nonlinear Bayesian classifiers, classifiers of nearest 

neighbors, artificial neural networks is carried out. The study of neurointerface technologies provides researchers 

with additional grounds for a sound choice of mathematical, software and hardware of neurointerface systems, as 

well as contributes to the development of new versions with increased accuracy, reliability and reliability.  
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Statement of the problem. Despite the rapid and global development of modern 

information technology, human interaction with computer systems is still based on not very 

convenient means of communication, namely, the use of inertial technical interfaces such as 

keyboard, mouse, graphics tablet, which is a bottleneck in communication between the human 

operator (user) and the computer system operated [1]. In other words, modern technologies of 

human-computer interaction are asymmetric [2], which is caused by the lack of reliable 

technological solutions in the field of neurointerface technologies.  

A neurointerface is a device that allows wired or wireless information exchange between 

the brain and any external electronic device. The desired result in the control of such a device 

can be achieved by controlling it with a reverse controller, the input of which is a simple 

command signal generated by a human operator.  This approach allows the neurointerface to 

identify (recognize, detect) the choice of command made by a person and, consequently, to 

ensure the execution of this command by means of a controlled system. Thus, even an 

unqualified operator can easily control any external device/system using a neurointerface. The 

main tasks of the neurointerface are measurement of brain activity signals, identification 
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(recognition, detection) of control effects and their transformation into control signals of a 

certain external device/system.  

Analysis of available investigation results. Nowadays, the worlds leading research 

institutions and companies are actively working on the development of neurointerface 

technologies and their application to human-computer interaction, in particular, in the field of 

biomedical engineering, neuroprosthetics, etc. They form an additional communication channel 

that can be used as an explicit output (for example, conscious transmission of a command), or 

an implicit output (for example, obtaining information about the user's status, which is 

automatically read from his current brain activity).  

In July 2016, the startup «Neuralink» was founded, the team of which included: Paul 

Merolla, Vanessa Tolozu, Dongjin Seo, Tim Gardner. In the summer of 2020, the company 

introduced a prototype of the neurointerface «Link» v0.9, which is designed to solve the above 

problems, but today this technology still needs significant refinement [3]. There are many 

modern studues on neurointerface technologies. Development and research in this area is 

carried out continuously, is proved by the large number of peer-reviewed articles over the past 

twenty years (Fig. 1). The data were obtained with Science Direct search engine.  

 

 

 

Figure 1. Number of publications on neurointerfaces over the past 20 years 
 

Jerry J. Shih, MD, in his article [4] Brain-Computer Interfaces in Medicine, says that 

neurointerfaces can control many different devices, from cursors on computer screens to 

wheelchairs and robotic prostheses. But the author emphasizes that neurointerfaces still need 

their reliability and accuracy of methods in recognizing operator commands to be improved.  

The objectives of the research is to conduct a comparative analysis of existing 

neurointerfaces and methods of processing biometric data in them, to identify their advantages 

and disadvantages for the problem of informative choice of neurointerface for research and 

direction of improvement of neurointerface technologies. 

Statement of the task. Given the large number of scientific researches and the 

availability of neurointerface systems from different manufacturers, it is necessary to conduct 

a systematic comparative analysis of known neurointerfaces, methods for measuring 

information signals of human brain activity, methods of identification (recognition) of control 

effects and an other technical and economic characteristics.  

Neurointerface performance can be described by two main characteristics: 

 operation speed, which is determined by the time spent on the user's choice recognition; 

 accuracy, which is determined by the frequency of correct recognition of the user's choice. 

Existing neural interface systems make it possible to recognize a user's choice in a matter of 

seconds with relatively high accuracy. For example, in the recognition of two states (yes or no), moving 

the arrow on the screen monitor, the accuracy reaches 90%. However, the information recognition rate 

is quite low (i.e. from 5 to 25 bits/min) [5]. This is due to the fact that speed and accuracy are closely 

linked, and, for example, the higher is speed, the lower accuracy is and vice versa – with increase of 

accuracy, the recognition speed will decrease.  
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Signals of brain activity (i.e. electrobiological potentials) in neurointerfaces are recorded in both 

invasive and non-invasive ways. If brain activity is recorded from the surface of the scalp, such a 

neurointerface is called non-invasive. Then, if brain activity is recorded from the surface of the cerebral 

cortex, or from individual neurons, such a neurointerface is invasive. In some sources, there are also 

semi-invasive neurointerfaces. In this classification, if brain activity is recorded from individual 

neurons, such neurointerface is invasive, and if brain activity is registered only from the surface of the 

cerebral cortex, such neurointerface is called semi-invasive. In this article we follow the first 

classification of neurointerfaces (Table 1). 

 
Table 1 

 

Classification of neurointerfaces according to the method of connection to the user 
 

Features 
Types of neurointerfaces 

Non-invasive Invasive 

Accuracy 

Low because the electrodes do not directly 

contact with the brain, but register the 

electromagnetic field on the surface of the 

head 

High because the electrodes are on the 

surface of the cerebral cortex or connect 

directly to neurons 

Way of connection with 

brain 

Electrodes are on the surface of the scalp; 

for some types of electrodes a special 

conductive gel is used 

Electrodes are implanted directly into the 

cerebral cortex or are on its surface 

Difficulties that may 

occur during use 

Due to low accuracy, it is necessary to use 

additional methods for signal analysis and 

processing; before every use, the 

neurointerface needs to be pre-configured 

Corrosion of electrodes; fouling of 

electrodes by connective tissue, which 

leads to worsening of contact; contact of 

brain cells with electrodes may cause their 

death 

 

Although the accuracy and speed of invasive neurointerface recognition is higher than 

non-invasive, their use is significantly limited. This is due to the fact that its installation requires 

the services of a qualified neurosurgeon to perform complex surgery, which in turn can lead to 

complications in the patient's health. It should be noted that most experimental invasive 

neurointerfaces do not involve long-term use due to corrosion of electrodes, their fouling with 

connective tissue, which leads to deterioration of contact or its loss and complicates the process 

of their removal from the brain, and so on. Hence there is a need to install an invasive 

neurointerface only for the duration of the experiment. Considering the above factors, non-

invasive neurointerfaces have become the most popular.  

The market of neurointerfaces is represented by only a few companies, but due to the 

increase of use and demand for them, over the past 5 years there has been a sharp increase in 

supply of this product. Each manufacturer offers something unique to the consumer – whether 

the number of channels, stationary or portable device, pre-defined indicators or, of course, the 

price [6] (Table 2). 

According to the table it can be seen that the market of neurointerfaces is divided 

between several players who produce devices with different characteristics. Commercially 

available neurointerfaces can be divided into three price ranges: lower range, middle range and 

upper range. At the beginning of the lower price range ($ 100 – $ 1,000) there are devices with 

the fewest sensors, in particular, companies such as NeuroSky and Muse offer neurointerfaces 

that help improve meditation and sleep, although their research potential of such devices is 

significantly limited. Emotiv offers 5- and 14-channel neurointerfaces, which have much 

greater potential for identifying control signals by processing primary signals of brain activity. 

Emotiv also has solutions for 32 channels in the highest price range. All of the above devices 

have a wireless connection, which allows the patient to move more freely. You can order an 
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OpenBCI device and print the headset for it yourself on a 3D printer. The organization strives 

for open access and cost-effective solutions for neurointerfaces, providing enhanced 

opportunities for approach to brain research. 

 
Table 2 

 

Characteristics of available neurointerfaces offered by the market 
 

Indicator 

Manifacturer 
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Price range Lower Middle High 

Price, $ 200 380 
300/ 

850 
800 

7K/ 

20K 
- 2,5K/3K 6,5K 28K - - 

Number of active 

sensors 
1 4 5/14 4/8/16 7/21 8/20/32 9/20 24 32 

32/ 

256 
- 

Non-invasivity Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

Software for 

developers  
Yes Yes Yes No Yes Yes Yes Yes Yes Yes No 

Wireless 

connection 
Yes Yes Yes Yes Yes Yes Yes Yes No No No 

Outputs data on 

smartphone  
Yes Yes Yes No No Yes No Yes No No No 

Outputs data on 

computer  
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Reads EEG Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Reads EMG Yes Yes Yes Yes Yes No Yes No No No No 

Reads ECG Yes Yes No Yes Yes No Yes No No No Yes 

Presence of an 

accelerometer 
No No Yes Yes Yes Yes Yes Yes No No Yes 

Presence of 

gyroscopes 
No No Так No Yes No No No No No No 

SD card support No No No No No Yes Yes Yes No No No 

Control of game 

character  
Yes No Yes Yes Yes No No No No No No 

Heart rate 

monitoring 
Yes Yes No Yes No No No No No No Yes 

Monitoring of 

tiredness 
Yes No No No No No No No No No No 

Monitiring of 

attentiveness 
Yes No No No No No No No No No No 

 

All mid-range neural devices ($ 1,000 – $ 25,000) are research ones. Some companies 

(ABM, mBrainTrain, Neuroelectrics and Wearable Sensing) offer wireless solutions in this 

price range that allow data collection with increased mobility (and increased comfort). In 

addition, ANT Neuro, Neuroelectrics and Wearable Sensing offer the ability to collect EEG 

data without conductive gel, which reduces data collection time.  

In the upper price range (from $ 25,000 and up), there are many devices on the market 

with a large number of electrode channels, ranging from 32 (Brain Product’s ActiCHamp) to 

https://doi.org/10.33108/visnyk_tntu2020.0


Roman Butsiy, Serhii Lupenko 

 

ISSN 2522-4433. Вісник ТНТУ, № 4 (100), 2020 https://doi.org/10.33108/visnyk_tntu2020.04 …....….........….…………… 139 

160 or even 256 channels (BioSemi). This number of channels provides high resolution in the 

recognition of brain control signals. Blackrock Microsystems developments underpin the 

world's most innovative human neuroprosthesis projects. These include projects that allow 

people with paralysis to control robotic manipulators with a high degree of freedom – using 

only their thoughts. The use of two NeuroPort modules gives the researcher access to hundreds 

of neurons and allows recording signals from two different areas in the flow of motoric control 

of the brain. This ensures enhanced neural signal input to the researcher's control algorithms 

and allows the patient to control complex robotic devices. The NeuroPort system comes with a 

multifunctional API that provides the researcher's custom software with an easy way to connect 

to the system and access data over the Internet.  

Signal processing by the neurointerface system can be divided into five stages (Fig. 2): 

signal registration, signal pre-processing, evaluation of signal characteristics, signals 

classification (recognition) and computer interaction [7]. 

 

 

 

Figure 2. Main stages of signal processing by the neurointerface system 

 

Recording of brain signals can be performed using various non-invasive methods, such 

as electroencephalography (EEG), functional magnetic resonance imaging (fMRI), near 

infrared spectroscopy (nIRS) and magnetic encephalography (MEG) (Table 3).  

 
Table 3 

 

Comparison of different methods of signal acquisition in neurointerface systems 
 

 ЕЕG fMRT nIRS МЕG 

Way of 

receiving 

signal 

Electric signal is read 

from the surface of the 

scalp using electrodes 

Metabolic signals are 

recorded by 

determining blood 

oxygenation 

Metabolic signals are 

recorded by 

determining blood 

oxygenation 

Magnetic signals 

generated by the 

electrical activity of 

the brain 

Advantages 

High temporal 

resolution, security, 

availability 

High temporal and 

spatial resolution 
High spatial resolution 

Broad frequency 

range, high temporal 

and spatial resolution 

Disadvantages 

Low spatial 

resolution, artifacts 

from eye movement 

and blinking, 

heartbeat, etc 

Expensive and bulky 

equipment, high data 

collection delay 

Low performance and 

temporal resolution 

Expensive, bulky, 

difficult to install 

 

Electroencephalography (EEG) is the most widely available method of recording brain 

activity in neurointerface systems today. It allows recording electrical potentials on the surface 

of the scalp, which are associated with the work of the brain. Electroencephalography has more 

than a century of history, and although it was originally used more in psychology, medicine and 
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neurology, today this method is widely used in games, human-computer interaction, 

neuromarketing, modeling, and more. In most electroencephalography studies, the EEG signal 

is analyzed in the classical frequency range borrowed from clinical practices: delta-rhythm (1–

4 Hz), theta-rhythm (4–8 Hz), alpha-rhythm (8–14 Hz), beta-rhythm (14–30 Hz), gamma-

rhythm (30–50 Hz), etc. [8]. Rhythm is considered as the EEG signal manifestation in a certain 

frequency range. Rhythm depression is a decrease in the EEG signal without changing its 

frequency response.  

Functional magnetic resonance imaging or fMRI is a type of magnetic resonance 

imaging that is performed to measure hemodynamic reactions caused by the neural activity of 

the brain or spinal cord. This method is based on the fact that cerebral circulation and neuronal 

activity are interrelated; that is, when an area of the brain is active, blood flow to that area 

increases [8]. Nowadays it is one of actively developing type of neuroimaging. Since the early 

1990s, fMRI has become dominant in the field of brain imaging due to its low invasiveness. In 

the article [10] «Sharing deep generative representation for perceived image reconstruction 

from human brain activity» Changde Du, Changying Du and Huiguang He from the China 

Academy of Sciences have demonstrated the new ways of fMRI data analysis. Experts from the 

Beijing Research Center used neural networks, which consistently taught to determine the 

relationship between what a person sees and brain activity recorded by fMRI. Subsequently, 

the neural network learned to reproduce the original image with a high degree of accuracy. 

Near-infrared spectroscopy is a spectroscopic method that uses the near-infrared region 

of the electromagnetic spectrum. Near-infrared spectroscopy technology has low resolution, 

and this can in some cases reduce the performance of the neurointerface, including speed. To 

solve this problem, near-infrared spectroscopy technology is combined with EEG. This type of 

neurointerfaces is also called hybrid. 

Magnetic encephalography (MEG) is very similar to EEG, but it is devoid of some EEG 

shortcomings. With MEG technology, magnetic signals generated due to the electrical activity 

of the brain are recorded. This technology provides a wider frequency range and high spatio-

temporal resolution, but it requires expensive and bulky equipment [11].  

After receiving the signal by one of the registration methods, it is necessary to pre-

process it to clean the signal from noise and artifacts. This stage is also called pre-amplification 

of the signal [7]. Artifacts can be removed using the following methods [12]: Common Average 

Referencing (CAR), Independent Component Analysis (ICA), Common Spatial Patterns (CSP), 

Surface Laplacian (SL), Common Spatio-Spatial Patterns (CSSP), Adaptive Filtering (AF) etc. 

The above methods are most often used in neurointerface technologies (Table 4 [33]). 

CAR is one of the methods, the essence of which is that the potential of the electrical 

signal at each of the electrodes is measured relative to the average value of the electrical 

potential of all electrodes [13]. Studies show that CAR outperforms all pre-treatment methods 

and shows the best results [14]. 

The ICA method was first applied to the EEG by Scott McEig in 1996. ICA separates 

artifacts from EEG signals by decomposing them into independent Gaussian components based 

on the characteristics of the received signal, without relying on reference channels [15]. As a 

result, the method requires significant calculated resources for signal decomposition, but it 

demonstrates high performance when the data size for decomposition is large [16].  

CSP is a method used in signal processing to divide it into additional subcomponents 

that have maximum differences while processing by two different sliding windows [17]. CSP 

uses spatial filtering and uses spatial information to detect patterns in the EEG. This method is 

sensitive to artifacts and electrodes position, so changing the position of the electrodes during 

the experiment can reduce the accuracy of the results. [18]. There is an improved version of this 

method – CSSP. However, like CSP, CSSP is more sensitive to non-stationary EEG.  
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Table 4 
 

Comparison of EEG-signal pre-processing methods 
 

Method Advantages Disadvantages 

CAR 
The most effective of all reference methods, 

easy to implement 

Incomplete coverage of the head with electrodes 

causes problems in calculating the average 

values 

ICA 
Has high computational efficiency for large 

amounts of data 

Requires significant computing resources for 

decomposition 

CSP and 

CSSP 

Does not require pre-selection of subspecific 

ranges and knowledge of these ranges 

Sensitive to artifacts and changes in electrode 

position during the experiment 

SL 
Resistant to artifacts that occur in areas where 

electrodes are not installed 
Sensitive to spline patterns and artifacts 

AF 

Allows changing the characteristics of the 

filter depending on the input signal; filters 

artifacts when superimposing signal spectra 

The result of calculating the root mean square 

filtering error may not always be relevant 

 

The SL method [19] is a spatial filter in which signals (spatially averaged) of its nearest 

neighbors (N, usually 4 or 8) are subtracted from the signal of each channel. This is 

implemented by high-frequency spatial filter that dampens large-scale scalp signals and 

amplifies localized signals.  

AF is a filter that independently adjusts its transmitting function according  

to an optimization algorithm using an error signal. Since the parameters of the adaptive 

filter change during its operation, such a filter can be classified as nonlinear device. However, 

for each fixed value of the parameters, the adaptive filter is a linear device, because between 

its input and output signals usually there is a linear relationship due to the current set of 

weights, similar to linear filters with fixed weights [20]. The disadvantage of a conventional 

filter is that when the signal and noise in the frequency domain significantly overlap, the 

filter removes the useful signal. This problem can be easily solved by means of  adaptive 

filter. That is, artifacts from the EEG signal can be effectively removed using least  squares 

algorithms. Using this algorithm, the optimization of the root mean square error is 

achieved [21]. 

After the stage of amplifying the EEG signal, it is necessary to distinguish its main 

characteristics. To do this, models of adaptive parameters of autoregression (AAR), bilinear 

AAR, multidimensional AAR, fast Fourier transform (FFT), Wavelet transform (WT), wave 

packet decomposition (WPD), etc. are used [12] (Table 5 [33]).  

Autoregressive (AR) methods are used to extract the characteristics of signals in time 

domain. The essence of the method is to reduce the recording time of the signal, which 

increases the resolution in the frequency domain and almost eliminates the problem of 

spectral losses. Most frequently, they are used for processing non-stationary signals (for 

example for EEG). The following auto-regression methods are used for EEG: bilinear AAR, 

multidimensional AAR. The latter method shows the best performance, and achieves a 

classification accuracy of 83% [22].  

Fast Fourier Transform (FFT) is a fast algorithm for calculating a discrete Fourier 

transform. If the direct calculation of the discrete Fourier transform from N data points 

requires O(N2) arithmetic operations, then FFT allows calculating the same result using 

O(N log N) operations. 

Wavelet transforms were introduced by Grossman and Morlett in 1984 [23]. Working 

on the theory of digital signal processing, S. Mallat introduced a new approach to the theory of 
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wavelets, combining the ideas of filtering with mirror symmetry, the pyramidal algorithm and 

the orthogonal basis of wavelets [24]. 

The wave packet is a superposition of monochromatic plane waves formed in such a 

way as to limit the perturbation region [25]. The wave packet decomposition method can stretch 

functions in both the time and frequency domains with an average wavelet conversion factor. 

In Fisher's criterion [26], the coefficients with higher separation are considered effective and 

are formed as a finite vector. It divides the output signal into two subspaces depending on the 

frequency, demonstrates good efficiency in the process of selecting the characteristics of non-

stationary signals, such as EEG [26]. 

 
Table 5 

 

Comparison of methods for selecting EEG-signal characteristics 
 

Method Advantages Disadvantages 

AR (AAR, 

BAAR 

etc.) 

Reduces spectral loss problems and provides 

better frequency resolution; shorter data 

records are required 

Not applicable to non-stationary signal; there 

are difficulties in establishing the properties of 

the model for EEG signals 

FFT One of the best methods for frequency analysis 
Applied only to stationary signals and linear 

random processes; high noise sensitivity 

WT 

Able to analyze the signal with gaps due to the 

variable window size; can analyze signals in 

both time and frequency domains 

Lack of methodology for application to 

comprehensive noise; productivity is limited by 

Heisenberg indeterminance 

WPD Is able to analyze non-stationary signals Long calculation time 

 

Having extracted the necessary characteristics of the signal using the above methods, it 

is necessary to bring the signal into different classes, using classifiers: linear classifiers 

(discriminant analysis, reference vector method), nonlinear Bayesian classifiers, nearest 

neighbor classifiers, artificial neural networks, etc. (Table 6 [33, 36, 37]).  

Linear classifiers use linear functions to classify signals by class. The most commonly 

used linear classifiers are linear discriminant analysis (LDA) and the reference vector method 

(SVM) [27]. 

Linear discriminant analysis is a type of multidimensional analysis designed to solve 

image recognition problems. It is used to decide which variables divide certain data sets. 

Discriminant analysis is close to variance and regression analysis, which also tend to express 

one of the dependent variables in the form of a linear combination of other indicators or 

measurements [28]. The classifier is easy to use and has very low computational requirements. 

If the discriminant function is not in the average value, but in the data variance, then linear 

discriminant analysis cannot be used [29].  

The reference vector method is a method of data analysis for classification and 

regression analysis using controlled learning models with related learning algorithms called 

reference vector machines. [30]. This linear classifier is used by most brain-computer interface 

programs. It was developed by Volodymyr Vapnyk and is controlled by the statistical theory of 

learning, adhering to the principle of minimizing structural risks [30]. The task of this method 

is to provide good generalization, maximizing the performance of the machine, minimizing the 

complexity of the studied model [31].  
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Table 6 
 

Comparison of EEG-signal classification methods 
 

Method Advantages Disadvantages 

LDA 
Does not require high computational resources, 

user-friendly 

Unapplicable if the discriminant function is not 

average; for non-Gaussian distributions, the 

classifier may not retain complex structures 

SVM 
Has higher performance than other linear 

classifiers 
Requires high computational resources 

NBC 
Only a small amount of learning data is required 

to evaluate the parameters 

The classifier is not able to make a sufficient 

estimate for the probabilities of classes 

NNCs 

(k – NN) 

Does not require high computational resources, 

user-friendly 

Low performance when learning set is large; 

sensitive to irrelevant and redundant functions 

ANN 
Low learning requirements; easy to implement 

and learn 

Efficiency depends on the number of neurons in 

the hidden layer 

 

Nonlinear Bayesian classifiers (NBCs) are generative in nature and allow more 

efficient deviations of indeterminate samples than discriminant classifiers. The hidden 

Markov model is most often used in neurointerfaces. This model is a dynamic nonlinear 

Bayesian classifier. The hidden Markov model is a statistical Markov model in which the 

system being modeled is considered as a Markov process with unobservable states [32].  

Neighbor Classifiers (NNCs) assign a vector of class attributes based on the nearest 

neighbors, if the feature vector comes from a learning set, it is called the classifier of k-nearest 

neighbors [33]. This is a simple non-parametric classification method, where distances 

(usually Euclidean) are used to classify objects within the property space, calculated for all 

other objects, objects with the smallest distance are selected, and they are allocated to a 

separate class [34]. The classifier of k-nearest neighbors is very simple to understand, 

implement and debug [32]. 

Artificial neural networks (ANNs) are nonlinear classifiers that consist of a large 

number of interconnected simple elements, so-called neurons. Neurons receive an input, 

change their internal state (excitation) according to this input, and produce an output that 

depends on input and excitation. The network is formed by connecting the outputs of certain 

neurons with the inputs of other neurons with the formation of an oriented weighted graph. 

Weights, as well as functions that calculate excitation, can vary in a process called learning, 

which is guided by the rule of learning [35]. The most commonly used is multilayer 

perceptron neural network (MLPNN), in which the network consists of three layers, namely 

the input layer, the hidden layer and the output layer. In practice, the required number of 

neurons in the hidden layer is determined by trial and error. 

Approach to a reasonable choice of methods, hardware and software for the 

development of neurointerface systems in the applied areas of their possible application.  

Based on the above material concerning the comparative analysis of methods and tools 

of neurointerface systems, there can be offered the following generalized approach to a 

reasonable choice of methods and software and hardware for the development of 

neurointerface systems in the field of their possible application.  

First of all, it should be taken into account that signal processing by any neurointerface 

system is basically divided into five stages: signal registration, signal pre-processing, 

evaluation of signal characteristics, signal classification, and computer interaction. Selection 

of signal processing methods in the first stage will determine the choice of signal processing 

methods in the future. When choosing methods based on EEG registration as one of the most 
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available options, attention should be payed to the optimal number of channels and type of 

electrodes for research, as this will depend on the spatial resolution and sensitivity of the 

resulting neurointerface system. Also, the choice of the number and type of electrodes will 

determine the time of the experiment, because setting electrodes needs application of a special 

conductive gel, so extra time will be spent. In contrast, dry electrodes are easy to install, but 

have less sensitivity.  

The next important step is to choose the method of signal pre-processing. For example, 

the CAR method is the most efficient of all reference methods and easy to implement, but if 

the previous stage EEG with insufficient channels was chosen, the CAR method is not 

suitable, because incomplete coverage of the head with electrodes causes problems in 

calculating the average values of space-time signal.  

Using the above principle of method selection and combining them at each stage, 

better results can be always achieved when developing neurointerface systems. In the future, 

this will allow the development of a neural interface that will simplify the interaction with 

computer operating systems, which in turn automates the interaction with both household 

appliances and complex systems in medicine and other areas of human activity.  

Conclusions. In the article, the existing neurointerfaces are compared, namely, 

different price segments of the market are considered and the relevant products from different 

manufacturers of neurointerface systems are compared, in particular, companies such as ANT 

Neuro, Neuroelectrics and Wearable Sensing, ABM, Blackrock Microsystems and 

mBrainTrain.  

Based on five main stages developed in the process of signal processing in the 

neurointerface information systems of human-machine interaction, namely, signal 

registration, pre-processing of signals, evaluation of signal characteristics, classification 

(recognition) of signals and computer interaction, a comparative analysis at each of these 

stages of known methods and means of neurointerface technologies is made. In particular, the 

analysis of such typical methods of signal registration as electroencephalography, magnetic 

encephalography, functional magnetic resonance imaging and near infrared spectroscopy, 

which allowed to establish a number of significant advantages of electroencephalography as 

a promising method of non-invasive neurointerface technologies, is carried out.  

In the context of signal pre-processing, advantages and disadvantages of such methods 

as Common Average Referencing, Independent Component Analysis, Common Spatial 

Patterns, Surface Laplacian, Common Spatio-Spatial Patterns and Adaptive Filtering are 

considered. At the stage of evaluating the informative characteristics of the signal, the 

analysis of models and methods based on the models of adaptive parameters of 

autoregression, bilinear autoregression, multidimensional autoregression, fast Fourier 

transform, wavelet transform, wave packet decomposition is performed. Besides,  a 

comparative analysis of the most common methods of identification (recognition) of control 

effects of the human neurointerface operator, namely, the method of discriminant analysis, 

the method of reference vectors, nonlinear Bayesian classifiers, classifiers of nearest 

neighbors, artificial neural networks is carried out. 

Based on the comparative analysis of known methods and tools of neurointerface 

systems, a generalized approach to a reasonable choice of methods and software and hardware 

in the development of neurointerface systems in various application areas of their possible 

application is suggested. 
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ТЕХНОЛОГІЙ ДЛЯ ЗАДАЧІ ОБҐРУНТОВАНОГО ЇХ ВИБОРУ В 

ІНФОРМАЦІЙНИХ СИСТЕМАХ ЛЮДИНО-МАШИННИХ 

ВЗАЄМОДІЙ 
 

Роман Буцій1; Сергій Лупенко2 
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Резюме. Ринок сучасних нейроінтерфейсів, не зважаючи на свій активний розвиток, нажаль, 

може запропонувати користувачам лише ряд діючих прототипів, які мають відносно низьку точність 

та достовірність ідентифікації керуючих впливів людини-оператора. Крім того, будь-який 

нейроінтерфейс, що представлений на ринку, потрібно індивідуально підлаштовувати під кожну людину-

оператора, що ускладнює об’єктивізацію його показників точності, достовірності та надійності 

функціонування. Першим етапом вирішення вищезгаданих проблем є проведення компаративного аналізу 

різних цінових сегментів ринку існуючих нейроінтерфейсних технологій, що і зроблено у даній праці. В ході 

дослідження ринку виявлено, що не зважаючи на недоліки електроенцефалографії вона є одним з 

найдоступніших неінвазивних методів реєстрації біологічних сигналів у нейроінтерфейсних системах. 

Для полегшення майбутніх досліджень, було розглянуто та проаналізовано основні переваги й недоліки 

відомих моделей і методів аналізу сигналів в нейроінтерфейсах. Зокрема, в контексті попереднього 

опрацювання сигналів розглянуто недоліки та переваги таких методів, як Common Average Referencing, 

Independent Component Analysis, Common Spatial Patterns, Surface Laplacian, Common Spatio-Spatial Patterns 

та Adaptive Filtering. На етапі оцінювання інформативних характеристик сигналу проведено аналіз 

моделей та методів, що ґрунтуються на моделі адаптивних параметрів авторегресії, білінійної 

авторегресії, багатовимірної авторегресії, швидкого перетворення Фур'є, вейвлет-перетворення, 

розкладання хвильових пакетів. Також здійснено порівняльний аналіз найпоширеніших методів 

ідентифікації керуючих впливів людини-оператора нейроінтерфейса, а саме, метод дискримінантного 

аналізу, метод опорних векторів, нелінійні баєсівські класифікатори, класифікатори найближчих сусідів, 

штучні нейронні мережі. На основі наведеного матеріалу запропоновано узагальнений підхід до 

обґрунтованого вибору методів, моделей та програмно-апаратних засобів для розроблення 

нейроінтерфейсних систем у прикладних областях їх можливого застосування. Проведене дослідження 

нейроінтерфейсних технологій надає дослідникам додаткові підстави щодо обґрунтованого вибору 

математичного, програмного та апаратного забезпечення нейроінтерфейсних систем, а також сприяє 

розроблення їх нових версій із підвищеними показниками точності, достовірності та надійності. 
Ключові слова: нейроінтерфейс, компаративний аналіз, опрацювання сигналів, 

електроенцефалограма. 
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