BicHuk TepHONiIbCHKOT0 HALIOHATBLHOI0 TEXHIYHOT0 YHIBEPCHTETY
https://doi.org/10.33108/visnyk_tntu

/7~ \
ﬂly Scientific Journal of the Ternopil National Technical University
\J 2020, N2 3 (99) https://doi.org/10.33108/visnyk_tntu2020.03

ISSN 2522-4433. Web: visnyk.tntu.edu.ua

UDC 539.4

EVALUATION OF THEORETICAL STRENGTH OF POROUS
MATERIALS ACCORDING TO CATASTROPHE THEORY

Mykola Stashchuk!?; Zinoviy Nytrebych?; Roman Hromyak®

1.2Karpenko Physico-Mechanical Institute of the National Academy of Sciences

of Ukraine, Lviv, Ukraine
2L viv Polytechnic National University, Lviv, Ukraine

3Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

Summary. With the rapid development of modern science, in particular, applied mechanics, the
catastrophe theory proved to be quite effective in the analysis of classical results and the development of modern
ones. This theory has developed significantly in the study of a number of issues in the theory of elastic stability,
which studies the response of elastic bodies and structures to existing mechanical loads. Catastrophe theory
predictions have important technical applications for estimating the critical forces that initiate the loss of stability
of elastic bodies and engineering structures. The main basics of the research are analysed in this paper; based on
the catastrophe theory, the problems are set; the main types of catastrophes’ functions are described; and the
simplest of them, in particular the fold catastrophe, is applied. Based on the set analytical relations for the
calculations of effective electrical conductivities and elastic modules by the pore concentration of the electrically
conductive material, the estimation of the element strength of the composite sample is simulated in the form of a rod.
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Introduction. Prediction of the strength of materials, as well as the performance of
products and structures made of them, usually involves the use of a series of analytical studies.
The priority is to define critical values of strength, nominal stresses, as well as critical
deformations. The values of these parameters gain special importance due to the inhomogeneity
of their structure inherent in the respective materials, for example, porosity, various impurities,
technological inclusions or other stress concentrators. The vast majority are functionally
inhomogeneous materials [1, 2], which are porous. Therefore, the objective of this paper is to
develop analytical dependences for determining the theoretical strength of elastic materials with
consideration of their porosity.

Analysis of available investigations and publications. The initial sources in the study
were the mathematical theory of catastrophes and analytical relations concerning the porosity
of materials. Catastrophe theory is an applied mathematical theory, which has been actively
developed recently. Nowadays, together with the methods of systems analysis, it has become
an effective tool for qualitative research on the reliability and durability of machine parts and
structures. This science combines the theory of singularities of smooth surfaces by H. Whitney,
the theory of stability and bifurcations of dynamical systems by A. Poincare, A. Lyapunov,
A. Andronov. Its appearance and name are the result of research conducted by the French
mathematician R. Tom [3]. The studies of V. I. Arnold [4, 5], T. Poston, I. Stewart [6],
A. Campo [7, 8], Ye.S. Ziman [9], R. Gilmore [10], J. M. T. Thompson [11] and others
influenced greatly the development of methods of catastrophe theory.
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Catastrophe theory studies a sudden, abrupt change in the state of a specified system
caused by real changes in external influences, and contains significant potential for describing
the phenomena of loss of its stability.

General statement of problems based on the catastrophe theory. In mathematical
formulation, catastrophe theory studies the qualitative nature of the dependence of solutions
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on parameters C,, called control parameters. In a simplified version, the task of catastrophe
theory is to study the dependence of the equilibrium state Y; of a certain potential function

V (Y;.C, ) of the corresponding process on the change of parameters C, .

The catastrophe theory is rather often applied in science and technology [6, 10]. At the
same time, it is not developed enough in the direction of research on the destruction of elastic
bodies, in particular the theory of strength.

A significant number of tests of materials for strength and fracture indicate that the
nature of the behaviour of the phenomena under study is nonlinear [12]. This is due to the
presence of critical external factors. Their excess leads to significant deviations of the
equilibrium of elastic bodies from the steady state, to periodic changes in the process of
accumulation of damage, and to abrupt changes in their states. Such a number of factors can be
considered in the catastrophe theory application [6] in order to assess the stability of solid
deformable bodies before their destruction.

Brief description of the major catastrophe functions. The local behaviour of a

potential function V (X,C), determined by the initial members of its Taylor series, is
investigated by reducing it to some canonical form. In addition, a number of theorems of
functional analysis are used. Thus, to develop the canonical form of a potential function at a
noncritical point(xo,co), that is, the point at which VV =0 (szﬁ — Hamilton

1 1
operator), the theorem on implicit function is used; at the wusual critical point

i7]
(VV =0, detV; =0) —splitting lemma [14]. If the number of control parameters C, does

) #0) — Morse lemma [13]; at the degenerated critical point

not exceed 5 (K < 5), then, according to Tom's theorem [3], there is such a smooth substitution
of variables that the potential function can be written in the form:

V=00 + Y40y @
j=l+1

if @(l,k) — catastrophe function (catastrophe), | — the number of eigenvalues of the matrices

Vij , 11- — constants, which also depend on the control parameters C, , k — number of control
parameters.

ISSN 2522-4433. Bicnux THTY, Ne 3 (99), 2020 https://doi.org/10.33108/visnyk_tntu2020.03 .........cccecvmvvrrvverierer e e e 45



Evaluation of theoretical strength of porous materials according to catastrophe theory

Tom proved that if kK <5, there are seven types of function ®(l,k) — elementary

catastrophes. Consider the simplest of them — a fold catastrophe.
The potential function, for which a fold catastrophe can occur, should be summarized
as follows:

V(z,M):%z3’+Mz+c, ?)

if z — state variable, M — control parameter, ¢ — constant. The critical points of this function are
dv

derived from the condition = _ g, that is
dz
2> +M =0, 4
and twice degenerated critical points — from the condition ﬂ _o. thatis
dz?
z=0. )

Equation (5) indicates the existence of two critical points of the function V if M <0, one

of which Z =+/— M is the minimum point of this function and corresponds to the steady state
of the system (Fig. 1).
vy M0 The change in the parameter M is accompanied
by a smooth change in the depth of the minimum
of the function V, which has no critical points if
M> 0. That is, the point M = 0 is a point that
/ﬁ divides the functions of two qualitatively different
classes. If condition (5) is satisfied, then the
B g minimum of the function V disappears and passes
M ) into the inflection point with the horizontal
tangent. Thus, the system abruptly passes from a
stable equilibrium state to an unstable one.
Figure 1. Nature of the change in potential Therefore, the condition of the fold catastrophe is
function a simultaneous execution of equations.

M=0
z=0 } ©)

Based on relations (6), the theoretical strength of a porous composite can be easily
estimated by its known effective mechanical characteristics.

Calculation of porous composite strength based on effective modulus of elasticity
and fold catastrophe. The vast majority of materials and composites are porous. Therefore,
calculations of the theoretical strength of such materials are carried out taking into account the
concentration of pores present in them. The calculation can be made applying efficient stiffness

characteristics G — effective shear modulus, Eeﬁ.p_ — effective Young's module,

eff.p.:
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Hett . — effective Poisson's ratio of composites, which should be dependent on the volume

concentration of pores.

Determining the effective stiffness characteristics of electrically conductive materials
becomes possible by means of non-destructive measurements of their electrical conductivity.
However, currently, there are no analytical and experimental approaches, which establish close
relationships between conductive and mechanical characteristics of conductive materials.

Assumedly, the volume concentration of the pores is small enough as compared to the
total volume of the material. Each pore has an ellipsoidal shape. The authors also believe that
under the action of external loads of deformation and displacement of its elements at each point
of the volume occupied by it, the basic equation of the linear theory of elasticity is satisfied. An
analytical relationship between porosity, on the one hand, and stiffness, on the other, should be
determined.

Based on independent solutions of the corresponding boundary problems of
electrostatics and micromechanics of composite materials, the porosity indexes are defined. The
essence of the proposed approach is to compare them. As a result, relationships are found
between the required material characteristics.

To found the analytical relations for calculating the effective electrical conductivity and
porosity of the electrically conductive material, the model problem of electrostatics on the
conductivity of a continuous conductive medium with an electrically conductive elliptical
inclusion should be considered. The authors argue that the continuous current components
occur at the boundary of heterogeneous media, i.e.

J nl = J n2 (7)
and the components of the electric field strength are equal
Erl = ErZ- (8)

Assumedly, a homogeneous electrostatic field is specified. The effective electrical
conductivity of the specified composition should be found.
The equations of stationary field of such a problem are deduced:

divj =0. rotj =0 ©)

—

j—ocE=0 (10)

where the parameter o, which is responsible for the electrical conductivity, takes the value

{01,02}, and o7 — conductivity of the matrix; o, — conductivity of the elliptical fiber.
Based on the theory of functions of a complex variable [15], as well as the results

of [16, 17], after the necessary calculations, the complex-valued functions of current jl(z) and

jz(z) are determined in the matrix and fiber, respectively. Based on the further averaging of

field quantities with consideration of Ohm's law and the concentration C of elliptical fibers,
the effective electrical conductivity of the material in the directions XX, XY, VY is deduced:
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n m—n)?
(01+02)2 mn) 010,
Uxxef.pZO;
(0'1—02)(”01+o-2}
O yyeff .p. = 01 1-cM*n m 5 (11)
- m 2 (m—n)
(01+52) T%O’z

Based on relations (11), the effective electrical conductivities of a medium with pores
of a certain concentration can be calculated. Thus, if the conductivity of the pores is assumed

to be zero, ie. o, =0, the working formulas for calculating the effective electrical
conductivity of porous material with pores of elliptical shape are developed:

m+n
O xxeff .p. = O1 1-c n

m+n
O yyeff .p. = O1 l-c - (12)

In what follows, the assumption is that pores with a circular cross-section predominate
in the porous material. Then, based on relations (12) for the theoretical calculation of the planar

concentration of pores Cg , the formula is deduced

O, — 0O
e =~ (13)
20,

if 01y — conductivity of the medium, Ot [, — conductivity of the porous medium.

After the transition from planar Cg to volumetric G, by the obvious formula

cs =c® (14)

the calculation formula for determining the volume porosity coefficient is deduced

1 Geff.p. ’
o) o

Based on formula (15), the relationship between mechanical and electrical characteristics of
materials can be easily found.
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Functional dependences between physical — mechanical and electrical
characteristics of materials. Similar relationships between the volume coefficient of porosity
and the stiffness characteristics of the composite material applying the linear theory of elasticity
follow from the results of [18-19]. After comparing the corresponding values of the volumetric
porosity coefficients, expressed in terms of effective stiffness and electrical conductivity
characteristics, in order to calculate the effective shear modulus of the porous composite
material, the ratio is developed

Geff.p. 3 Gm, (16)
O,
1 eff .p.
2f [ j

if G, — shear modulus of the material without pores. Taking into account the individual

characteristics of the structural elements and the presence of pores, the shear modulus of the
composite material is determined by the formula

G, (17)

here o, — specific electrical conductivity of the composite matrix; o, — specific electrical
conductivity of reinforcement elements; C, — concentration of reinforcing material.

It should be noted that the parameter o, in formula (17), as well as all other

characteristics of the two-component material with index a can be determined by the rule of
mixtures

An = VA, +(1-V)A,, (18)

if V' — reinforcement concentration factor, A, — characteristic of the matrix,

A. — characteristics of the main composite material.
To calculate the effective Young's modulus according to this technique, a formula is

deduced
3
1 1 O-eff p.
2J_

5 E, 4G, - L Cern )
zfe 24G, —5E c

m

E, (19)

eff . p. =
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if E,,, —Young's modulus of material without pores. Providing % = 2(1+ ,u), then, formula
(19) takes the form

3
1 O-eff.p.
1-—— || 1-
22 ( Om j
3
i [ oan
V2 7-5u Om

For the average value x=0.25, a simplified formula is deduced

E E,, (20)

eff .p. =

317G ¢ (21)

P 7140960, ™

l . Based on the above relations for the effective
parameters and provisions of the catastrophe
theory, the element of the composite sample

: is simulated in the form of a length rod |.
E The cross-sectional area of such a sample is

-

denoted by So. Supposedly, a load of

e —————
™~
iy
~3
N

77N magnitude is applied to this composite
/ ™\ element, as shown in Fig. 2. The material
| @ | under study is assumed to have a modulus of
/ ..
\\;‘5__/ elasticity Eeff .p.» Shear module Geff .p.and

Figure 2. Scheme of loading of a composite Poisson’s ratio Heff p. The presence of

element pores is already taken into account.

Assumedly, X is the magnitude of the longitudinal compression of the sample under
the action of force P . Then, to the nearest constant, the energy of the system

X xdx
I1

W =Px+
0

(22)

if T1=1/(E¢q S )~ flexibility of the elastic system.
This pliability is considered dependent on compression X in accordance with the expression

| l_|X
—X
M=_—"7" = — & (23)
Eeﬁ.p.(SO+AS) 1+§
SO
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if IT,=1,/\E Sy ) — initial pliability of the porous composite rod. Considering that
0 0 eff .p.~0

AS X
— = 2ot . I— ,and X << IO, neglecting a member x? , the energy of the rod is presented

S0 0

in the form
1_IX I
=11, 0 1 . (24)
1+ 2 — it
lo
Here
1+2u
a=—— P (25)
lo
Terefore, the energy (22) of the system composite «load-rody is found
W:PX+LX2+LX3 26
211, 31, (26)
The substitution is
1
X=27——. (27)
2a
As a result, a potential catastrophe function is developed
z° 1
V="—-—-(1-4all,P)z+N, (28)
3 4a’®

WIT, . .
and V = ; N — a permanent member that is independent on Z . Equation (28) fully
a

corresponds to the canonical equation [6, 10]

1
V:§z3+Mz+N (29)
for fold catastrophe if
1
M = ——(1-4all,P). (30)
4a

According to the catastrophe theory, the values M =0 and z = 0 correspond to the
critical state of the rod, i.e. its destruction. Therefore, the critical load is
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P - 1 _ Eett.p. S0 .
“ " AMa 4(1+2yeﬁ.p.)

(31)

Also, the size of the critical compression is

1 l,

X e
- 2a 2i1+2yeﬁ_p.i (32)

and critical rated voltage

P Eett pS
O¢r. = T = 120 (33)

So B 4(l+ Zlueff.p.).

Expressing the effective stiffness characteristics on the basis of formulas (16)—(17) and
(19)-(21) through the usual ones, we obtain appropriate engineering working formulas for
determining the critical parameters of porous composite fracture. Based on such formulas, the
methods of assessing the load-bearing capacity and durability of structural elements can be
improved with consideration of the existing porosity in real composites. In particular, this
becomes necessary when studying the effect of hydrogen on stress [20] in the materials and the
corresponding analysis of experimental studies of the hydrogen degradation of nickel heat-
resistant alloys. [21, 22]. The obtained results for porous materials allow us to evaluate [23-25]
the distribution of hydrogen near the fracture-like defect in the porous material, which is
important for solving a number of problems of hydrogen energy.

Conclusion. Based on the catastrophe theory, the general decision for solving the
problems of the theory of elasticity and mechanics of destruction is made. According to the
standpoint of the catastrophe theory with the use of catastrophe folds, the compressive strength
of the material is estimated. The basic working formulas to establish rigid effective
characteristics depending on electrical conductivity, modulus of elasticity and porosity of
composites are developed. The values of critical load and critical nominal stress for a composite
cylindrical rod as a sample for experimental studies are found. The application of the given
results to the development of hydrogen-saving technologies is indicated.
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VIIK 539.4

OLIHIOBAHHA TEOPETUYHOI MIIIHOCTI IOPUCTHUX
MATEPIAJIIB 3A TEOPIEIO KATACTPO®

Muxoaa Cramyk'?; 3inosiii Hurpe6uy?; Poman I'pom’sk’

L2Dizuxo-mexaniynuii incmumym imeni I'. B. Kapnenka HAH Yxpainu,
JIveis, Yrpaina
2Hayionanvhuii ynieepcumem «J/lvgiscoxa nonimexuixay, Jlvgis, Yxpaina
3Tepuoninbcokuti HAYIOHANLHUL MeXHIYHUU YHIGepcumem imeri leana Ilynios,
Tepnonins, Yrpaina

Pesztome. Ocobnu6o20 3nHayenHs 6 0OCMaHHi poKu HaOYeae NPUKIAOHA MAMeMamuyHa meopis — meopis
Kkamacmpog. Y noeonanni 3 KnacuuHuMu ma Cy4achumu Memooamu CUCMeMHUX 00CiONcetb ys meopia cmana
e exmusHUM RPAKMUYHUM THCMPYMEHMOM AKICHO20 AHANIZY HU3KU PDIZHOMAHIMHUX npoyecie ma Aeuuy. 3HauHo20
PO3BUMKY Meopis Kamacmpog Habyna y 6usUeHHi NUMAHb Meopii NPYAHCHOL CMIUKOCMI Mamepianis, aKa 6Uuae
Deaxyiro Npys’CHUX min i KOHCMPYKYiti Ha Oitoui MeXAHIYHI HABAHMAICEHHI MA YMOICTUBTIOE OYIHIOGAHHS IX
miynocmi U Haoiunocmi. Ilpoenosu meopii kxamacmpod maromv 6adxciuge MmexHiuHe 3ACMOCY8AHHS OJis
OYIHIOBAHHS KPUMUYHUX CUJL, KT IHIYII0I0Mb 8Mpamy CMIUKOCmI NPY*CHUX MiL Ma iHoceHepHux cnopyd. Y pobomi
KOPOMKO NPOAHANI308AHO NEPUIOOCHOBU OOCTIONCEHD, 3p0DIEHO NOCMAHOBKY 3a0ay Ha 0CHO8I mopii kamacmpodp,
ONUCAHO OCHO8HI Munu Kamacmpo@ @YHKYill, a MAKOHC SUKOPUCINAHO HAUNPOCMIWLY 3 HUX — KAMAacmpogy
CKIAOKu. 3a  6CMAHOGIEHUMU — AHANIMUYHUMU — CHIBGIOHOWEHHAMU  ONA  PO3PAXYHKIE — e(eKmuHux
eNeKmMpPonposioHoCmell | HPYICHUX MOOYII6 3a KOHYEHMPAYIClo Nop eleKmponposioHo2o Mamepiany
3M00€1bOBAHO OYIHKY MIYHOCMI eNeMenma 3paska NOpucmoz0 KOMRO3Umy y 6uenadi cmepiicHs. 3pobieHo
3a2anbHy NOCMAHOBKY GUPIWEHHA 3a80aHb Meopii NPYICHOCMI Ma MexXaHuiku pYUHY8aHHs HA OCHOGI meopii
Kkamacmpog. 3 noszuyiii meopii kamacmpog i3 GUKOPUCMAHHAM KAMACMPODU CKIAOKU OYIHEeHO MiYyHiCmb
mamepiany wooo cmitikocmi Ha CmMuck. 3anucano ocHo6Hi poooui opmynu Onsl 6CMAHOBIEHHS HCOPCMKICHUX
eheKMUBHUX XAPAKMEPUCIMUK, 3ANEHCHUX 6i0 eNleKMPONPOGIOHOCMI, MOOYII8 NPYICHOCMI mMd NOPUCMOCHIE
KOMRO3Uumis. Bcmanoeneno sHavyenHs KpumuyHo20 Ha8aHMAdMiCeHHs Ma KPUMUYHO20 HOMIHAbHO20 HANPYICEHHS
011 NOPUCMO20 KOMNOSUYITIHO20 YUNTHOPUYHO2O CMEPIICHA AK 3DA3KA Osi eKCNEPUMEHMANbHUX 00CHI0NCEHD.
Brazano 3acmocysanns nagedenux pesyrvbmamié 00 PpO3pOONeHHS 600eHb30epieaouux MmMexHonNozil, oe
BUKOPUCNOBYIOMbCS NOPUCIE MAMEPIaTU.

Knwuoei cnosa: miynicms, meopisn xamacmpogh, nema Mopca, xamacmpoga ckiadku, Qyuxyis
Kamacmpogu, 06°emHa KoHyenmpayis nop, KpumuyHe HOMIHAAbHE HANPYICEHHS, NOPUCTIULL KOMNO3UM,
eghexmugHi enemponposioHoCmi, iHCeHepHi popmynu.
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