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INTRODUCTION

Strength of materials is the science of engineering methods for calculating
the strength, rigidity and durability of machine and structure elements.

Elements of mechanical engineering and building structures during
operation are subjected to the force action of different nature. These forces are
either applied directly to the element or transmitted through joint elements. For
normal operation of engineering structure or machine, each element must be of
such sizes and shapes that it can withstand the load on it, without fracture
(strength), not changing in size (rigidity), retaining its original shape
(durability).

Strength of materials is theoretical and experimental science. Experiment
— theory — experiment — such is the dialectic of the development of the science
of solids resistance to deformation and fracture. However, the science of
strength of materials does not cover all the issues of deformable bodies
mechanics. Other related disciplines are also involved: structural mechanics of
core systems, elasticity theory and plasticity theory.

Strength of materials is general engineering science, in which, on the
basis of experimental data concernimg properties of materials, on one hand, and
rules of theoretical mechanics, physics and higher mathematics, on the other,
the general methods of calculating rational sizes and shapes of engineering
structures elements, taking into account the size and character of loads acting
on them are studied.

Strength of materials tasks are solved by simple mathematical methods,
with a number of assumptions and hypotheses, as well as with the use of
experimental data.

Strength of materials has independent importance, as the subject,
knowledge of which are required for all engineering specialties. It is the basis
for studying all sections of structural mechanics, the basis for studying the
course of machine parts, etc. Strength of materials is the scientific basis of
engineering calculations, without which at rescent time it is impossible to
design and create all the variety of modern mechanical engineering and civil
engineering structures.

The peculiarity of this course book is its focus on performing the term
paper in strength of materials, which includes 14 tasks covering the entire
course. The manual summarizes the main material for the topic of each task,
outlines the statement of the task, and examples of solutions.

The appendices provide the example of term paper structure (title page,
contents, example of solving the task) and reference materials needed for its
performance. All this will contribute to deeper course learning and independent
performance of the term paper.



How to choose the task

The student chooses term paper assignment according to the last two
figures of the credit book number; number of calculation scheme is chosen
according to the last figure; option (data from the task statement table) is the
second to the last figure.

The term paper in strength of materials contains 14 tasks (the number of
task can be changed by the instructor), which cover the entire course. It should
be performed in the form explanatory calculation note on A4 sheets.

The title page should be drawn or computer typewritten on the
appropriate form.

The first page of the term paper is the title page, the second is the content
which includes the list of completed tasks; next are the task statement terms, the
tasks solution and references.

The statement of each task with the selected data and the scheme should
be recorded on the separate sheet with a frame 40 mm. The task solution should
be presented after task statement on sheets with 15 mm frame.

The text of the note should be presented sequentially, concisely, the
calculations should be accompanied by brief explanations with reference to the
relevant figure. The style of note text presentation should be concise, clear and
without ambiguity. The terminology in the text must meet the standard of the
scientific technical literature.

The text of the explanatory note should be placed on one side of the A4
(297x210 mm) sheet. The distance from the border to the borders of the text on
the left and right must be at least 5 mm, top and bottom are 10 mm. Paragraphs
in text begin with a space of five characters in the body of the note. Type the
text with 1,5 intervals in clear fonts of at least 2,5 mm in height (14 pt, Times
New Roman font) or handwritten in black ink in basic lettering and letters at
least 2,5 mm high. Explanatory notes may be written in clear legible
handwriting in black ink.

Start counting from the cover page, but do not put the number on the
cover page. Page numbering is continuous.

Formulas in the text must be written from the new line in the general
form, and under the formula the explanation of each character, indicating size
and dimension should be given. Calculate formulas in the following order:
writing the desired value in the alphabetical expression, substituting the
corresponding numerical values and recording the final result indicating the
dimensions.

Make all the diagrams and sketches of the term paper on separate page or
two, if necessary, in accordance with the sequence provided by the solution
course. Figures should be enumerated according to the task number and
accompanied by indexes.



1. BASIC CONCEPTS OF STRENGTH OF MATERIALS

Strength of materials problems
Strength of materials is the science of engineering methods for
calculating the strength, rigidity and durability of machines and structures
elements.
Structures are all material objects of technology, their parts and details.
Strength is the ability of material or structure to withstand mechanical
stress without fracture

P max S[p],
where p... is maximum stress;
[p] is allowable stress.

Rigidity is the ability of the structure and its elements to withstand elastic
deformations, i. e. the ability to perceive external loading without changing the
geometric dimensions and shape

frax <[],

max —

where f_,, IS maximum deformation (displacement);

[f] is allowable deformation (displacement).

Durability is the ability of the structure or its elements to retain, under
the action of given forces, the initial shape of the elastic equilibrium.

The objective of the strength of materisals course:

a) to learn to determine correctly the type of deformation on which the
part or structure operates according to the calculation scheme;

b) to determine the most dangerous section by pre-plotting internal force
factors;

c) to determine the dimensions of the cross-section with appropriate
strength or rigidity and, in some problems, allowable load or maximum stress,
and to carry out the strength test.

Calculation objects in strength of materials

All elements of engineering constructions and structures can be reduced
to the following typical simplified elements: rods, shells, plates, massive
bodies. According to them, the calculations in the strength of materials are
carried out.

Rod (bar) is a body of prismatic shape where one size (length) is much
bigger than the other two (transverse) dimensions.

Thin-walled rods (channels, angles, I-beam) are bodies in which the wall
thickness is much smaller than the overall dimensions of the cross-section.



Examples of rods: shafts, axles, beams, pipes, rails, curvilinear elements
(screw springs, hooks, chain elements).

Plate is a prismatic (cylindrical) body in which one size (thickness) is
much smaller than two others.

Examples of plates: plane bottoms and covers of tanks, chemical
production facilities, floor slabs.

Shell is a body restricted by two curvilinear surfaces, the distance
between which (thickness) is small in comparison with other dimensions. This
is a plate with curved middle surface. Examples: walls of thin-walled tanks,
walls of boilers, domes of building structures, hulls of aircrafts, rockets,
submarines.

Solid (massive body) is the body dimensions of which are of the same
order in all (three) directions. Examples: foundations of structures, retaining
walls, foundations of powerful presses and machine tools.

Classification of external loads

External loads are classified:

1. By the action nature — static, dynamic.

Static is the load which values, direction and place of application remain
constant.

Dynamic are loads that are characterized by rapid changes in their value
in time, direction, or place of application.

2. By nature of application (Fig. 1.1):

a) F, Q, R — concentrated forces [N, kN, MN |;

b) M, T — moments [Nm, kNm, MNm |;
c) q, w — distributed on line [N/m, kN /m].

F g M
EEERERE
/2
Z Voo [ |%
[
- Figure 1.1 B

Calculation scheme is the real object, free of insignificant features. More
than one calculation scheme may be developed for the same object, depending
on the load features and operating conditions.



The main types of deformation

All existing bodies under the influence of external forces are able to
change their size and shape, i.e. to deform.

In strength of materials we distinguish tensile deformation (compressive),
shear, torsion and bending. Different types of deformation in the cross-sections
of the body have different internal force factors.

1. Tensile-compressive is a type of deformation in which only
longitudinal (axial) force N occurs in the cross-sections of a straight bar.

The stretching bar is called a rod.

Elements subjected to tensioning are such structural elements as ropes,
bolts, cables, truss rods, piston rods. Brick masonry, foundation, columns,
punches work on compression.

2. Shear is a type of deformation, at which in the cross-section of the rod
(bar) only shear (cutting) force Q acts. The shear deformation results in
material fracture. Rivets, bolts, keys, seams of welded joints undergo shear.

3. Torsion is a type of deformation in which only torque moment ™ 5,

acts in the cross-sections of the rod. The circular cross-section rod (bar)
transmiting power during rotational motion is called the shaft. Torsion is often
accompanied by bending or other deformation.

4. Direct lateral bending is a type of deformation in which the bending
moment M g, and the shear (cutting) force Q occur at the cross sections of the

beam. The bending rod (bar) is called the beam. This bending occurs in axes,
bridge and floor beams, gear-wheel teeth, leaf springs.

5. Complex strength is the combination of two or more simple types of
deformation, such as: bending + torsion; compression + bending, etc.

Internal power factors. Section method. Diagram

Internal force factors are internal forces of interaction between particles of
the body that occur during the action on the body of external forces, and
prevent changes in the distances between the particles and the fracture of the
body. They are called forces. External forces applied to the structural element
and reactions at the places of supports attachment, that is, active and reactive
forces are called loads.

In order to determine the magnitude of the internal forces (force factors)
occuring at the section of the rods, the cross-section method is used.

The section perpendicular to the axis of the bar is called normal or shear;
the section drawn at any other angle, is called oblique or inclined.



The method of sections is that the elastic body (rod), which is in
equilibrium under the action of external forces system, is imaginary cut by the
plane into 2 parts (Fig. 1.2 a). Any of them are neglected. The remaining part is
considered as the independent body, which is in equilibrium while applying to
it the internal forces of interaction (effort) arising between the two parts of the
body under the influence of external forces (Fig. 1.2 b). Internal forces replace
the impact of the neglected part of the rod (bar) on the rest. It is fundamentally
irrelevant which part of the body is neglected.

VR AR
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Figure 1.2

In the general case of loading the rod (bar) in its cross-section, six internal
force factors occur:
N, is longitudinal (normal) force acting along the axis of the rod
(bar), perpendicular to the section plane;

Qy, Q, are shear (cutting) forces tangent to the section plane, trying to
move one part of the rod (bar) relatively to the other in the
directions of oy , Oz axes;

My, M, are moments that rotate the section around Oy , Oz axes, tending
to bend the rod in planes Xz and Xy, that is bending
moments My = Mgy y; M7z =Mgy.7;

M , is the moment acting in the section plane and causing the section
rotation with respect to the longitudinal axis of the rod (bar)
ox , that is, twists the rod (bar), is called its My =M

torque.

10



Each of the internal force factors is associated with a particular type of
deformation.

To determine the internal force factors in general, according to the
method of sections, six conditions of equilibrium of forces acting on the
remaining part of the rod (bar) (use six equations of static) are written. The
algebraic sums of the projections of all forces applied to this part on the axis
OX , OY , 0z , and the algebraic sums of the moments of these forces with
respect to the same axes are equal zero:

> X =0; Ny +> Fix =0;
Y =0; Qy +3 Fy =0;
27 =0; Q; +3 Fy =0;
2 My =0; Mg + 2 My (Fi)=0;
> My =0; Mgy y +> My (F)=0;
> Mz =0; Megy z+> Mz (F)=0.

Diagram is the graph showing the distribution of internal forces factors
or displacements along the axis of the rod. Diagrams are lined
perpendiculary to the axis of the rod (bar).

Stress
It is a quantity that characterizes the intensity of internal forces. The total
stress (Fig. 1.3) is determined by the formula

where AR is the internal force, i.e. the force applied to the allocated area;
AA Is the elementary section area at which the effort AR occurs.

The internal force AR can be divided into two components: one directed
perpendicular to the section AN ; the other is located in the section plane AQ .

The stresses that occur at the section of these components are called normal
and tangential (shear).

11



Figure 1.3

The tangential (shear) stress is the intensity of the tangent forces at the
given point of section
A
r= lim —,
AA—0 AA
The normal stress is the intensity of normal forces at the given point of
section
. AN
o= lim —.
AA—0 AA

The total stress at the point is determined by the formula
p:V02+r2.
Unit of stresses 1Pa = N/m?, 1MPa =10° Pa =1N/mm 2.

Assumptions (hypotheses) about the properties of
structural elements of materials

1. The hypothesis of the material continuity. It is suggested that the
material completely fills the body volume, refuting the theory of the discrete
structure of substances.
2. The hypothesis of homogeneity and isotropy. It is considered that the
mechanical properties of material are the same at any point in the body and in
any direction.
3. The hypothesis of the ideal elasticity and natural tension of the
material. It is assumed that the deformations caused by the loads are
completely disappeare after unloading and that initial forces and stresses are
absent.

12



2. CENTRAL TENSION AND COMPRESSION
OF DIRECT RODS (BARS)

Central tension and compression. Drawing the diagrams of normal force
Central (axial) tensile or compression occurs from forces applied along
the central axis of the rod (bar). The stress state caused by such forces is called
simple or linear.
Tension (compression) is the type of deformation (type of resistance) in
which only longitudinal (axial, normal) force N or N, directed along the

axis of the rod (bar) and applied at the center of cross-section gravity occurs. It
is determined from the equilibrium condition using the section method, starting
from the free end of the rod (bar).

Longitudinal force in the random cross-section of the rod (bar) is equal
to the algebraic sum of the projections on its longitudinal axis ox of all
external forces applied to the rest part.

Under tension, the longitudinal force is directed from the section and is
considered to be positive, under compression it is directed to the section and is
considered negative.

In order to estimate the load of the rod (bar), in the case where the
longitudinal forces in different cross-sections of the rod (bar) are unequal, the
diagrams are drawn. While drawing the diagrams, the rod (bar) is divided into
sections. The diagram is drawn in order to use it while calculating the strength.
It makes it possible to determine the greatest value of the longitudinal force and
the cross-section at which it occurs, that is, the dangerous (in terms of strength)
cross-section.

Example. Draw the diagram of normal forces for the rod (bar) shown in
Fig. 2.1 a (neglect the rod (bar) weight).

Divide the rod (bar) into sections. Area boundaries: beginning and fixing
of the rod (bar); cross-sections where the concentrated forces are applied.

Using the section method, we determine the values of the normal forces at
each area, starting from the free end.

Normal force is the algebraic sum of all external forces on one side of
the intersection. Write down their values (Fig. 2.1 b) in each area, considering
the rod from the free end:

N, =F, =20 kN ;
N,=F -F,=20-50=-30 kN ;
Ny=F -F,+F;=-30+40 =10 kN.
Based on the obtained results, draw the diagram of normal forces N
(Fig. 2.1 ¢).

13
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Stresses in the rod cross-sections
Under tensile (compression) of the rod, only normal stresses occur in its
cross-sections.
Under stretching (compression) of a rod (bar) normal stresses on its cross-
section are distributed evenly.
There is the relationship between longitudinal (normal) force N and
normal stress o (Fig. 2.2)

N = IG -dA.

—A A

—— N Let us assume, that o = const , then
e — ——
j - N=c-A,
- hence
] N
Figure 2.2 o =—
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Normal stresses are positive if they stretch the material of the rod (bar),
negative — if they compress.

If the normal stresses in the different cross-sections of the rod (bar) are
not the same, it is reasonable to show the law of their changes along the rod
(bar) in the form of the graph — the diagram of normal stresses.

The tangential (shear) stresses are positive if the vector r bypasses the
material elements clockwise.

Longitudinal and transverse deformations
Let us consider deformation of the rod (bar) loaded with axial force F
(Fig. 2.3):
Al is total longitudinal elongation of the rod (absolute longitudinal
deformation, linear elongation, linear deformation);
Ab is the absolute transverse deformation (linear deformation);
¢ is relative longitudinal deformation, ¢ = Al/l;
h ¢' 1s relative transverse deformation, ¢'= Ab/b .

- To a certain value, the deformation forces of
|
|

(compression) there is a linear dependence between the
elongation of the rod and the longitudinal force.

It is experimentally proved that the stresses in the
rod material depend on deformation and mechanical
1 characteristics of the material. This dependence is
< ' F described as Hooke law under tensile (compression)

Ab/2

\
|
|
| /-1  elastic body are proportional to forces. Under tension
|
|
|

\
|
|
\
~i ‘I‘ |
|
|
|
|
]

Figure 2.3 oc=c¢-E; AI:N—'I,

E-A
where g is the modulus of elasticity (modulus of elasticity of the first kind,
Young’s modulus, normal elastic modulus, longitudinal elastic

modulus).

It is proved experimentally that under simple tensile or compression ratio
of the transverse deformation to the longitudinal value is constant for this
material. This ratio, taken in absolute value, is called the coefficient of

transverse deformation or Poisson ratio
U= e’/s‘.
E, « are mechanical characteristics of the material, determining its elastic
properties. For steel E =2-10° MPa ; x =0,3.

Hooke’s law is valid only for a certain value of normal stress, which is
called the limit of proportionality of the given material.

15



Stress-strain diagram for plastic materials

Mechanical characteristics of materials, i.e. quantities that determine their
strength, ductility, as well as elastic constants E and x are necessary for

design engineer to select the material of the part and its calculation for strength
and rigidity. These characteristics are obtained experimentally. To do this,
laboratory equipment is used on which the static tensile load (compression) is
applied to the sample (Fig. 2.4 b) and then the forces and strains are measured.
To exclude the influence of the absolute dimensions of the investigated sample,
so-called conditional stretch diagram in coordinates is drawn: relative
elongation ¢, normal stress o . For low carbon steel, the tensile (compression)
diagram is shown in Fig. 2.4 a.

lo
A
F ? F
'
4 al Al b
Figure 2.4

The indexes on the diagram are as follows:

O'pr

IS

the limit of proportionality, in this section deformation is
proportional to the load, the highest stress, at which Hooke law
is correct, o = Fp [Ag;

the limit of elasticity, up to this stress the material retains its
elastic properties (no residual deformations occur in the sample
at load removal), o = Fy /Ag ;

the yield strength is the stress at which the increase of plastic
deformation of the sample at constant load occurs, this is the
main mechanical characteristic for evaluation the durability of
plastic materials (steels), o, = Fye /Ag ;

the tensile strength is the stress at which the fracture of the
sample material occurs, that is, the conditional stress that
corresponds to the highest load that the sample can withstand up
to fracture, o, = Fru /A -

16



Here A, is the initial cross-section area of the sample that undergo

stretching; F , Fy, Fy are the increases in the magnitude of

the tensile strength, F.,, is the maximum load force without
regard to the intersection narrowing.
The section of the OK stretching diagram (see Fig. 2.4 a) states Hooke
law E = o /¢.

Potential deformations energy

Under the static stretching of the rod (sample) within Hooke law
application, the force F gradually increases from zero to certain value, the
sample deforms by the value Al (see Fig. 2.3) and thus performs the work W.
This work is accumulated in the deformed sample as potential deformation
energy, that is W=U.

If the tensile diagram (see Fig. 2.4 a) is drawn in the coordinates (F, Al),
then the work is equal to the area of triangle OCK:

1
W =U==-F-Al,
2

F-l
where Al=——:; F =N.

E-A
Then

2 2
4

2
oAl o

F -V
W :U = =
2F - A 2E 2E
where F is the force sretching the sample, F = o - A;
v is body volume, i.e. the sample, v = A-1;
A Is the cross-sectional area of the sample.
Specific potential energy is the deformation energy per volume unit

2

W
U=—=—.
V. 2E

Allowable stresses. Strength calculations

In strength of materials there are three types of normal and tangential
(shear) stresses: working, boundary, allowable.

Working (actual) stresses are those that actually occur in the structural
elements and are determined by calculation or experimentally.

Boundary stresses are those at which material is destroyed or significant
residual deformations occur in it.

To ensure the strength of the parts, it is necessary for the stresses occuring
during their operation to be less than the boundary. But if the working stresses
approximate the boundary ones (though they are less), the strength of the part

17



cannot be guaranteed. Therefore, when calculating, the strength, the working
stresses are compared not with the boundary, but with the allowable ones.
The allowable stresses are those in which the safe work of the part is
guaranteed. They are indicated by [o] or [¢] and determined as the fraction of
the boundary stresses to guarantee the safety margin:
a) for plastic materials (steels)

where [o] is allowable tensile and compressive stress;

n IS strength factor;
b) for brittle materials (cast iron)

where [o], is allowable tensile stress;

oy IS tensile strength;
[c]. is allowable compressive stress;

. IS the boundary of compressive strength.

Safety margin reserve factor for plastic materials n=1,2...2,5; for brittle
materials n=2...5.
Tensile-compression strength condition

N
= —<|[o].
o= o]
While calculating the strength of the parts, there are three main types of
problems.

Design calculation which determine the size of the cross-section

where N . IS the maximum value of the longitudinal force, taken from the
diagram N .
Validating calculation by which the working (actual) stresses are

determined and compared with the allowable ones
Nomax <[o].

A
Determination of allowable loads

X

O =

[N]<[o] A.

18



Task 1
Strength calculation and displacement determination
under tensile and compression

For given straight stepped steel rod (Fig. for task 1, Table for task 1),
determine the dimensions of the cross-section at all sections, provided that the
cross-section is a circle; make the rod sketch; draw the diagram of the working
(actual) normal stresses and linear displacements of the rod, if 1=8m

(a=k-I, b=m-1); rod material — steel; [c]=160 MPa ; E =2.10° MPa.
Plan of solving the task:

1. Complete the calculation model.

2. Draw the diagram of lineary forces.

3. From the strength condition, determine the diameters of the rod (bar) in
all segments. Round off the obtained values to a size multiple of 2 or 5. Make a
sketch of the rod (bar).

4. On each segment, calculate working (actual) normal stresses by the
module o, and draw the diagram of working (actual) normal stresses.

5. Determine the lineary displacements of certain steps and the whole rod
(bar).
6. Draw the diagram of the displacements distribution along the beam.

Table for task 1

Nr F,, kN F,, kN Fs, kN k m

1 25 30 50 0,2 0,5
2 10 40 20 0,4 0,7
3 20 10 60 0,1 0,4
4 15 20 40 0,3 0,6
5 30 25 10 0,25 0,65
6 25 50 25 0,35 0,75
7 40 15 30 0,45 0,8
8 20 30 50 0,15 0,45
9 50 20 40 0,2 0,8
0 60 10 20 0,4 0,8
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Example of solving the task 1
Strength calculation and displacement determination
under tension and compression

For given straight steel rod (Fig. 2.5 a), determine the dimensions of the
cross-section at all sections, provided that the cross-section is a circle; make the
rod (bar) sketch; draw the diagram of the working (actual) normal stresses and
longitudinal displacements of the rod, if I=8m (a=k-I, b=m-1); rod (bar)

material — steel; [c]=160 MPa ; E = 2.10° MPa.
Solution

Divide the rod (bar) into three parts (Fig.2.5a). For each part we
determine the values of longitudinal (normal) forces:

N, = F, +F, =10 + 20 = 30 kN ;
Ny=F +F, -2F; =10 +20 - 2-40 = -50 kN .

Draw the diagram of longitudinal forces, N (Fig. 2.5 b).
From the condition of tensile-compressive strength o = N/A<[o]

determine the required cross-section areas of the rod (bar) at each section

3

N;| 10-10° _
Alz‘ il _ =0,625-10 *m?;

[c] 160

N,| 30-.10°° _
AZZ‘ 2| _ =1,875 10 *m?;

[c] 160

N;| 50.107° .
A32‘ sl _ =3125-10 *m?.

[c] 160

The rod diameters determine by formula

A :ﬂ.di2/4, where i=1,2,3, 4,

di > \J4A /7.

whence
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Substituting data, obtain

4.187 ,5

dr, > |[— =15,46mm;
3,14
4.312 5

dy > |[—=19,95mm .
3,14

Round off the results: d .., =10 mm, d, ., =16 mm, d .53 =20 mm.
Then draw the sketch of the rod (bar) (Fig. 2.5 c).

Determine the actual cross-sectional areas of the rod (bar) at each section,
taking into account the rounding of their diameters by the formula

2
Aaci = 7 - dy /4'
Substituting data, obtain

Ai=314-102/4 =78 5mm 2

A, =314-162 /4 = 201 mm 2
A =314 202 /4 =314 mm 2.

Then determine working (actual) normal stresses by the formula
Taci = |Nil/Agi -

Substituting data, obtain

3

10 -10 - _
O a1 = ———— =127 MPa ;
78,510
3010 ° _
Gacz = _6 2149 MPa y
201 -10
50 .10 ~°
Tacy = ¢ =159 MPa.
314 -10
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Draw the diagram of working (actual) normal stresses o .. by the module
(Fig. 2.5 d).
The longitudinal (linear) deformations of each section of the rod (bar) are
determined by the formula
N; - L;

Al = ———1
E'Aaci

where L; is the length of the rod (bar) section on which the longitudinal
force acts.
In numerical form

10-2,4 3

Al = ~153-10 °m =153 mm
2.10%.78 5.10°°
30.2.4 3
Al, = . 5 =1,79-10 "m =1,79 mm ;
2.10%.201 .10~
~50.3,2 3
Al = = _254.10 °m =-254mm .

2.10%.314 .107°

Based on the obtained results, draw the diagram of linear displacements
of the cross-sections (Fig. 2.5 e). The fixed end of the rod (bar) is taken as zero.
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Task 2
Calculation of statically indeterminate rod (bar) system
under tensile-compression

For the given rod (bar) system (Fig. for task 2, Table for task 2), to which
force F =50 kN is applied determine the diameters of the rods (bars) DE and

KH , when the ratio of their areas Az = k- Agy IS known. Material of rods

(bars) is steel St.3; [c]=160 MN /mz, a=1m. The rod (bar) to which
external force F is applied should be considered absolutely rigid.

Plan of solving the task:

1. Draw the scaled model of the rod (bar) system.

2. Determine the degree of static indeterminance of the system.

3. Considering the deformation of the system, make the auxiliary
equations.

4. Determine the forces in the rods (bars).

5. Select the cross-section areas of the rods (bars).

Table for task 2

Nr |1 2 3 4 3) 6 / 8 9 0
k 1 15 |2 2,5 |3 35 |4 45 |5 0,5
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Example of solving the task 2
Calculation of statically indeterminate rod (bar) system
under tensile-compression

For the given rod (bar) system (Fig. 2.6 a), to which force F =50 kN s

applied determine the diameters of the rods (bars) DE and KH , when the ratio
of their areas Apg =k -Ayy , k =3 is known. The rod (bar) to which external

force F is applied should be considered absolutely rigid. Material of rods
(bars) and bar (rod) is steel St.3; [c]=160 MPa ; a=1 m.

Solution

When the system is loaded by force F, in rods (bars) DE and KH
normal forces occur, in this case — compression forces. The cross-sectional area
of the rods (bars) under compression is determined from the condition of
tensile-compression strength

o= 2—;3 [c], whence A > [i—i]. (1.2)

To determine the force in the rods (bars) DE and KH we derive the
eqation of the bar equilibrium equilibrium (Fig. 2.6 b):

YMpg =0; F-3a—Npg -2a-sina - Ngy -a=0, (1.4)

where Nz, Ngy are normal forces occurring in rods (bars) DE and KH ;
By , By are components of the reaction force of the support B .

There are four unknown forces and reactions (Npg , Ngy , Bx , By ) In
the system, and three equilibrium equations. Thus, the system is 4-3 =1 time
statically indeterminate.

We derive the additional equation, the equation of displacements
compatibility (deformations).
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After applying the force F , the rods (bars) DE and KH deform and the
system takes the position shown in Fig. 2.6 c. From the similarity of triangles
DD ;B and KK ;B it follows that

= = — = 2_ (1.5)
KK, KB a
In this case
AL
sin «

where ALy, , ALpe are absolute deformations of rods (bars) KH and DE .

Rods deformations write by Hooke law in the following form:

Alpe =

Nky -1o5a Npe -2a
E-Agy E-Apg -sina

Algy =

Substituting values AL, and ALy into expressions (1.5) and (1.6),
obtain

Npg -2a-E - Agy L,

Ny -1,5a-E-Apg -sin’ a
Taking into account that Ao = 3Axy , We have
Npe = 45Ny -sin’a.
In this case a=45° (see Fig. 2.6a), then
Npe =45Ny -Sin“45°=225N . (1.7)

Solving equations (1.4) and (1.7), we determine unknown forces in the
rods (bars)

jSF ~2Npg -Sin45° — Ny = 0;

[Npe =2.25Ny .
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where
3F 3.50

45sin45°+1 45.07+1

Nkn =

= 35,9 kN ,

respectively
Npg =2,25-35,9=280,8 kN .

Further equations (1.2) and (1.3) are not used in solving the task, since the
unknown forces in the rods (bars) are defined, and according to the task
statement it is not required to determine the reaction in support B .

The cross-section area of the rod (bar) KH is determined from the
condition of tensile-compression strength (1.1).

Ngy 359-10 °

[o] 160

=224.10 %" m?,

the cross-section area of rod (bar) DE determined from ratio

Ape =3Ay =3-2,24-10 % =6,72.10* m?.

Estimate the strength of rod (bar) DE

N 80,8-10 °
opg = 2= — —120 MPa <[c]=160 MPa .

Ape 6,72 .10 %

The strength condition is ensured. Otherwise, the cross-section area of the
rod (bar) DE should be determined from the strength condition and that of the
rod (bar) KH from the ratio.
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3. GEOMETRIC CHARACTERISTICS
OF PLANE SECTIONS

Moments of inertia and center of gravity
The static moment of the plane figure area with respect to the axis
lying in the same plane is the sum of the products of the areas of elementary
planes at their distance from that axis.
The static moments of the section area of arbitrary shape (Fig. 3.1) are
determined by the formulas

Sy = [ ydA; Sy = [xdA ;
A A
SX :ycA, SY :Xc'A,

where x, y are coordinates (distances) that determine the position of the
element area dA ;
yc,Xc are coordinates of the center of gravity of the section area;

A IS asection area;
dA is anelement of the area (elementary plane).

v o

Figure 3.1

The static moment of the figure area relatively to axis lying in the same
plane is equal to the product of the figure area at the distance from it to the
center of gravity of that axis.

The static moment of figure area is the moment of the first order, its unit
is  m°. It can be positive, negative and zero (relatively to the axis of figure
symmetry or relatively to the central axis, that is, the axis passing through the
center of gravity of the section).
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The method of partitioning is used to determine the center of gravity of
complex figures; the static moment of the area of the whole figure is defined as
the algebraic sum of static moments of its individual parts. The coordinates of
the center of gravity of the complex section is determined by the formulas

_ XSy _ 2 Sx

X : y ,
C Z A C Z A
where S s, | 35, are sums of static moments of separate areas;
> A is asum of separate areas.

The axes passing through the center of gravity of the section are called the
central axes. The static moment of the area relatively to the central axis is zero.

The polar moment of inertia of the plane figure with respect to the pole
lying in the same plane is the sum of the product of the areas of the elementary
plane by the squares of their distances from the pole.

The polar moment of the section area of the arbitrary shape with respect
to the pole O (see Fig. 3.1) is determined by the integral

lp = [p?dA,
A
where p is the distance from the center of the elementary plane (element of
the area) dA to the axis perpendicular to the plane of the section
through point 0 (pole),

,02 = y2 + X2.

The axial moment of inertia of a plane figure with respect to the axis
lying in the same plane is the sum products over the whole area by the
elementary areas squared by their distance from that axis.

Axial moments of inertia of the section area of arbitrary shape
(see Fig. 3.1) with respect to the axes OX and Oy are determined by integrals

I = [y®dA; ly = [x*dA.
A A

The polar and axial moments of inertia of the section are always positive
and not equal to zero.
The dependence of axial and polar moments of inertia

|P=jp2dA:j(y2+x2)dA:|x+|Y.
A A

Moments of figure inertia are moments of the second order, unit m*.
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The sum of the axial moments of inertia with respect to two mutually
perpendicular axes is equal to the polar moment of inertia relatively to the point
of intersection of these axes (the coordinate origin).

The dependence between the moments of inertia in parallel axes transfer

2
IX1=|X +Aa .

The axial moment of inertia with respect to any axis X, is equal to the

axial moment of inertia with respect to the central axis X , which is parallel to
the axis X, plus the product of the area by the squared distance between the

axes (a Is the distance between the axes).

Main axes and main moments of inertia

Central axes are the axes that pass through the center of gravity of the
plane figure.

Central moments of inertia of the plane figure (section) are moments of
inertia relatively to the central axes.

If the axis of coordinates is rotated in its plane around the origin, the polar
moment of inertia of the section will remain constant and the axial moments of
inertia will change, and

If the sum of two variables remains constant, one of them decreases and
the other increases. Therefore, at any position, one of the axial moments reaches
the maximum and the other — the minimum values.

Main axes of inertia are axes in relation to which the axial moments of
inertia of the section (plane figure) reach the maximum and minimum values.

The main moments of inertia of the section are the axial moments of
inertia relatively to the principal axes.

The principal central axes are the main axes that pass through the center
of gravity of the section (plane figure). If the figure has at least one axis of
symmetry, then this axis will always be one of the main central axes.

The main central moments of inertia of the section (plane figure) are
the moments of inertia with respect to the principal central axes.

In engineering calculations, the main central moments of inertia are
important.

The moments of inertia of the sections are geometric characteristics that
make it possible to compare the rigidity of the bars of the given material with
their resistance to external forces.

Axial and polar moments of inertia gain only positive values.

The bar resistance to bending and torsion is also characterized by the
moments of resistance of the sections: axial and polar.
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The axial moments of intersection resistance are determined by the
formulas

Wx_ IX , WY= IY )
X e |

_‘ymax
are the coordinates of the points of section are at

maximum distance from the axes Ox and Oy .
The polar moment of intersection resistance, respectively

where 'y .., X

max

Wp = e
P max
where p... IS the coordinate of the intersection point at maximum distance
from the poles.
Polar moments of inertia and polar moments of resistance for cross-
sections:
- circle (Fig. 3.2 a)

lp =z -D*/32; Wp =z-D3/16;
- ring (Fig. 3.2 b)
4 3
7D 4 7 -D 4
Ip = 1- ; Wp = 1- , Where « =d/D.
7! o) " 16 b-at) a=d/

VY Y i ¥

O By T
w]{ g |

N ‘

", 7, ‘

I

1<

a b c/
Figure 3.2

Axial moments of inertia and axial resistance moments for cross-sections:
- circle (see Fig. 3.2 a)

Iy =1y =lg=x-D*/64; Wy =Wy =W, =z -D3/32;

- rectangle (Fig. 3.2 ¢)
b’ L _hb® W _bh? LS
AT LTI X e Yoe
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Task 3
Determination of axial moments of inertia of plane sections

For the given section (Fig. for task 3, Table for task 3) determine the
position of the main central axes, the main central moments of inertia and the
axial moments of resistance with respect to the main central axes.

Plan of solving the task:

1. Write out the data needed to solve the task from the assortment tables
(Annexs 1, 2).

2. Determine the geometric characteristics of the strip (strips).

3. Draw a cross-section at a scale of 1:1 or 1:2. Mark all the dimensions
used in the calculations in the drawing.

4. Choose a rational placement of auxiliary coordinate axes.

5. Determine the position of the center of gravity of the section.

6. Draw the main central axes parallel to the auxiliary axes and determine
the values of the main central moments of inertia of the section.

7. Determine the axial moments of the section resistance relative to the
main central axes.

Table for task 3

Geometrical Geometrical
Nr characteristic Nr characteristic
(I-beam, U-beam) (I-beam, U-beam)
1 12 6 22
2 14 7 24
3 16 8 27
4 18 9 30
5 20 0 10
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Example of solving the task 3
Determination of axial moments of inertia of plane sections

For the given section (Fig. 3.3) determine the position of the main central
axes, the main central moments of inertia and the axial moments of resistance
with respect to the main central axes, if I-beam is Nr 33.

Solution

The geometric characteristics of the specified rolling section are taken
from the tables of assortment GOST 8239-89 (Annex 1). For I-beam Nr 33,
indicate by 1.

h;=330 mm; b; =140 mm; d; =7,0 mm; t; =11,2 mm; A1:53,80m2;

4 4

Determine the geometric characteristics of the strip, indicate them by 2.
The strip dimensions

b, =h;/4=330/4=82,5mm; a, =h; =330 mm.
The cross-sectional area of the strip is
A, =b,-a, =8,25-33 = 272 cm °.

Axial moments of strip inertia are

3 3
a,-b; 33.825
Iy, =—2—2= =1544 cm*;
12 12
3 3
b,-a;, 82533
ly, =—2—2= = 24706 cm*.
12 12

Draw the section at scale (see Fig. 3.3).
The coordinates of the center of gravity of the section in the coordinate
system X, Y, are:

xc =0, asaxisy is the axis of symmetry;
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2 Sx AV + Ay -yeo

YA AL+ A, |

where y., is the distance (coordinate) from the center of gravity of the area
of the first figure of section (I-beam) to the axis X, yc; =0;

yc, IS the distance (coordinate) from the center of gravity of the area
of the second figure of section (strip) to the axis X

Yc

140 82,5
Yco :T+—2 =111,25 mm .

Substitute the value and obtain

0+ 272 -111,25
Ye =
53,8 + 272

=92.9 mm.

Draw the principal central axes x Y through point C (see Fig. 3.3).

Determine the axial moments of inertia with respect to the principal
central axes, i.e. the main central moments of inertia of the given section

Iy =lyq+ 1y, = 9840 + 24706 ~ 34600 cm*;

Iy =lyq+A (-9.29)" + 1y, +A, (1835)" =

=419 +53,8-(-9,29)° +1544 + 272 1,835 % ~ 5980 cm *.

Determine the axial moments of resistance relatively to the principal
central axes

I« 5980 3
Wy = = =367 cm~;
Ymax 16,29
Iy 34600 3
Wy = = = 2097 cm~;
X max 16,5

where x... , Ymax ar€¢ the coordinates of points of the given section,
maximum distant from the axes X and Y
(see Fig. 3.3):
Ymax = 9,29 +7 =16,29 cm; Xmax = 16,5 cm.
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4. SHEAR. TORSION
Shear stress, strain and Hooke’s law
Shear is a type of deformation in which at any cross-section of the bar
only shear (cutting) force @ acts (Fig. 4.1 a). The shear deformation resulting

in material fracture is shear.

1

a b
§ ______________ { 77 Y ¢
/
Ff / h '’
T
yl
; ¢ ||
R, " ———— d\\\\l
* a d=F *[/
/:
T al b/
Figure 4.1

We assume that tangent stresses occuring at the cross-section of the bar
under shear is z = const , then the shearing force is
Q=A-r, e stress r=Q/A.
Condition of shearing strength

Q
T:XS[T]SS’

where [z]  is the allowable shear stress, [] = (0,25...0,35) 0, .

The shear deformation is determined by shear angle . Absolute bar
shear (Fig. 4.1 b) — bb’, cc’.
Hooke’s shear law
=Gy,

where G is the shear modulus or modulus of elasticity of the second type,
characterizing the material rigidity.
The dependence between the elastic characteristics of the plastic material
(steels) E, G, u is




Torsion
Torsion is a type of deformation in which only torque moment M ;5

occurs at any cross-section of the bar.

Torsional deformations occur when a pair of forces M is applied to the
straight bar in planes perpendicular to the axis (Fig. 4.2). The moments of these
pairs are called rotating (if the bar rotates), they are indicated T, and twisting
(if the bar does not rotate), they are indicated M .

The circular cross-section bar which operates for torsional deformation is
called the shaft. The shafts of engines and machine tools or other metal
structures are affected by torsion. The rods with the cross-sections of other
shapes also operate for torsion.

7 XN it
- i | R
M
™
Mf/e
Figure 4.2

The torque M 1 at any section of the shaft cross-section is equal to the

algebraic sum of the external twisting moments applied to the bar on the right
or left of the section.

To calculate the bar for tensile strength, as well as for tensile
(compression) it is necessary to determine the dangerous section. If the
dimensions of the cross-section at bar length are constant, the sections at which
torques are maximum are dangerous. The torque diagram is the graph
showing the law of torque change along the bar length. It is drawn the same
way as the diagram of longitudinal forces.

Under bar torsion, only tangential stresses occur in its cross sections. For
the circular rod (shaft), the tangent stresses are determined by the formula

Ip

where p is the distance from the center (pole) of the round section to the
point at which the tangent stresses are determined (Fig. 4.3 a).
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The diagram of the tangential (shear) stress distribution by the height of
the cross-section is shown in Fig. 4.3 b. The shear stresses vary along the radius
of section by linear law.

7:/TILY/\’
M/’/P '
P Tp
- _‘Q - -
A
N \
Q
7/ bl
Figure 4.3

The tangential (shear) stresses are zero at the center of the section, p =0
and reach the maximum value at the points of the contour, p =d/2. At the

intermediate points of section, the tangent stresses depend linearly on the
distance p (see Fig. 4.3 b). As

lp
=Wp, then 7, = :
(d/2) T W,

Condition of tensile strength. The strength of the shaft is ensured when
the maximum tangential (shear) stress does not exceed the allowable one

MTR
T = <|t|,
max WP []

where [r] is the allowable shear stress, determined depending on the
allowable tensile stress [o | :

for steels [z]=(0,55...0,6)[c |5 ;
for cast iron [z]=(1..1,2)[c]5.

Three types of tasks are solved by the torsional strength of the shaft.
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Choosing the cross-section (design calculation), that is, determining its
required sizes based on the polar moment of resistance

Wp > Mg /[z], for round section d = 3/16 Wp /7 .

Validating calculation (testing calculation) is reduced to the comparison
of actual (real) and allowable shear stresses by the formula

M 1

= <|r].

e == ]

Determination of maximum torque

Mg ]<[]Wp.

Torsional deformation is characterized by the rotation of the cross-
sections of the shaft relativly to each other by certain angle ¢ — the twist
angle. For a shaft of constant rigidity G -1, of length I with constant value of

torque M ;5 the twist angle (full twisting angle) is determined by the formulas:

T

MTRI . MTRI 1800
p=—"— [rad]; o = :

These relations are called Hooke’s shear law. For the cylindrical bar

having several sections that differ in cross-section size, torque value, material,

the full twist angle is equal to the algebraic sum of the twist angles of the
separate sections ¢ = > ¢; .

The full twist angle of the shaft does not completely characterize the
deformation of the torsion, since it depends on the length of the shaft. The
rigidity of the shaft is estimated by the relative twist angle, which is
determined by the formulas

[degree |.

0=0p/l; g M F@T; ,_ M 180 rdegree]
G-lp LmJ G-lp =« L m J

Condition of rigidity of the shaft at rotation. The rigidity of the shaft is
sufficient when the maximum relative twist angle does not exceed its allowable
value

M.y 180°
6=—"_. <[6],

where [¢] is the allowable angle of the shaft rotation.

Using rigidity conditions (as well as strength conditions), three types of
structural calculations: design, validation and determination of allowable
load are carried out.
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Task 4
Shaft calculation for torsion

On the shaft (Fig. for task 4, Table for task 4) 5 pulleys are mounted,
which transmit powers P, P,, Py, P,, P,. From the condition of torsional
strength determine the diameters of individual sections of the shaft. Check shaft
for rigidity at allowable angle of rotation [#]=2deg/m . Shaft rotation

frequency o ; distance a=0,4m; material — steel 45; [r]=60 MPa;
G =8-10* MPa.
Plan of solving the task:

1. Determine the power on the pulley P, neglecting the friction in the

bearings.
2. Find the torques transmitted by each pulley.
3. Determine the torques M ; on each segment of the shaft. Draw the

diagram of torques.

4. From the condition of torsional strength, determine the diameters of the
shaft in its certain segments. Round off stepped shaft the obtained values to a
size multiple of 2 or 5.

5. Draw the sketch of the (indicating the diameters and lengths of
individual sections).

6. Determine the values of the torsion angles on the certain segments and
draw a diagram of the torsion angles for the whole shaft, taking one of the ends
of the shaft or the section where it P, acts, as a fixed section.

7. Check the shaft for rigidity.
Table for task 4

Nr P, kW P,, kW Ps, kW Py, kW o, rad /s
1 11 12 13 14 10
2 12 13 14 11 20
3 13 14 11 12 30
4 14 13 12 11 40
9) 11 12 13 14 50
6 12 13 14 11 60
I 13 14 11 12 70
8 14 11 12 13 80
9 16 17 13 15 90
0 15 16 14 13 100
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Figure for task 4 (contunied)
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Example of solving the task 4
Shaft calculation for torsion

On the shaft (Fig. 4.4 a) 5 pulleys are mounted, which transmit powers
P,=10 kW; P, =50 kW; P;=48 kw; P, =80 kw. From the condition of

torsional strength, determine the diameters of individual sections of the shaft.
Check shaft for rigidity at allowable angle of rotation [¢]= 2 degym . Shaft
rotation frequency o =40s™'; distance a=0,4m; material — steel 45;

[c]=50 MPa; G =8-10* MPa.

Solution

The value of power P, is determined on the basis equation of the power

balance, written taking into account the direction of action of the concentrated
moments (friction in the supports is neglected),

where
Po=P +P,+P;—P, =10 +50 + 48 —80 = 28 kW .

The twisting moments A7 ; transmitted by each pulley are determined by
the formula

P , where i=0,1, 2, 3, 4.

M. =L
(]

1

Substituting the value, obtain

28 10 50
Myg="—=07kNm; M;=-—=025kNm; M,=—=125KkNm ;
40 40 40
48 80
|\/|3=—=1,2|(Nm, M4:_:2,0|‘(Nm
40 40

Torques Mg (i=1,2, 3,4) at each section of the shaft are determined
considering the left and right sections (Fig. 4.4 b):
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Migr1=-My=-0,7kNm ;
Mg, =—-My+M;=-0,7+0,25=-0,45 kNm ;
Mgz =M, =2,0kNm,
Mirs =M, -M3=20-12=0,8kNm.
Based on the obtained values, draw torque diagram (Fig. 4.4 c).

From the tensile strength condition /7, = Mg /Wp <[r] taking into
account that the moment of resistance of the round cross-section

Wp =7-d 3/16 ~0,2d %, we determine the diameter of the shaft at each section

by the formula
d. >3/ MTRI
'\ o0,2[7]

Substituting the values of torques, obtain

0,7 _3
d123—3:41,0-10 m;
0,2-50 -10
0,45 _3
d223—3=35,4-10 m;
0,250 -10
0,8 _
dy 23— =42,8:10 " m;
0,250 -10
2,0 .
dy >3 —————=581:10 "m.
0,2-50 -10

Accept the diameters of the shaft sections
dig =42 mm; dyoq =36 mm; dyy =44 mm; d,q =58 mm.

According to the obtained values, draw a sketch of the shaft (Fig. 4.4 d).
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The angles of twisting of individual sections of the shaft are determined
by the formula

ng = MLIII, i:11 2’ 31 4’
G- 1p
Is the length of the shaft section;

G 1S shear modulus, G =81-10* Mpa ;
Is the polar moment of inertia of the cross-section of the shaft

Substituting the value, obtain

-0,7-0,4 _9
@y = - i -1,10 -10 rad;
8,1-10" -0,1-(0,042)
-0,45.0,6 -2
P, = - i -1,98 -10 rad ;
81-10" -0,1-(0,036)
0,8-0,4 _9
Pq = =110-10 " rad;
3 7 4
8,1-10" -0,1-(0,044)
2,0-0,5 _9
P4 = =1,09 -10 rad .

81-10' -0.1-(0,058 )"

Determine the angles of the shaft cross-sections twist B,C, D, E
relatively to the section A

2

Oca = Ppa + 95 = (110 +1,98)-10 % = 3,08 10 rad;
Opa = Pca + @3 = (3,08 +110)-10 % = ~1,98-10 ° rad;
P4 = Ppp + @4 =(-1,98+1,00)-10 ° = -0,89 10  rad.
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Draw the diagram of twist angles of the shaft (Fig. 4.4 €), accepting
section A for the beginning of reference.

Test of the shaft rigidity is carried out under the rigidity condition
Hmax < [6]1

where 6., 1S the maximum relative twist angle of the shaft.

Determine the relative twist angles on each section of the shaft by
formula

0; = Pi where =123, 4.
I

Substituting the value, obtain

2

1,10 -10 _p rad
0 =———=2,75-10" " —;
0,4 m
1,98 -10 ~° _, rad
0, =———=330-10 " —;
0,6 m
1,10 -10 2 _, rad
O3 =———=2,75-10 " —;
0,4 m
1,09 .10 2 _, rad
Oy =——=2110"°" —.
0,5 m
Obtain
180 ° _o 180° rad rad
Orax = 07 - =3,30-10 - =189 —<[0]=2 —.
V4 3,14 m m

Hence, the rigidity condition is ensured.
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5. COMPLEX STRESSED STATE

Through any point of the deformed massive body, it is possible to draw
many differently oriented cutting planes (platforms). The set of normal and
tangential (shear) stresses occurring on planes crossing the given point
characterize the stressed state of the body at that point.

Normal stresses o are considered to be positive if they stretch the
material of the element. Tangential (shear) stresses are positive when they form
a pair of forces relatively to the center of the element that tends to rotate it
clockwise (Fig. 5.1).

s
o~
o, )
T T, =-Tﬂ>é7.
q
s
Figure 5.1

The tangential (shear) stresses at two mutually perpendicular planes are
equal but opposite in sign. (Law of paired relationship of tangent stresses).

Three mutually perpendicular planes can be drawn through each point of
the body at which the tangential (shear) stresses are zero. Such planes are called
the main planes, and the stresses acting on them are the main stresses. They
are indicated o,,0,, 03, besides o, > o, > o5. The main stresses at the given
point in massive body reach extreme values for the given stress state.

There are three types of stress state (Fig. 5.2-5.4).
1. Linear

0,=-0;=0 al O0,=0,=0 b/
Figure 5.2
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2. Plane

o wi W

(o O O 0 0, 0,

e 2 e —— — e
¢02 TUJ ¢03
0;=0 al 0,=0 b o,=0 c/
Figure 5.3
3. Volume
0,
0;
—_—

e
-

Figure 5.4

Then we consider the linear and flat stressed states.

Most of the tasks of complex stressed state are to determine the principal
stresses by the known normal and tangent stresses at the planes.

The principal stresses are the extreme (maximum and minimum) stresses
at which the strength of the structural material can be evaluated.

In the general case, for plane stressed state normal o, , o , and tangential

(shear) 7, = -z, stresses acting on mutually perpendicular sites are known.
We assume that o, > o ;. Therefore, the calculation scheme can be taken as
shown in Fig. 5.5.
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The value and direction of the principal stresses are determined by the
formulas

1
O max :E{Ga+0ﬂ i\/(aa —aﬁ)2+4r§};

min

tg2a = - ——,

where o, 1S maximum main stress, o, = o, (Fig.5.3 a, b),
Omax = 02 (Flg 5.3 C);
IS minimum main stress, o, =0, (Fig. 5.3 a),
omin =0o3 (Fig. 5.3 b, c);
« is the angle to which the vector o, must be rotated in order to

determine the direction of greater main stress (if the angle is
positive, then you need to turn counterclockwise).

min

The values of the main stresses and their directions can be determined
graphically using the Mohr’s circle. This method is described in the example
of solving of task 5.
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Task 5
Analysis of stressed state

For a given element (Fig. for task 5, Table for task 5) determine: the
position of the main planes (graphically and analytically), value and direction of
the main stresses, linear deformations in the direction of all main stresses,
relative change in volume, specific potential deformation energy. Check the
element for strength according to the strength theories appropriate for the given
materials.

Plan of solving the task:
1. Determine the values and directions of ¢, , o4, 7z, 75 (indeces Vv

and H on the model stand for vertical and horizontal, replace them by « and
B according to the value and with symbol &), draw the given element.

2. Determine the values and direction of the main stresses graphically. In
the middle of the given element draw the main element limited by the main
planes.

3. Determine the value 7, and on the same figure, draw the position of
the plane where 7, acts.

4. Validate the obtained results analytically.

5. Determine the relative deformations in the directions of all three main
stresses.

6. Determine the relative volume change and specific potential
deformation energy.

7. Determine the calculated stress according to one of the theories of
strength relevant to the given material (at the student’s choice) and compare it
with the allowable, taking the margin of safety ny =1,5; n,, =25.

Table for task 5

Material
NE oy N /m? [ fm? | e N /m? Castiron | Steel
1 100 50 10 Ci 12-28 St.1
2 0 60 20 Ci 15-32 St. 2
3 20 0 30 Ci 18-36 St. 3
4 30 80 40 Ci 21-40 St. 4
5 40 90 50 Ci 24-44 St.5
6 50 0 25 Ci 28-48 St. 6
7 60 10 15 Ci 32-52 St.1
8 0 20 45 Ci 35-56 St. 2
9 80 30 35 Ci 38-60 St. 3
0 90 40 10 Ci 18-36 St. 4
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Example of solving the task 5
Analysis of plane stressed state

oy =0; oy =60 MPa act on the element shown in Fig. 5.6. Complete
the following:

o el
—————
0-// O-H
;A 4
—_—
4
1
Figure 5.6

Determine the values and directions ¢, , o 4, 7, 74 (indices C and D in

the diagram mean vertical and horizontal, replace them with « and g in

accordance with the magnitude and sign o ), draw the element.

Determine graphically the values and direction of the main stresses. In the
middle of the given element, draw the main element, restricted by the main
planes.

Determine the value ., and in the same figure to show the position of

the plane on which -, acts.

Analyze the obtained results analytically.

Determine the relative deformations in the directions of all three main
stresses.

Determine the relative change in volume and the specific potential
deformation energy.

Determine the calculation stresses according to one of the corresponding
given material of strength theories for materials steel St.3 and cast iron Ci 18-
36. Compare their values with the allowable stresses by taking the strength
coefficients ny =15; n,, =25,

o)
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Solution
Replace the indices of stresses acting on the element according to the data
and calculation scheme (Fig. 5.7 a)

o a

o, =oy =60 MPa ; Gﬁzavzo; Ou >0p.
On the plane « the tangent stresses are r, =100 MPa . According to the

law of paired relationship of tangent stresses

Tq =—Tp =100 MPa .

Draw out the rectangular coordinate system o, . Axis o is parallel to
the greater normal stress o, (Fig. 5.7 b). In this coordinate system, we define

points that correspond to the stresses on the planes « and g, these are points
D, and Dg,. Since these points reflect the stresses acting on two mutually

a

perpendicular planes, the segment D, D, is the diameter of the stress circle.
The point of intersection of this diameter with the axis & forms the center of
the circle — point C . Points A and B at which the circle crosses axis o (r = 0)
determine the values of the main normal stresses:

o, =04 =135 MPa; o5=0B =-75 MPa .

The stress direction o, is determined by a vector BD,,, o5 =0; o, = 0.

o

The angle between normal stresses o, and o, and is « = -37°. Minus

sign indicates that it is set off from the axis o clockwise direction.
The maximum tangential (shear) stress r . is equal to the radius of

Mohr’s circle

T = CT =105 MPa .

The angle between stress o, and greater main stress is determined by the
formula

tg2o = ——— % - == _ 333:
Oq —0pg 60 - 0

1
a = —Earctg (3,33)=-37°.

61



The maximum tangential (shear) stress is equal

o1—C0 135 - (- 75
Ty = = C75) _ 105 wpa
2 2

The vectors of stresses o, o3, 7 and the planes on which they act are
shown in Fig. 5.7 a.

The relative deformations in the direction of the main stresses for the steel
element are determined by the formulas:

1 -5
1= _loy-ulop+og)l=—-[135 -03-(-75)]=78,8-10 ~;

E 210

1 -5
£y = [0y —u(og+03)] = - -[0-0,3-(135 - 75)] = —9,00 -10 " °;

E 2-10

1 5
g3=—log—u(op+o,)l= 5 [-75-0,3-135]=-57,8-10 ".

E 2-10

Determine the relative change in volume
0 =g, +c,+eq=(788-9,00-57,8)-10 ° =12 .10 °.

Determine the specific potential energy of deformation of the steel
element

1

1 . .
~ = (78,8135 + 0+ 57,8-75)-10 ° = 74,910 "> MNm /m?.
2

Determine the allowable stresses:
a) for steel St.3

or 220
[c]=——=——=147 MPa ,
np 1,5

where o7 is theyield strength for steel Art.3; o1 =220 MPa ;
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b) for cast iron Ci 18-36:

[c]p = == 72 MPa ;
Ny 2,5
700

[6]c = 2MC _ == _ 280 MPa ,
Ny 2,5

where oy, omc are the tensile and compression strengths for brittle
material, for Ci 18-36 owp =180 MPa ,

oyme = 700 MPa .
For steel St.3, which is a plastic material, the strength test can be

performed according to the third or fourth theory of strength. According to the
third theory of strength
Op3 =0, -03=135 —(-75)= 210 MPa ;

opg =210 MPa > [o]=147 MPa .

The strength condition is not ensured.

For Ci 18-36 cast iron, which is brittle material, we apply the theory of
Mohr strength, since the investigated stress state of the material is between
simple tension and simple compression

op =01 —-V-03 =135 -0,257 - (-75) =154 MPa;
op =154 MPa >[c]p =72 MPa ,

where

The strength condition for cast iron is also not ensured.
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6. STRAIGHT TRANSVERSE BENDING

Straight transverse bending. Internal force factors.
Sign convention of bending

Bending is the bar resistance state in which bending or change of the
curvature of its axis occurs. The bar that works in bending is called the beam.

Many structural elements work for bending: axes of railway cars, shafts,
overlapping panels, span bridges, crane arrows, flat car springs, etc.

Plane or straight bending is the case of bending in which the beam axis
Is curved in the direction of external forces and loads, i.e. in the same plane
with external forces.

Straight transverse bending is a type of deformation in which the shear
(cutting) force Q and bending moment M g, occur in the cross-sections of

the beam (Fig. 6.1 a). If the shear force does not occur, then it is the pure
bending (Fig. 6.1 b).

a E / F
; |
P o
=t ‘
' F
May q May & \ M
e
H=F; %,v:“/: X al H=0: %N:—/:'/Z b/
Figure 6.1

Shear (cutting) force at any cross-section of the beam is equal to the
algebraic sum of the projections of all external forces acting on the right or left
of the section on the axis perpendicular to the axis of the beam, i.e.

Q:ZFW.

Bending moment at any cross-section of the beam is equal to the —
algebraic sum of the moments of all external forces acting to the right or left of
the section relatively to the center of gravity of the section.

Mgy =2 M(F).

For the beam in equilibrium under the action of plane system of forces
perpendicular to the axis (i.e. the system of parallel forces), the algebraic sum
of all external forces is zero. Therefore, the sum of the external forces acting
on the beam to the left of the section is numerically equal to the sum of the
forces acting on the beam to the right of the intersection.
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Statics signs rules are unsuitable for determining the signs of the cross-
section force Q and bending moment M g .

Sign rule of bending can be represented graphically — shear (cutting)
force (Fig. 6.2) and bending moment (Fig. 6.3).

If the sum of external forces acting to the left of the section gives the
equilibrium pointing upwards, then the shear (cutting) force in the section is
considered to be positive. Conversely: for the part of the beam to the right of the
section, the signs of the lateral force will be opposite (see Fig. 6.2). Or the
lateral forces are positive if they tend to rotate the beam element clockwise.

g |r

!
O] o] 1O 4

left right

Figure 6.2

If the external load tends to bend the beam by the convexity downwards
(the lower fibers are stretched), the bending moment in the section is
considered positive and vice versa (see Fig. 6.3).

o ® /NG z 7
) (),

Fooq
Figure 6.3
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Using these rules, one should imagine the section of the beam rigidly
fixed, and the links rejected and replaced by reactions.

Statics sign rules are used to determine support reactions; to determine the
signs of bending moment and shear (cutting) force the rules of strength of
materials are applied.

All forces, active and reactive are the beam loads.

Simplified representation of the real support elements, that is, their
schematization, which is used to construct the calculation schemes of beams in
plane bending state, makes it possible to distinguish three main types of
supports: hinged-movable, hinged-fixed and clamping (rigid fastening). Each
of them is model ed in the form of rods (bars) (Fig. 6.4).

B B B B
/?j/ /?? /PT /J
)

B oy B B Y
5 .
Ry R Ry Ry
b

S t@;— @FJC%;,

Figure 6.4. Schemes of beam supports:
a) hinged-movable; b) hinged-fixed; c) clamping

Differential dependencies at straight transverse bending
There are differential dependences between bending moment, shear
(cutting) force, and intensity of the distributed load, on which the Zhuravsky
theorem is based: the shear (cutting) force is equal to the first derivative from
the bending moment by the abscissa of the beam section.
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Differential dependences between force factors under bending

d’M (x) dQ(x)
dx a2  dx

= q(x).

The second derivative of bending moment or the first derivative from
shear (cutting) force along abscissa of the intersection of the beam is equal to
the intensity of the distributed load.

Diagrams of shear (cutting) forces and bending moment
To illustrate the distribution of the shear (cutting) forces and bending
moments along the beam axis, the diagrams allowing to determine the possible
dangerous section of the beam, to determine the value of shear (cutting) force
and bending moment at this section are drawn. There are two methods of
drawing the diagrams for shear (cutting) forces and bending moments.
The first method. Analytical expressions of shear forces and bending
moments for each segment as the function of the current coordinate x of the
cross-section are recorded

Q = fi(x), Mgy = fa(x).

Then the diarams are drawn according to the obtained results.

The second method. Diagrams are drawn according to the characteristic
points and values of shear (cutting) forces and bending moments at the sections
boundaries. Using this method, in most cases you can omit the addition of shear
(cutting) forces and bending moments equations.

The construction of the diagrams of internal force factors under bending
will be shown in the examples.

Example 1 (Fig. 6.5).
Determine the support beam reactions (Fig. 6.5 a)

M =0; Rg(a+b)-F-b=0,
. F-b
from which Ry = :
a+b
) F .
from which R; = 2.
a+b

Vlidate the correctness of the support beam reactions determination
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F-b F-a
> Y=Rg-F+R¢ = -F + =0.

a+b a+b
The support beam reactions are determined correctly.

A s F A
s 3
X UI b[[LL'/

|
SUIIRINNG b
[ l
}A%

i
i; * c/
o W
R, -a-R. b

B

Figure 6.5

Use the first method of diagram drawing. Divide the beam into sections.

For each section down functions Q(x), M gy (x), as well as the boundaries
within which these functions are true (Fig. 6.5 a).

Sectionl, 0< x<a (leftside):

Fb Fb
Q(x)=Rg = ——; Q(0)=Q(a)= ;
a+b a+b
F.b F.-b-a
Mgy (x)=Rp -x= X Mgy (0)=0; Mgy (a)=
a+b a+b
Section 71, 0< x <b (right side):
F - F
Q(x)=-Rg = -~ Q(0)=Q(b)=-—
a+b a+b
F-a F-b-a
Mgy (X)=Rg -x= x5 Mgy (0)=0; Mgy (b)= :
a+b a+b

Based on the obtained results, draw the diagrams Q and M g,
(Fig. 6.5 b, ).
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From the diagram M g, (see Fig. 6.5 c) determine the dangerous section,
I.e. the section in which the maximum bending moment acts — it is section K
F-b-a
a+b

Iv'BNmax =

Determine the values of the shear (cutting) forces using differential
dependencies (for validation):
- on the first section

dM gy () M
BN :tgalelz BN max :RB;
dx
- on the second section
dM gy () M
L:—tgaz =Q2 :_M:_RC_
dx b

Example 2 (Fig. 6.6). Use the second method of the diagram Q, M gy
construction.

F=4kN R-=13kN A q:Z/(/z///n 11 A Ry =7k
g
\ % a
1 B e
a=2m b=8m
g Xo=35m
it
=~ T 0, /(/V b/
Juine ]
x
g
M /\75”, WNm c/
Mexn=1225
Figure 6.6

Analytically determine the value of extreme moment, for this case it is
dangerous beam section.
Coordinate x, = Rg /g =7/2=3,5 m.

M gy (Xo)=Rg -Xo —q-x5/2=7-35-2.35%/2=12,25 kNm.
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I. Control of the correctness of drawing the diagrams of shear
(cutting) forces and bending moments according to the calculation scheme
of the beam

For shear (cutting) force diagram:

1. In the beam segment loaded by evenly distributed load ¢, the shear
(cutting) force diagram is drawn by straight line inclined to the axis of the
beam.

2. In the beam segment free from (, the shear (cutting) force diagram is
drawn by straight line parallel to the beam axis.

3. Under the intersection of the beam where concentrated force is applied,
there is a jump on the shear forces (cutting) diagram, which is equal to the
magnitude of applied force.

4. At the section, where the concentrated pair of forces (concentrated
moment) is applied, the diagram of shear (cutting) forces does not change its
value.

For bending moment diagram:

1. In the beam segment loaded by evenly distributed load ¢, the diagram
of bending moment is represented by quadratic parabola.

2. In the beam segment free from q, the diagram of bending moment is
drawn as a straight line inclined to the axis of the beam.

3. The bending moment reaches extreme values at the sections where the
shear forces are zero.

4. Under the section of the beam, where concentrated pair of forces
(concentrated moment) is applied, there is a jump in the diagram of bending
moments, which is equal to the magnitude of the concentrated moment.

5. On the beam segment where the shear (cutting) force is zero, the beam
undergoes pure bending, the diagram of bending moments is straight line
parallel to the axis of the beam.

I1. Verification of the diagram of bending moments using bending
differential (by diagram Q).

The cross-sectional diagram verification using dependency

Mo 0 _ g ),
dx

Is carried out taking into account that the diagram Q is graphical representation
of the derivative of the bending moment M gy :

1. The bending moment function M gy (x) increases when the derivative
of the function, i.e. Q(x) is positive.

2. The bending moment function M g (x) decreases when the derivative
of the function, i.e. Q(x), is negative.

71



3. The bending moment function M gy (x) reaches extreme value at the
point where its derivative Q(x) is zero. The function at this section must be

investigated for extremum.
Bending stress. Strength calculation
The bending moment is the destructive internal force factor in direct
transverse (shear) bending. From the action of the bending moment in the cross-
section of the beam the normal stresses occur. They are determined by the
formula
o= Men
I x
where y is the distance (coordinate) from axis X (neutral axis) to points of
the cross-section in which the normal stress is determined
(Fig. 6.7 a).
Analyzing this formula, we obtain the diagram of the normal stresses
distribution by the section height (Fig. 6.7b).
Maximum normal stresses and bending strength condition under
normal stresses

MBNmax
. =——7—<|o|,
|x Y max Wx []

_MBN.max

O max

where Mgy mx 1S the maximum bending moment, determined from the
diagram M gy ;
w, is axial moment of cross-section resistance (see topic 3).

7

O-/nax
| ol
B
X
= —
0/7///7
b al O-max . | 0-/77//7 | b
Figure 6.7
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In the cross-sections of the beam under transverse bending deformation,
not only normal but also tangential stresses occur as the result of shear (cutting)
force Q action, which cause the shear deformation. According to the law of
paired relationship, the same tangential stresses occur in the longitudinal
sections parallel to the neutral layer. The presence of tangential (shear) stresses
in the longitudinal sections under shear bending is confirmed by the occurence
of longitudinal cracks in the wooden beams.

The values of tangential (shear) stresses are determined by
D.l1. Zhuravsky formula

Qy -Sx (y)

rT=——",

b(y)- 1

where ¢ 1S tangential (shear) stress at the considered point of cross-section;
Q, s the absolute value of the shear (cutting) force in the considered
section;
Sy (y) is the absolute value of the static moment of section, cut off at the
level of the point under consideration;
b(y) 1is the width of the beam section at the level where tangential
stresses (shear) are determined;
| IS the moment of inertia of the entire section with respect to its
central axis X .

The absolute value of the static moment of the section part cut off at the
level of the considered point is determined by the formula

SX (y): ASh 'y*1

here Ay is thearea of the cut off part of the section;
y* is the distance (coordinate) of the center of gravity cg of the cut
off part area relatively to the central axis.

For the cross-section, the values Q, and 1y are constant values.

Depending on the shape of the cross-section of the bar, the width b(y) of the
section may be variable (in the presence of the cross-section the function b(y)
is known). In contrast to Q, and 1y , the value of the static moment sy (y) of

the cut off part of the section has variable value that depends on y *.

For the rectangular beam with sides b and h (Fig. 6.8 a)
-the area of the cut off section at the level of the layer under
consideration of fibers m n
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h :
Ash:b E_y ]

- the static moment of this area (i.e. at m n level)

o (o NI rh o AT _bfn® o
adce = (2 yJ Ly 2(2 YJJ—Z . y :

The axial moment of inertia of rectangular cross-section

. _b-h’
AP
4 R
| ~ 1=~
] =/
m ; b/}// /1 . <N ¥
< ’/VZ | | - T
1
&
[
p— Z] S
Figure 6.8

Define the law of distribution of tangential (shear) stresses for the
rectangular cross-section beam. Do this for the fiber layer at mn level
(see Fig. 6.8a)

QS _Q-(/2):h*/4-y?) 6Q(n?/a-y?)

b1y b-b-h3/12 b-h?

when y=+h/2,then r =0;
3Q 3Q
2b-h 2 A

3
when y=0,then r =z, = =0
where ¢ are tangential (shear) stresses.
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The diagram of tangential (shear) stresses at the height of rectangular
section is indicated by quadratic parabola (Fig. 6.8 b). That is, in the upper and
lower layers of fibers the tangential (shear) stresses are zero, and in the fibers of
the neutral layer they reach the maximum value.

Thus, the tangential (shear) stresses in the beams correspond to shear
deformation, and as the result plane cross-sections in direct transverse bending
do not remain plane, as in pure bending, but distorted.

Most bending beams are calculated only under normal stresses. Three
types of beams are verified for tangential stresses:

1) wooden beams, because wood is not good for chipping;

2) narrow beams, for example, I-beams, since the maximum tangential
(shear) stresses are inversely proportional to the width of the neutral layer;

3) short beams, because with relatively small bending moment and
normal stresses such beams can produce considerable shear forces and tangent
stresses.

Strength conditions under bending according to shear stresses

B Qymax “Sx (y)max
b(y)-1x

T max <[r],

where Q. 1S the maximum shear (cutting) force, determined from the
diagram Q ;
Sy (Y)m 15 the maximum static moment of the cross-sectional
area crossing;
[r] is allowable shear stress, [r]~0,5[c].
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Task 6
Drawing the diagrams of shear (cutting) force and bending moment
for cantilever beam

For given cantilever beam (Fig. for task 6, Table for task 6) draw the
diagram of shear (cutting) forces and bending moments, if a=3 m.

Plan of solving the task:
1. Write down the functions of shear (cutting) forces and bending

moments cantilever sections.
2. Diagram shear (cutting) forces and bending moments.

Table for task 6

Nr q, kN /m F, kN M , kNm b, m c, m
2 1
1 2 1,5q-a 0,5q-a’ —a ~a
3 3
1 2
2 3 q-a q-a’ —a —a
3 3
1 1
3 6 05q-a 1,2q-a° “a ~a
3 3
2 2
4 2 q-a q-a’ —a —a
3 3
2 1
5 4 2q-a 15q-a° —a —a
3 3
1 2
6 6 g-a q a2 —a —a
3 3
1 1
7 2 0,5q9-a 1,5q-a’ Za Za
3 3
8 5 1,5q-a q-a’ 3a Ea
3 3
2 1
9 6 g-a q a2 —a —a
3 3
1 2
0 3 2q-a 0,2q-a° —a —a
3 3
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Figure for task 6
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Example of solving the task 6
Drawing the diagrams of shear (cutting) force and bending moment
for cantilever beam

For given cantilever beam (Fig. 6.9 a) diagram shear (cutting) forces and
bending moment.

Solution

Divide the beam into three sections. The boundaries of the sections are
the sections where the concentrated forces and bending moments are applied
and the sections where the distributed load begins and ends.

In direct transverse bending, these internal force factors, such as bending
moment M gy (x) and shear (cutting) force Q(x), occur in the cross-sections.

To determine them, we use the method of sections.

At each segment of the beam (for the cantilever beam we consider the
segments from the free end) make imaginative sections, reject the left part of
the beam and consider the equilibrium of the right one. The forces of interaction
of beam parts are replaced by internal forces Q(x) and M g (x) (Fig. 6.9b). We

define them as functions of the current coordinate x based on equilibrium
equations >'Y =0; > M, =0, using the sign rule.

Determine the lateral forces and bending moments at each segment of the
cantilever beam

Section 7, 0< x<1,3m (right side):
Q(x)=-F =-19 kN ;

Mgy (x)=F-x;

M gy (0)=0;

Mgy (1,3)=19-1,3=24,7 kNm .
Section 77, 1,3m < x <3,2m (right side):

Q(x)=-F +q-(x-13);

Q(1,3)=-19 kN;

Q(3,2)=-19 +13-(3,2-1,3)= 5,7 kN;

(x-13)°

Mgy (X)=F-x-q 5
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M gy (1,3) =19 -1,3 = 24,7 kNm ;

(3,2-1,3)°
Mgy (3,2) =19:32-13 -2 === 37,3 km .

Evaluate function M gy (x) for extremum

dM (x)
=Q(x)=F-9q-(x-13)=0;
dx
F+13-g 19+1,3-13
X = = =2,76 m;
q 13
then
(2,76 —1,3)°

2

It should be noted that the necessary condition for the extremum of
function M gy (x) at the segment is zero value on this segment Q(x).

Section /7, 3,2m < x < 4,8m (right side):
Q(x)=-F +q-(x-1,3);
Q(3,2)=-19 +13-(3,2-1,3)=5,7 kN ;

Q(4,8)=-19 +13-(4,8-1,3)= 26,5 kN ;

2
x—-1,3

Mgy (X) = F~x—q~u—M;

2

(3,2-1,3)
Mgy (3,2)=19-32-13 =="—==—-16 = 21,3 kNm,

(4,8-1,3)
Mgy (48) =19 4,8 -13-—=—=="——16 = ~4,43 kNm

Based on the obtained results, draw the diagrams Q and Mgy (Fig.

6.9 ¢, d). The diagram of bending moments is draw from the side of stretched
fibers, that is, the positive values of bending moments are placed down from the
axis and the negative ones are up.
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Task 7

Diagraming of shear (cutting) force and bending moment
for simply supported beam

For the given steel beam (Fig. for task 7, Table for task 7) diagram shear
(cutting) forces and bending moments.

Plan of solving the task:
1. Determine the support reactions, write down the functions of shear

(cutting) forces and bending moments on the beam sections.
2. Diagram shear (cutting) forces and bending moments.

Table for task 7

Nr |g,kN/m|F,kN | M, kNm |a,m| Nr | q,kN/m | F,kN | M,kNm |a, m

G WIN|F
WINwWw O~
O~ lwN|O
A |O1|©O |
OB IDNW
OSQ|O©|0|N|O
AlOTIWIN|W
OB IN|W
(N~
Nfw|h~|OT|W
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Figure for task 7
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Task 8
Strength calculation under the bending of beams

For the given steel beam (Fig. for task 8, Table for task 8), diagram the
shear (cutting) forces and bending moments for strength under normal stresses;
choose I-beam, round and rectangular cross-section (putting for a rectangular
cross-section the relation of height to width h/b = 2) sections of the beams and

compare their weight. For I-beam, conduct the strength test by shear (cutting)
stresses and complete test by the main stresses. Material of the beams is steel
St.3; [6]=160 MPa.

Plan of solving the task:

1. Determine the support reactions, write down the functions of shear
(cutting) forces and bending moments in the segments of the beam.

2. Diagram the shear (cutting) forces and bending moment. Determine the
cross-section in which the maximum bending moment and the maximum cross-
section force act.

3. Choose the dimensions of the sections (I-beam, round, rectangular)
from the condition of strength under normal stresses.

4. Compare the weight of the beams, taking the weight of I-beam as
100%.

5. Test the strength of the selected I-beam for shear (cutting) stresses.

6. Determine the section in which the maximum main stresses occur.
Conduct the complete strength test of I-beam at the dangerous point of this
section.

Table for task 8

Nr{ a,kN/m | F, kN | M, kNm | a, m|Nr| q,kN/m | F kN | A, kNm |a, m

1 2 3 9 8 | 6 2 3,5 5,5 10

2 3 4 5 I 3 4,5 7,5 8

3 4 5 8 9 |8 2 2,5 4,5 9

4 1 2 4 10 | 9 5 6,5 9,5 8

3) 4 6 7 710 4 5,5 8,9 6
Task 9

Calculation for strength and determining displacements
during the bending of beams

For the given beam (Fig. for task 8, Table for task 8) choose the I-beam.
Determine the deflection of the beam in the section A by the method of initial
parameters. Verify the obtained result by the Mohr method.
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Figure for task 8

86

05a - Oa
- ’F q
0Za 02a B
L. g q
,4; A A F A
———
921 )
06a 0Za 02a
-~ Qeéa -
———
>
04a
B a




/4 A 77
e S
03a 03a

Figure for task 8 (contunied)

87

02a
/L_
q M 1 /7
: A FA 4 / A
e ———
06a 02a O4a
a a
©,
L -
M r
\ )
/ A / L,
02a ~ Uba
N a B B a




Example of solving the task 7 and 8
Diagraming of shear (cutting) force and bending moment
for simply supported beam.

Strength calculation under the bending of beams

For the given steel beam (Fig. 6.10 a), diagram shear (cutting) forces and
bending moments for strength under normal stresses; choose the I-beam, round
and rectangular (putting for a rectangular cross-section the relation of height to
width h/b = 2) sections of the beams and compare their weight. For I-beam,
conduct the strength test by shear (cutting) stresses and complete test by the
main stresses. Material of the beams is steel St.3; [ ] =160 MPa.

Solution
Using the static equilibrium for the given beam scheme (Fig. 6.10 b),
determine the vertical components of the forces reactions:

> Mg =0; -M + Ay -15+q-15-0,75-F -2,0 = 0;
16 —20-1,5-0,75 +15 - 2,0
Ay = =15,7 kN :
1,5
> M, =0; -M -q-15-0,75+By -1,5-F -3,5=0;
16 +20-1,5-0,75 +15-3,5
By = =60,7 kN .
1,5
Verification:

ZY =-Ay -q-15+By -F =-15,7-20-15+60,7 -15 = 0.

Conclusion: the resistance responses are determined correctly.
Divide the beam into three sections. For each section write the functions
of lateral force Q(x) and bending moment M gy (x).

Section 7, 0<x<1,6m (leftside):
Q(x)=0; Mgy (x)=M;

Mgy (0)=M gy (1,6)=16 kNm .
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Section 77, 1,6 m < x<31m (leftside):
Q(x)=-Ay —q-(x-16);
Q(1,6)=—-15,7 kN ;

Q(3,1)=-15,7-20-(31-1,6)= —47 ,5kN ;

q.(x—1,6)

Mgy (X)=M — A, -(x-1,6)- 5

M gy (1,6)=16 kNm ;

Mgy (31)=16 —15,7-(31-1,6)-10 - (3,1-1,6)° = —30 kNm .
Section /71, 0 < x <2,0m (rightside):
Q(x)=F =15 kN ; Q(0)=Q(2,0)=15 kNm ;
Mgy (x)=-F-x; M gy (0)=0;
Mgy (2,0)=-15-2,0 = -30 kNm .
Draw the diagrams Q and M gy (Fig. 6.10 c, d).

From the condition of bending strength by normal stresses

M BN max S[G]
W, ’

O max

determine the required axial moment of section resistance

3

M 30 -10 " _
BN mex _ ~188 -10 ® m?3,

W, >
0 [o] 160

where Mgy max 1S the maximum bending moment acting on the beam,
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For the given beam, choose the following cross-sections:
a) I-beam Nr 20a (GOST 8239-56)

W, =203-10 °m?, A, =288-10*m?;

b) rectangular cross-section

Wrc = . = . :—bS;

b>3/3.188 107 /2 = 65,6.10 ° m:;

take b=70 mm, then h=2-70 =140 mm

6 4 2,

respectively A,, =b-h=70-140 -10"° =98-10 " m*;

¢) round cross-section
W, =z-d3/32;

d >3/32.188 .10 314 =124 .10 *m;

take d =125 mm , then

A, =7z-d?/4=314.125%.107° /4 =123 .10 *m?.

Compare the beams weight
Qp:Qu :Qup =4y i A A4y, =28,9:98:123 =1:3,39 :4,26.

Test the strength of I-beam.

Taking into account that the dimensions of cross-section of the I-beam
were determined only by the condition of strength at normal stresses, it is
necessary to test the strength of the beam by tangential (shear) and principal
stresses.

From the assortment tables for I-beam Nr20a according to
GOST 8239-72 we take the necessary data for the calculation:

hy =200 mm; by =110 mm; d, =52mm; t, =8,6 mm,;

I« =2030 cm *; Sy =114 cm 2,
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Draw the simplified section of I-beam (Fig. 6.11 a).

{7” — Ap=t0,
[T 7
i 735 392
o A <oy
g .
- QQN‘ ¥
= 94
175
[ I Z
al O MPa b T MPa ¢/
Figure 6.11

The dangerous section while testing for tensile strength is the section
where the shear (cutting) force has maximum value Q.. = 45,7 kN (section
at point B, see Fig. 6.10 c).

The maximum tangential (shear) stresses occur at the section points that
coincide with the neutral axis (axis X , see Fig. 6.11).
Tensile strength condition

T :MS[T],
dy - I'

where [z] is allowable shear stress,
[r]~0,5[c]=0,5-160 =80 MPa .

Substituting the values, obtain

) 45.7.10 2 .114 .10 °
max -3 -8
5.2.10 " .2030 -10

= 49,4 MPa <[r]=80 MPa .

The dangerous section while testing for main stresses is the section where
bending moment and shear (cutting) force acquire maximum values or are close
to them (the section point B, Mgy mux =30 kKNm, Q.. =457 kN,
see Fig. 6.10 c, d).
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Determine the normal and tangential (shear) stress in the dangerous
section of the I-beam (point K , Fig. 6.11 a):

M h 30-10°° (200 _
G:M.(_b_tbj: : [ —8,6)10 3 =135 MPa ;
I'x 2 2030 -10 2

Q-S 45710 2.90,5.10 °
o TS ~ 39 2 MPa |,

dy,-Ix  52.10 °.2030 -10 ®

where s, is the static moment of the section area of the I-beam shelf
relatively to axis X , is determined by the formula

B hy ty) by -ty -(hy —ty)
SXsh_Ash' 2_2 - 5 .

Substituting the data, obtain

110 -8,6-(200 ~8,6)-10 °

X sh 2

~905.10 ® m3.

Here A is theareaof I-beam shelf, Ay =t, -by.

Draw the diagrams of normal and tangent stresses for the I-beam section
(Fig. 6.11 a, b, c).

Determine the calculated stress by the third theory of strength and test the
strength of the material by the main stress:

o r3 Vo2 1ar? Z 1352 4+ 4.39,22 —156 MPa :
or3 =156 MPa <[o]=160 MPa .

Therefore, the strength of the beam by the main and tangential (shear)
stresses is ensured.
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7. DETERMINATION OF DISPLACEMENTS UNDER BENDING

Rods that undergo bending deformation have to be not only of adequate
strength but also of sufficient rigidity. Under the action of external loads, the
displacements of their sections must not exceed the allowable values
established by the norms.

To perform the calculation for rigidity in practice, it is necessary to be
able to calculate the corresponding displacements of the sections. Consider the
movement of sections when bending the cantilever beam (Fig. 7.1).

y A

Ao 0, 17\ 15

v>~<

A

Figure 7.1

In Fig. 7.1 the symbols are used: 0B — undeformed axis; OB, — bent axis
of the beam;® , — slope of the elastic curve A; y, — linear displacement of the
section; p, — curvature of the beam axis.

With a plane transverse bend, the bent axis of the beam lies in the force
plane and coincides with the main plane. The curved axis of the beam is
referred to as the curved axis or elastic line.

Position of the cross-section of the beam under bending is determined by
two displacements (Fig. 7.1):

1. Linear displacement y, = y(x,) of the gravity center of the section
in the direction perpendicular to the undeformed axis of the beam, which is
referred to as deflection.

2. Angular displacement ® , = ®(x,) is a slope of the elastic curve
around the neutral axis of the section relative to its initial position.

It is considered that the length of the curved longitudinal axis belonging
to the neutral layer does not change when the beam is curved.

94



Deflections slopes of elastic curve are related by differential dependence

= dy (x)

dx

O (x = y'(x). (7.1)

Differential equation of the bent axis of the beam
There is such an analytical relationship between the curvature 1/p of the

bent axis of the beam (elastic line), bending moment M g that determines this
curvature, and the beam rigidity during bending ElI

1 Mgy (x)
p(x)  E-lg

, (7.2)

where  p(x) 1is the curvature radius of the elastic line of the beam in the
plane at distance x from the coordinates origin;
M gy (x) IS the bending moment at the same cross-section of the beam.

Curvature of a plane curve (known from the course of higher
mathematics) is described by the dependence

1, ()
o(x) [1+ y'(x)z]s/z ' (7.3)

By equating the right-hand sides of relations (7.2) and (7.3), the exact
differential equation of the bent axis of the beam is obtained.

L ] (7.4)

[1+ y’(X)z]

Given that the slopes of the elastic curve are small, the value y'(x)?

compared to the unit can be neglected. Then, from expression (7.4), when
choosing the direction of the upward axis Y , get the approximate differential
equation of the elastic line of the beam

E -1y y"(x)~ M gy (x). (7.5)

By integrating it twice or once, it is possible to determine the linear y(x)
and angular o(x) displacements of the beam sections under any load
conditions.
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There are several methods for determining displacements in direct
transverse bending. Consider some of them.

Method of direct integration of differential equation
of the bent axis of the beam
The method is based on the approximate differential equation of the bent
axis of the beam

E-ly-y"(x)=Mpy (x), (7.6)
where g .| is the rigidity of cross-section of a beam under bending;
E iIs the modulus of elasticity of the material from which the
beam is made;

I, Is the axial inertia moment of the cross-section of the beam,
M gy (x) is the function of bending moment from external loading,
acting on this section of the beam, hereinafter

Mgy (x)=M (x).

To obtain the function of the curved axis of the beam y = f(x), integrate
equation (7.6)

E-1-y'(x)=[M(x)dx +C; (7.7)
E-I~y(x)=J’de’M(x)dx+C~x+D. (7.8)
Therefore, the equation of the curved axis of the beam is
1
=——([dx [M(X)dx +C -x+D. 7.9
y(x) E'IIXI (x)dx +C - x + (7.9)

Equations (7.7)-(7.8) include constant integrations C and D, which are
determined from the boundary conditions, i.e. the conditions of fixing the beam
supports, the deflections and slopes of the elastic curve which are known.
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Method of initial parameters
Method of initial parameters makes it possible to write only one equation
of deflections or slopes of the elastic curve, which is suitable for all sections
of the beam. This equation is called the universal equation of the elastic line,
which takes into account all types of loads: concentrated force F , concentrated
moment M , distributed load g(x).

Method of initial parameters is obtained as a result of unification of the
method of direct integration of the beam bent axis by equating the constant
integrations at the boundaries of the sections. This method is a universal
technique for determining displacements during bending.

For a prismatic beam (Fig. 7.2) with the selected coordinate system X Y
and different types of load, the equation of the elastic line can be written as

Elastic line
(of the beam bent axis) p—
Undeformed Ll
T additfional load g
— — 1111l
e AAAA A.
A ————
& vml
a g N lomenstig
b load ¢q
&
ad
[
Figure 7.2
2 3 3
1 Mq - X - X F(x-a
Y(X) =Yg+ Oy X+ 0 +QO + ( ) +
E-I 2 6 6

(7.10)

M (xb)iq(xc)“q(xd)“],
2 24 24
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where y,, ®,, M, Q, are initial parameters, respectively: deflection, slope of
the elastic curve, bending moment and shearing force at the coordinate origin;

a Is a distance from the coordinate origin to the section at which
concentrated force F is applied;

b IS a distance from the coordinate origin to the section at which
concentrated moment M is applied;

¢ IS adistance from the coordinate origin to the section at which the
load q starts to act;

d Is a distance from the coordinate origin to the section at which the
load g finishes its action.

Deflection y, and slope of the elastic curve ®, are geometric initial
parameters; bending moment M, and shear (cutting) force Q, in the crossing,
which coincides with the coordinate origin are static initial parameters.

Deflection y, and slope of the elastic curve @, of the initial (right-hand
final) beam section are determined from the conditions of beam fixation, bending
moment M , and shear (cutting) force Q, are found from diagrams M gy and Q.

If the simply supported beam is considered, y, and ©, are determined

from the conditions that deflections on the supports equal zero. If the cantilever
beam is considered, these parameters are determined from the conditions that
deflection and slope of the elastic curve in the clamp equal zero.

Initial parameters y,, ®,, My, Q, can be positive, negative, or equal zero.

The signs of terms in the equation are determined by the signs of the
corresponding external force factors. The rules of signs are the same as those
adopted for shear (cutting) forces and bending moments.

The equation for determining slopes of the elastic curve of the prismatic
beam (see Fig. 7.2) is

1
O(x) =0, +
E
(7.11)

6 6

+q<xc>3q<xd>3}_

When compiling the equation of the elastic line of the beam, such rules
should be followed:
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1. The coordinate origin is chosen at the leftmost point of the beam and
kept it common to all segments.

2. Only those loads that are applied to the left of the considered section
are substituted into the equation.

3. If the distributed load q(x) breaks on one of the sections of the beam, it
is conventionally continued to the right end of the beam, while introducing a
compensatory load of the same intensity, but in the opposite direction.

The Mohr method
The Mohr method is based on the principle of conservation of energy, i.e.
the equality of work from external loads and the potential energy of
deformation.
Displacement A (deflection y or slope of the elastic curve ©) is

determined by Mohr integral which spans all the length of the beam

M(x)-ﬁ(x)d
E-I

Aly, ©)=3 |

X (7.12)

where M (x) are functions of bending moments from the external loads for
the given (loaded) beam;
M (x) are functions of bending moments from a singular load for the
redundant (auxiliary) — unloaded — beam.

Redundant (auxiliary) beam is a given beam without external loads.

Physical outline of the Mohr integral: the displacement of a random
section of the beam is the work of a singular force, which is spent for
displacement of its application point from a given load.

Sequence for determining displacements (deflections or slopes of the
elastic curve) using the Mohr integral:

1. Compile the equations of bending moments M (x) from the given load.

2. Having eliminated given loads from the system (beam), apply a force
(pair of forces) equal one (singular force or singular moment) at that beam
section, where the displacements are determined and in the direction of this
displacement.

3. Compile the equations of bending moments M (x) from this singular
force (pair of forces).

4. Calculate the integral sum (7.12) from the product of both moments
divided by rigidity of the section.
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Graphic-analytical solution of the Mohr integral

It is reasonable to calculate the Mohr integral (7.12) by graphic-analytical
method.

Outline: the definite integral of the product of two functions, one of
which is linear and the other arbitrary, is equal to the product of the area of
the graph of an arbitrary function and the ordinate of the graph of the linear
function taken under its center of gravity.

Graphic-analytical method of solving the Mohr integral can be used when
one diagram is traced with straight lines. This condition is satisfied for
structures that consist of straight bars (elements), because the diagrams from the
singular loads are always rectilinear.

General formula for determining displacements under bending

1 — " M ci
A(y,®)=Z;IM (x)-M (x)dx = Zw'E,IC ) (7.13)
I i=1

where o, is the area of diagram (Fig. 7.3 @) of bending moments M (F)
from the external loads of the i-segment of a beam;
M ci Is the ordinate of the linear diagram (Fig. 7.3 b) of bending
moments from a singular load M . of the i-section of the
beam located under the gravity centre of nonlinear diagram

|\ mF d

b

| \
3|

(1 M[Z

Figure 7.3
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Graphic-analytical method of solving the Mohr integral is referred to as
the method of multiplication of diagrams. Herewith the diagram M (F) is

named the load one and diagram M . is a singular.

When using this method, the following should be considered:

1. Number of terms n (o, - M ci ) has to be not less than the number of the
Mohr integral sums.

2. If diagrams M (F ) (of external loads) and M ci (of singular loads) are
of opposite sign (are on different sides of zero line), the result of diagram
multiplication has the sign minus.

3. If the equation of bending moments is a polynomial, it is reasonable to
draw the load diagram in layered form, i.e. to draw separate diagrams from
external loads, each of which corresponds to one of the terms. Such diagrams
are drawn by approaching the breaking point of a single diagram from both
sides of the beam.

4. Diagrams drawn for use of the graphical-analytical method of the Mohr
integral calculation are not hatched.

Measurements of singular diagrams of bending moments are the units of
length.

The values of the diagrams areas and the coordinates of their gravity
centre, which can be used to determine the displacements, are given in Annex 6.

Example of solving the task (cantilever beam)
By graphic-analytical solution of the Mohr integral, determine deflections
and slopes of the elastic curve of sections A and B of cantilever beam shown
in Fig. 7.4, provided that E - I = const .

%
M
X
gl g N
—— X o
Figure 7.4
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Solution

For a given cantilever beam (Fig.7.5a) draw a diagram of bending
moments (Fig. 7.5 b) from external loads M (F ). To determine the deflection of
the section A, in the redundant (auxiliary) beam (Fig. 7.5 c) apply a singular
force at the same section and draw a singular diagram of bending moments M 1
(Fig. 7.5 d).

Deflection of the section A determine by multiplying diagrams M (F)
and M 1

P . 2
yA=—(—w1-M101)=—2M 2 ,

1
E-I E-I

where w, =M -2a; MlCl =a.

To determine the deflection of the beam at section B, it is reasonable to
repeat diagram M (F) again (Fig. 7.5 e). In the redundant (auxiliary) beam at
section B, it is necessary to apply a singular force (Fig.7.5f) and draw a
singular diagram of bending moments M > (Fig. 7.5 g). Then the deflection of
section B is
M -a’

~ (~@, Maca+w;-Macs)=- :
E-I< 2 3 ) 2E .|

where w, =M -a; w3 =M -a; M202=—a/2; M2c3 =0.

To determine the slopes of the elastic curves of sections 4 and B, it is
necessary to apply singular bending moments in the given sections of redundant
(auxiliary) beams (Fig. 7.5 h, j) and draw the diagrams of bending moments
(Fig. 7.5 4, k).

Slope of the elastic curve of section A is determined by multiplication of the

diagram from exteral forces M (F) (see Fig. 7.5b) and singular moments M 3

(see Fig. 7.51)
0 :_(w -MQ,C]_):ZM -a
AT Eg Y E.1

where M:3(31 =1.
Slope of the elastic curve of section B is determined by multiplication of
the diagram from exteral forces M (F) (see Fig. 7.5 b) and singular moments

M 4 (see Fig. 7.5 k)
® =—(a) -v4c3+a} -v4c2)=M o
BT E g V3 2 E.1

where M4c:3 =0, M4cz =1.
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Figure 7.5
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Example of solving the task (simply supported beam)
By graphical-analytical solution of the Mohr integral, determine the
deflections in the sections K and D and the slope of the elastic curve of the
beam on two supports, shown in Fig. 7.6 a, provided that E - 1 = const .

Solution
From the equilibrium equations, determine the support reactions

(see Fig. 7.6a):

> Mg =0; ~Rp-3a+F-2a=0; Ry=—F;
ZMA:O; Rg-3a-F-a=0; Rg =—F.

S 2 1
Verification Y =Rp-F+Rg=—F-F+-F=0.
3 3

Draw a diagram of bending moments M (F) (Fig. 7.6 b) from external

loads.
To determine the deflection of the section K in the redundant (auxiliary)

system (Fig. 7.6 ¢), apply a singular force in the section K . Determine the
support reactions:

_ — 2
— — 1
ZMAZO; Rp-3a-1-a=0; RBZE.
. — — 2 1
Verification ZY =RaA-1+Rp=—-1+—=0.
3 3

Draw a diagram of bending moments M1 (Fig. 7.6 d) from a singular

force.
Determine deflection of section K by multiplying diagrams M (F) and

M 1

1 — —
Yk =;-(w1'l\/|101+w2~l\/| 2c2),
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where

12 F.a%
a)l—__F a-a= y

2 3 3

12 2F.a’
w,=—-—F-a-2a= ;

2 3 3
— — 2 2 2 4
Mici=Ra-—a=—-—a=—a;

3 3 9

Substituting the data, obtain

1 (F-.a® 4 2F.a?

Vi = S—a+
KBl 3 9 3

4 12 F -a°
—a = —.
9 E.|

To determine the deflection of section D, do the similar operations, i.e.
apply a singular force in section D of the redundant (auxiliary) beam
(Fig. 7.6 €) and draw the diagram M » (Fig. 7.6 f). For convenience and clarity,
place the diagram from external forces M (F) under the diagram M
(Fig. 7.6 g).

Determining the deflection of section D is complicated by the increase of
terms o; - M ci . This is due to the fact that we have three areas of integration by

the Mohr method, and also divide the middle shape (trapezoid) into two shapes
— triangle and rectangle (Fig. 7.6 g).
Deflection of the section D determine by formula

1 J— N N N
Yp =—(w1-|\/|201+w21'|\/|2c21+w22-I\/lzczz +co23-|\/|2023),

12 F.a’ 11 F.a’
where o, =——F-.a-a= ; wy =——F-a-a= ,
2 3 3 2 3 6
11FaaFa2 1FaaFa2_
(0] = — . . = y (0] = — = y
279 3 6 23 3
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To determine a slope of the elastic curve of section A in the redundant
(auxiliary) beam (Fig.7.61), apply M =1 in section A4, find supporting

reactions and draw the diagram of bending moments from a singular load M
(Fig. 7.6 ).
Slope of the elastic curve of section 4 detrmine by multiplying diagram

M (F) (Fig. 7.6 b) by M 3 (Fig. 7.6 j)

1 e e
®A=;(—wl-l\/l 3c1—w, M 302),

— 1 1 7
where M3c1=—1]2a+—a|=—,
3a 3 9

— 1 (2 4
M3co=—1|—2a|=—.
3al3 9

Substituting the data, obtain

1 (F-a®2 7 2F-a’ 4 15 F -a°
®A:_ - — 4+ | = = — .
E.-| 3 9 3 9 27 E - |

Sign minus means that the slope of the elastic curve of section A4 occurs in
the direction opposite to the action of singular moment.
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Example of solving the task 9
by the method of initial parameters

For the given beam (Fig. 7.7), determine deflections of sections C and D
and the slope of the elastic curve of section A Dby the method of initial
parameters, when F =10 kN, M =40 kNm, q=20 kN /m, E -1 = const .

¥
M=40kNm
R, =25kN q;—20/(/\///77 A/?B:65 kN | F=10kN

AA [a ,ﬁf !U»

e
2m 2m 2m -
Figure 7.7
Solution

From the equilibrium condition write down;
> Mg =0; -Rp-4+0:4-2-M -F-2=0,
S M, =0; ~F-6+Rg-4-M -q-4-2=0.

Determine the support reactions:

_q-8-M-F.2 20-8-40-10-2

R = 25 kN ,
A 4 4

F-6+M+q-8 10-6+40+20-8
Rg = 4 = 2 =65 kN .

Compile the validation equation
>Y=Rp-q-4+Rg-F =25-20-4+65-10 =0,

that is support reactions are determined correctly.
Choose the coordinate origin on the left-most support A. Write down the
general equation of the bent axis of the beam by the method of initial

parameters

3 2
R, - X M (x-2
E-l-y(X)=E-l-yg+E-1-04 -x+—2 + ( )+
6 2

(7.14)

3 4 4
Rg (x - 4 : —4
L Re(x=4)" a-x" q(x-4)"
6 24 24
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Find the initial parameters y, and ® ;, from the conditions:

E.1.y(0)=0: (7.15)
E-1-y(4)=0;
or
JE-I-y():o;
3 4 2
[E-I-yO+E-I-®O-4+RA'4 B R Gt Y (7.16)
6 24 2

From the system (7.16) obtain:
E-1-y9=0;

E-1-©5=" + - -33,3.

1( 25.4% 20.4% 40.2?
4 6 24 2

On substituting the initial parameters, write down the equation of the bent
axis of a beam
3 4 2 3 4
R - X - X M-(x-2 Rg - (x-4 (x—-4
gt M2 Ry (-4 ge(x-a)t
6 24 2 6 24
Find deflections of the beam in sections C and D .

SectionC, xc =2m:

E-l1-y(x)=-33,3-x+

3

25.2° 202
E-1-yc(2)=-33,3-2+ - = —46,7;
24 24
from which
46,7
Ve (2)= ———.
c(2)=-—"
Section D, xp =6m:
25.6% 20.6% 40.4% 65.2° 20.2°
E-1-yp(6)=-33,3-6+ - + + + = 40,0;
6 24 2 6 24
from which
40,0
Yp(6)=—
5(6)=""

Slope of the elastic curve of section A

E-1':©,=E-1-0, =-333;
from which

33,3
A=

E.l
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Example of solving the task 9

by Mohr method
Let us solve the task (see Fig.7.7) by Mohr method. Given:
q=20kN/m; M =40kNm; F=10kN; R,=25kN; Rg=65kN;
E -1 = const . Calculation model is shown in Fig. 7.8 a.
Solution

Determine the deflection of section C . In the redundant (auxiliary) beam
at point C (Fig. 7.8 b) apply a singular force. Determine the support reactions.
In the given case (symmetric application of force)

- = 1
Ra=Rp :E=0,5.

Determine deflection of section ¢ by Mohr method using the formula
Elyc = [M (x)-M (x) dx - (7.17)

|
Write down the expressions M (x) and M (x) on the segments of the
beam:
Segment/; 0<x<2m (leftside)
M (x) = 25X —10 X °;
ﬁ(x) =0,5x.
SegmentII; 2m<x<4m (leftside)
M (X) = 25x —10 X% + 40 |
M (x) = 0,5x —1(x — 2) .
Segment /II; 0<x<2m (rightside)
M (x)=-10x,
M (x)=0.
Substitute expressions M (x) and M (x) into Mohr integral (7.17) and

integrate
2 4

E-|-yc:j(zsx—loxz)-o,5xdx+j(25x—10x2+40)-(o,5x—(x—2))dx+0=
0 2

2 4

=J'(12,5x2—5x3)dx+J'(50x—20x2+80—12,5x2+5x3—20x)dx:

0 2

2

5-X 30 - x

— +
¢l 2|

0 2

2
IS R L ‘

3

_12,5-x3
3

80 - x
+

_ 46,7
1,

l
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from which the deflection of point C is
Je - 46,7
“TEO
Sign plus means that the deflection coincides with the direction of a
singular force action.
To determine the deflection of section D in redundant (auxiliary) beam
(Fig. 7.8 ¢), apply a singular force in the same section. Determine the support
reactions:

SMAo=0;, Rp-4-1:6=0; Rp =15;

SMg=0; Rap-4-1.2=0; Ra=05.

Write down the expressions of bending moments from the singular load
on the segments of the:
segment /; 0<x<2m (leftside)

M (x)=-0,5x;
segment II; 2m < x<4m (leftside)

M (x)=-0,5x;
segment 7II; 0<x<2m (rightside)

v(x): ~1x.

Substitute expressions M (x) and M (x) in the Mohr integral (7.17) and
integrate

2 4 2

Elyp = j(25x—10x2)-(— 0,5x)dx + j(25x—10x2 +40)-(— 0,5x)dx + [ (~10%)- (- 1x)dx =
0 2 0

2 4 2
= J'(—12,5-x2 —5x3)dx +J‘(—12,5x2 +5%° —20x)dx +Ile2dx =
0

2 0
:12,5-x3‘2+5-x4‘2_12,5-x3‘4+5~x4‘4_20-x2‘4+10~x3‘2:_40
I Tl T A TN
from which the deflection of point D is
yD=—£-

Sign minus means that the deflection of point D does not coincide with
the direction of a singular force action (see. Fig. 7.8 c).
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Y
B M=40kNm _ d
Ry =25kN l Sq =20kN/m A Ry=65kN F=T0kN

A ) 8 |
L1l I b I | x

X g Dl

— X —

b Zm 2m 2m _

A7 / =
k05 a A RS »
i o$ I | x

X‘
X

R,-05 A 2,15 /
A B | .
i I & I |x

‘X‘

I X

R=025 ] \ ~-025
'/ '’ S B /2
4\ B W, J
M |1 g Il | x
———— §%
e X e

Figure 7.8

To determine the slope of the elastic curve A, in the redundant (auxiliary)
beam (Fig. 7.8 d), apply a single moment.

Find the support reactions from the action of a single moment
1
4

RA=Rp=-=025.
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Expressions of bending moments for the beam (Fig. 7.8 d):
segment /; 0<x<2m (leftside)

M (x)=1-0,25x;

segment II; 2m < x<4m (leftside)

M (x)=1-0,25x;

segment /II; 0<x<2m (rightside)

M (x)=0.

Determine the slope of the elastic curve A by the Mohr method using the
formula

£ 1.0, = [M(x)-M (x) d . (7.18)
|

Substituting the data, obtain
2

E-1-0, = [(25x-10x2)-(1-0,25x) dx +
0

(25x—10x2 +40)-(1—0,25x)dx +0=

4
+]

2

2
— [(25x-10x2 - 6,252 + 2,5 x> )dx +

0

4
+[(25x-10%% + 40 ~6,25x2 + 2,5x° ~10x ) dx
2

:25-x2‘ _16,25-x3‘2+2,5-x4‘2+40-x|4+15-x2‘4_
2 ‘0 3 ‘o 4 ‘o 1, 2 ‘2
16,25-x3‘4 2,5-x4‘4 _
- + = 33,4;
3 ‘2 4 ‘

2

from which the slope of the elastic curve A is
33,4

0, - .
AT EL
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8. STATICALLY INDETERMINATE SYSTEMS

General concept

Statically indeterminate systems are systems in which the reactions of
junctions and internal forces are impossible to determine by the equilibrium
equations only.

Such systems (constructions) are the most spread as they are more reliable
and rigid in comparison with statically determinate ones.

Statically determinate (isostatic) beam or frame can be transformed into
statically indeterminate (hyperstatic) by setting extra (excessive from the point
if view of the system’s equilibrium) support. Advantages of such system: the
loading over it can be increased without changing the crossing of the beam;
when one of the supports in isostatic system is damaged, it is turned into
mechanism whilst hyperstatic system remains unmoveable, capable to take
loads, in other words, it is safer. In many cases statically indeterminate systems
are the only possible variant of construction.

Advantages of statically indeterminate systems are: decrease of elastic
displacements; increase of stiffness and stability of the system elements;
significant decrease of the working stresses at their crossings; economical
efficiency as having the same size of crossings, they can carry more load; when
losing some excessive relations they remain immovable and geometrically
unchanged; have higher reliability and connectedness of elements during work;
capable to redistribute the load between elements if some of them damage or
weaken (in case of setting down of one or several supports).

Drawbacks: there occur the temperature stresses as well as assembly ones
in case if their size changes in relation to designed dimensions.

Peculiarities: the supports reactions and internal forces in the elements
depend on stiffness of diametrical crossing of the rod system; it is impossible to
provide the equal safety margine, i.e. one elements can be underloaded, and the
others overloaded which requires them to be optimally designed.

Main methods of evaluating the systems indeterminence

Since there are more unknown forces than the equilibrium equations,
static indeterminance of the system can be evaluated only with redundant
(auxiliary) equations. These equations have to show the peculiarities of
geometric relations put over the rod system. Such equations are composed by
figuring out and drawing the picture of displacement of the construction
elements sections during its deformation and that is why they are defined as
displacement (deformation) compatability equations.

Metods of calculation of statically indeterminate systems are classified
according to whaich is taken as an unknown value. If displacements are
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considered as unknown, the calculation method is called the displacement
method; and if the forces are unknown, the method of their calculation is the
force method. If partially forces and partially displacemetnts are unknown, the
method of calculation is mixed.

The displacement method, in which the linear and angular displacement
of rigid nodes of the pin system are taken as unknowns in the static equations,
appeared in 1880, the force method is known since 1807.

In strength of materials the force method is used more frequently.

Force method
Calculation of statically indeterminate system begins with its analysis. It
Is necessary for determining the degree of static indeterminance. The degree of
static indeterminance equals the number of redundant junctions removing of
which turns the indeterminate system into determinate one (main),
geometrically changeable. The term redundant (auxiliary) junction is ment as
excessive junction, not as unnecessary junction.
In Fig. 8.1 a there is a statically indeterminate beam.
Over this beam, four junctions are placed X,, X,, X3, X,. For the

plane force system, only three static equations can be formed, so this beam is
4 — 3 =1 times statically indeterminate. As a redundant (auxiliary) junction X,

is taken, hence the beam (Fig. 8.1 b) is statically determinate (the main).

X

F A
XA/I d

7 b/

Figure 8.1

In Fig. 8.2 a the plane frame is drawn. This system is 5-3 =2 times
statically indeterminate.

Having removed redundant (auxiliary) junctions X, and X,, we
transform statically indeterminate system into statically determinate
geometrically unchangeable one (Fig. 8.2 b).
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The main system is statically determinate geometrically unchangeable
system made of statically indetermitate one is defined.

In Fig. 8.1 b the main system is drawn.

The principle of the independence of force action makes the basis of the
force method.

The order of calculation of statically indeterminate systems using the
force method:

1. Determining the degree of static indeterminance of the system
(see Fig. 8.1, 8.2)

2. Choosing the main system by remowing the redundant junctions. The
main system has to be statically determinate, unmovable and geometrically
ungchangeable after applying the load as well. For every given system, a few
auxiliary can be chosen so it is reasonable to take the optimal system which
significantly simplifies the further calculations.

3. Formation of the equivalent system. Artificial changes in given
statically indeterminate system during transition to the main system have to be
compensated by introduction of corresponding unknown generalized forces that
are applied instead of the removed junctions. In those sections where the linear
displacements are impossible, the concentrated forces are applied, and where
the angular displacements are unallowable the moments are introduced. These
unknown for present forces are indicated as X;, where i is the number of
unknown redundant force. In other words, by substituting of removed redundant
junctions with the force X; and applying external load, the equivalent system is
formed. During transition to it, the force scheme of the given hyperstatic system
as well as its deformation scheme have to be kept, i.e. the equivalent system has
to deform in the same way as the given hyperstatic one. These demands can be
formulated as so called conditions of continuity or strain compatability.
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4. Writing down the equation of strain compatability (continuity of
displacements) for the equivalent system taking ino account the condition that
displacements which are impossible in the given system have to be impossible
in the equivalent system under stated active load and unknown redundant forces
(reactions) as well.

In the extended geometric form this equation can be written down as the
condition of zero equality of displacements by the direction of any removed
junction

Ay =Xy 8+ Xy 8jp+ it Xig -0y +Aj(F,q,M)=0; (8.1)

where X,, X,, X, are values of reactions of redundant unknowns;

Si1, 9i2,0;,  are displacements in the main system by the direction
of redundant unknown i from the singular loads
that are applied in the main system in the directions
X1, Xo, X4

A;(F,q,M) is displacement in the main system by the direction of
redundant unknown i from the external loads.

With introducing the concept of singular effort being applied instead of
unknown X; =1 and the term singular displacement occurring in the direction
of i-force from n-singular force for n-times statically indeterminate scheme, the
equation (8.1) is written down as the system of canonic (the simplest)
equations:

[ Xy 813 + X -81p +---+ X -6y + A (F)=0;

XoOoqg +XogO00g+-+X,.-0,,+A-(F)=0;
_ 2921 2922 n - 92n 2() (8.2)

Singular displacements are the coefficients in canonic equations and
absolute displacements are absolute terms. During displacements, the first
index shows in the direction of which force the displacement of the section with
this force is applied, the second index indicates the force that caused this
displacement. Singular displacements with the same indeces (5,, ) are denoted

as the main coefficients of the system of canonic equations, and with different
indeces are (5;, ) — secondary, while 5,, =&, .
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Every single canonic equation of the system (8.2) shows that
displacement of the section where the redundant junction is remowed is
impossible in the direction of this junction reaction under the stated load and all
unknown forces.

The total number of displacement compatability equations equals the
number of unknown forces (removed redundant junctions), in other words, the
degree of static indeterminance of the stated system.

5. Calculation of coefficients and absolute terms of canonic equations.
It is reasonable to work out these displacements by formulas of energy method
(Mohr integral).

While determining & and A= expressions for rigidity £ -1 elements of

the system, it is advisable to solve them in general (not numeric) form in order
to simplify the canonic equations and make the calculations shorter.

To establish the absolute terms of the system of equations (8.2), i.e.
complete displacements A, , the diagrams (epures) caused by the external

forces action have to be drawn. It is better to draw these diagrams (epures) from
each force separately. Multiplying these real diagrams (epures) by appropreate
singular ones, the values of displacements A ;- are determined.

6. Determining unknown forces from the system of canonic equations.

7. Calculations of strength, rigidity and stability can be made similarly to
the way it is done in case of statically deretminant systems. Determination of
total bending moments and other internal force factors in the sections is
carried basing on the principle of the action independence using the classical
method of sections or by the method of drawing appropreate diagrams
(epures).

While determining real displacements of single sections of the system, the
singular action has to be applied to the main system; draw the diagram of
bending moments of this force and multiply it by the resultant diagram of
external load. On order not to divide the resultat diagram into simple segments,
singular diagram can be multiplied by single real diagrams from the action of
each force and the results can be added. Displacement of characteristic
crossings (fixations on supports) are determined to test the correctness of all
previous calculations of statically indeterminate system.

Metod of minimum potential energy of deformation
While considering statically indeterminate frame constructions, taking
into account additivity (continuity) of the function of potential energy of
deformation, the expression of full potential energy of construction deformation
can be written down
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U=Upy +Uyg +Uq +Uy, (8.3)

where U, is potential energy of bending strain of the frame elements,

Q)

Up = X,
M ZI 2E I
U, Is potential energy of tortion strain,
KO
U, =
« Zj 2G |P

Uy, is potential energy of shearing strain,

QL

ZGA

UQ—ZI
U, Iis potential energy of tensile (compressive) strain,

NG

2EA

Un —Zf

here E and G are elasticity and creep module correspondingly;
| isan axial moment of cross-section inertia;
I, isa polar moment of cross-section inertia;

ISa  cross-section area;

M (x) isa  functions of bending moment;

K(x) isa functions of tortion moment;

Q(x) isa functions of cross-cut forces;

N(x) isa functions of tensile (compessing) forces.

In these formulas integration is made along the elements of frame (beam).

Formula (8.3) and its components are the main expressions of potential
energy of deformation during evaluation of static indeterminance of any
system.

Using Castigliano theorem ou /éx; =0, the system of equations is
formed and the values of redundant unknowns are calculated.

While calculating frame constructions from the normal and cross-cut
forces, potential energies are neglected and only potential energies from the
bending moment and tortion are considered.
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Task 10
Calculation of statically indeterminate frame

For the given statically indeterminate frame (Fig. for task 10, Table for
task 10) evaluate static indeterminance using the force method and validate the
obtained result by the method of minimum potential energy of deformation
(MMPED). Draw the diagrams of scoss-cut and axial forces, bending moments.
Carry out static assessment of any frame nod. Choose I-shaped section, when
[6]=160 MPa; a=1m; q=20kN/m; E-l=const. From two binders

(1 and 2) leave the one from Table for task 10.
Plan of solving the task:

1. Choose the main system and draw the diagrams of bending moments
from external and singular loads in the main system.

2. Write down the canonic equation of the force method.

3. Determine coefficient s;; and absolute term A,(F) of the canonic

equation.

4. Solve the canonic equation.

5. Check the correctness of evaluation of static indeterminance by
MMPED.

6. Write down the axial N, cross-cut (cutting) Q, and bending moments

on the frame segments.

7. Draw diagrams N, Q, M for the equivalent system.

8. Carry out static assessment of any frame nod.

9. Determine the dangerous frame section and choose I-shaped section
from the terms of strength with normal stresses that appear because of bending.

Table for task 10

Nr F, kN M, kNm Binder number
1 q-a F - 1
2 2q-a q- a2 2
3 3g-a F.a 1
4 q-a q- a2 2
S 2q-a F-a 1
6 3g-a q-a’ 2
7 q-a F-a 1
8 2q-a q-a’ 2
9 3g-a F.a 1
0 q-a q-a° 2
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Example of solving the task 10
using the force method

For the given statically indeterminate frame (Fig. 8.3a) evaluate static
indeterminance using the force method and validate the obtained result by the
method of minimum potential energy of deformation (MMPED). Draw the
diagrams of shear (cutting, cross-cut) and axial forces, bending moments. Carry
out static evaluation of any frame nod. Choose the cross-cut, when
[0]=160 MPa ; a=1m; F =40 kN; M =60 kNm; E -1 = const .

Solution

The given frame construction (see Fig. 8.3 a) is 4 -3 =1time statically
indeterminate. Statical indeterminance is evaluated using the force method. X,

Is taken as excessive unknown. The main system is shown at Fig. 8.3 b.
Write down the canonic equation of the force method

X161 =-A(F).

Displacement (coefficient) s,, and the absolute term of equation A,(F)

are evaluated by grapho-analytical method using Mohr integral solution
approach.

We load the main system with singular force (Fig.8.3c). Draw the
diagram of bending moments from the singular force (Fig. 8.3 d). Work out

E-1-5, =a, M ci,

1 2 4
where o, = =-2-2 = 2; Mci=—-2=—.
2 3 3
Then
E-1-8yy =2 4.8
11 3 3'
To determine the absolute term of the equation A, (F ), apply the external

load to the main system (Fig. 8.3 e). Draw the diagram of bending moments
from the loads (Fig. 8.3 f). Write down the equation

E-1-A(F)= o, ‘M c2 —wg'MC:%’

1
where w, =40 -1= 40, w3z =20-1=20, Mc2 =—=0,5; Mcs3=15.
2
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Then
E-1-A(F)=40-05-20-15=-10.
Solve the canonic equation using the force method

. Ay(F) (-10)-3
=

= 3,75 kN .

Sign plus means that the direction of reaction force X, is chosen
correctly.

Draw the equivalent scheme (Fig. 8.3 g). Equivalent scheme is the main
scheme loaded with external load and determined reaction forces, in other
words, it is the given initial scheme with determined reactions.

Divide the frame into segments. Work out the values of internal forces
factors for each of them. On the scheme (see Fig. 8.3 g) on the frame contour,
there are signs plus for positive values of bending moments indicated. The
bending moment is considered to be positive if it stretches the lower fibres.
Write down the functions of axial N, cross-cut (shear, cutting) forces Q, and

bending moments M g on the frame segments.

Segment AB, 0<x<1lm:

N(x)=-X;=-3,75 kN; Np=Ng=-375kN;
Q(x)=F =40 kN ; Qa =Qpg =40 kN;
Mgy (X)=-F -x=-40x; Mgy oA=0; Mpy g =-40 kNm .

Segment BC, 0<x<1m:
N(x)=F =40 kN ; Ng =Nc =40 kN;
Q(x)= X, =3,75kN ; Qg = Q¢ =3,75 kN ;
Mgy (X)=-F -1- X;-x=-40 -3,75%;
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Segment LC, 0<x<1m:

N (x)=0; N, =N¢g =0;
Q(x)=0; QL =Q¢ =0;
Mgy (X)=M =-60 kNm ; Mgy L =Mpy ¢ =-60 kNm .

SegmentCK , 1m<x<2m:
N(x)=F =40 kN ; Nec =Ny =40 kN;
Q(x)= X, =3,75 kN ; Qc =Qg =3,75 kN;

Mgy (X)==-F;-1- X;-1-X;-X+M =-40-3,75-3,75 - x + 60 = 16,25 — 3,75 X;

By the obtained results, draw the diagrams N, Q and Mg, (Fig.8.3h,1,]j).

Validate the evaluation of static indeterminance.
Static test. Consider equilibrium of the nod C (Fig. 8.3 k):
Write down the equilibrium equation:

> Fix =F —Qp =40 —40 =0;
3 Fy =-X;+N =-375+375 = 0;
3 Mjc =60 -16,25 - 43,75 = 0.

From the diagram of bending moments determine (see Fig. 8.3 )

To select the frame section from the terms of bending strength at normal
stress, determine the axial resisting moment of one I-beam
3

6 3

M gy 60 -10 ~ ~
mx_ - ~187 5-10 ° m?,

2[c]  2-160

WOZ

take I-beam Nr22a (standard GOST 8240-72, Annex 1), for which

W, =192 cm°,
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127



Example of solving the task 10
by the metod of minimum potential energy of deformation

Evaluate the static indereminance of the frame construction
(see Fig. 8.3 a) by the metod of minimum potential energy of deformation
(MMPED).

Solution
Write down potential energies of bending deformation for each element

of the frame.
Segment AB, 0<x<1m:

Mgy (X)=F -x=40-x;
1

Uy = |
0

(40 - x)?

2E-I

dx.

Segment BC, 0<x<1m:

1 2
40 + X4 -
2E-I
Segment LC, 0<x<1m:
M(x)=M =60
1 2
(60)
U, = dx.
hl Py

Segment CK, 0<x<1lm:

M (x)=40 + X, -1+ X;-X—60=-20 + X, + X;-X;
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1

U, =
0

—20 4 X4+ X4 -x)?
1 1
2E-I

dx.

Total potential energy of bending deformation

U :U1+U2+U3+U4:J‘

1 2 1 2

60 —-20+ X X -
+I( ) dx+J'( +Xq+ Xy 0x) dx.
02E-| 0 2E-I

. oU :
From equation — = 0, work out the value of the reaction X :
0X 4

1 1
ou 1
= 0+ [2(40 + X -x)-xdx +0+[2(=20 + Xq + Xq - X)L+ x)dx ¢ =
0X, 2E-I . .

1
3 1 1 2
2X4 X ‘ 40 - x 2X4 X 2X4 X
1 B | N 1 | N 1

R

1
+ +
2|

2X x> 2 2
3 ‘ 3 3
o)
16
=-20+—X,;=0;
3
then
20 -3

X, =——=375kN,
16

that consists with the definitions of the forces method.
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9. EVALUATION OF STRESSES AND DISPLACEMENTS
AT OBLIQUE BENDING

Oblique bending is a complex type of deformation. It occurs when the
plane of absolute bending moment action does not coincide with any of its main
planes, i.e. planes drawn through the beam axis and the main axis of cross-cut
inertia.

Consider the example of pure oblique bending. In a random cross-cut the
force plane of bending pair M makes the angle « with the inertia axis v
(Fig. 9.1).

y A

Figure 9.1

Oblique bending is considered as combination of two right bendings in
the main planes Xz and vz (Fig.9.2). Axes X and Y are the main central
crossing inertia axes, axis z coincides with longitudinal axis of the beam.

Components M y and M of the general bending moment M that act in

the main planes are calculated by formulas:
My =M -cos a, My =M -sina.

Normal stress at oblique bending at any cross-cut point, e.g. at point C
with coordinates x. and y. (seeFig.9.1), is found as algebraic sum of

normal stresses from the components of the bending moment M y and M ,
Mx My

97 suszZ(MX)+UZ(MY)=— Yo +—X¢ (9.1)
|y ly

or
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_ Yc XC o
o7 um =M I—-cosa+|—-sma : (9.2)
X Y

Coordinate system Xyz is chosen in such a way that compression stresses
act in the I-st quadrant.

The neutral (zero) section line is a geometric place of the points where
normal stresses equal zero. This line must run through the weight centre of the
Ccross-cut.

Equation of the neutral line at oblique bending

_X.y0+_Y.X0: , (93)
I x Iy
or
X
y—O-COSa+—O-Sina=O, (9_4)
I x Iy

where x,, y, are coordinates of the points of the neutral crossing line
(Fig. 9.3).
Since x, =0, then y, =0 as well. The position of such line is evaluated
by the angle of its inclination to the axis x (Fig. 9.2).

|
tgf ===~ tga. (9.5)

Figure 9.2
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Stresses at obligque bending. Strength condition
Maximum normal stresses occuring at the points most remote from the
neutral line, symetric crossing points, e.g., rectangle (see Fig. 9.2), points B and
D are of the same size but with different signs. They are worked out by formula

_ =i£MX +M—Y], (9.6)

where M, and M, are bending moments in relation to the main axes in
the most loaded dangerous crossing section.

For the elastic materials, which cross-cuts have two symmetry axes the
strength condition by normal stresses at oblique bending is

<[o]: (9.7)

Shearing stresses at oblique bending are determined as a sum of
shearing stresses z, , ry obtained from the cross-cut forces Q , Qy

r=ye? v el 9.8)

The shearing stresses components ,, =, are calculated by
D.l. Zhuravskyi formula

sh sh
_Qx Sy . Z_Y:QY'SX ' (9.9)

T
X ]
by - Iy by - 1y

Deformations at oblique bending

In general, for sections with different values of axial inertia moments, in
other words, when 1 = 1, and tgg = tg« , the neutral line is not perpendicular
to the force line, but deviated in the direction to the axis of minimum moment
of crossing inertia.

Since the direction of absolute bending f and the neutral line are always
orthogonal (Fig. 9.3), the beam at the oblique bending bends not in the force
plain, but in some other plain where the bending rigidity is less.
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Oblique bending is brought to two plane ones. Using the principle of
superposition, the displacements f, and f, in each of main planes are

determined.
The absolute bending of the beam f (see Fig. 9.3) at oblique bending is

evaluated as a geometrical sum of bendings

f=qffg+ /. (9.10)

The direction of absolute bending is determined by angle

f
y = arctg X )
fY

equal with angle g .

\r

Figure 9.3

The oblique bending phenomenon is dangerous for cross-cut that are
significantly different from the moments of inertia with respect to the major
central crossing axes (e.g., the I-axis). Beams with such cross-cuts bend a little
when bending in the plane of greatest rigidity; but even at slight angles of
inclination of the external forces actions plane to the plane of greatest rigidity in
beams, there is a significant deviation of the absolute bending line toward the
least rigidity.
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Task 11
Choosing the beam section at oblique bending deformation

For the given beam (Fig. for task 11, Table for task 11) choose a
rectangular cross-cut, when relation of the beam height to its length is h/b = 2,

and placing sides b and h parallel to axes X and Y most rationally. Evaluate
the position of the neutral axis in the dangerous cross-cut of the beam. Draw the
spatial diagram of distribution of normal stresses in the dangerous cross-cut.
Determine the absolute displacement of the cross-cut pointed 4 at the figure,

provived a=1m; material of the beam is steel St3; £=2.10° mpa ;
[c]=160 MPa .

Plan of solving the task:

1. Lay out given loads on axes X and Y . Write down the functions of
shearing forces and bending moments in horizontal and vertical planes.

2. Draw the diagrams of shearing forces and bending moments in the
horizontal and vertical planes.

3. Determine the dangerous cross-cut and its rational position in relation
to the load.

4. Determine the cross-cut dimensions of the beam with the condition of
strength under normal stresses.

5. Evaluate the position of the neutral line in the dangerous cross-cut of
the beam and draw a spatial diagram of distribution of normal stresses in the
crossing.

6. Determine horizontal, vertical and absolute bending deflections of the
beam at crossing A.

Table for task 11

Nr q, kN/m F, kN M, kNm a® (degree)
1 5 12 12 0
2 6 10 10 90
3 8 8 8 180
4 10 6 6 270
5 12 5 5 360
6 5 12 12 0
7 6 10 10 90
8 8 8 8 180
9 10 6 6 270
0 12 5 5 360
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Figure for task 11
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Figure for task 11 (continued)
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Example of solving the task 11
Choosing the beam section at oblique bending deformation

For the given beam (Fig. 9.4 a) choose a rectangular cross-section, when
relation of the beam height to its length is h/b = 2, and placing sides b and h
parallel to axes x and Y most rationally. Evaluate the position of the neutral
line in the dangerous cross-section of the beam. Draw the spatial diagram of
distribution of normal stresses in the dangerous cross-section. Determine the
absolute displacement of the cross-section pointed A at the figure, provived

a =1 m; material of the beam is steel St.3; £ =2.10° MPa ; [¢]=160 MPa .

Solution

Separate force F into vertical and horizontal components:
Fy =F-sin45 =5.sin45 =3,54 kN;

Fy =F -cos 45 =5-cos 45 = 3,54 kN .

Load the beam in vertical (Fig. 9.4 b) and horizontal planes (Fig. 9.4 e).
Draw the diagrams of shear (cutting) forces (Fig. 9.4 c, f) and bending moments
(Fig. 9.4 d, g). These diagrams are drawn by characteristic points, values of
shearing forces and bending moments on the segments bounds. Using this
method, we do without making equations of shear (cutting) forces and bending
moments. From the diagrams analysis, we find dangerous cross-section — this is
cross-section B, where there are:

IM  |=12,08 kNm ; My |=37,08 kNm .

Rationally place the cross-section of the beam in relation to the external
load (Fig. 9.5), using condition My | > [M  |.

For the scheme (Fig.9.5b) the axial moments of the cross-section
resistance are

For the scheme (Fig. 9.5c) the axial moments of the cross-section
resistance are
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\

Figure 9.4
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From the condition of the rational placement of the beam cross-section in
relation to axes X and Y and the dangerous cross-section (cross-section B ),
determined by the diagrams of bending moments (see Fig. 9.4 d, g), take the
rational scheme drawn in Fig. 9.5 c, for which w, >w .

Write down the strength condition by normal stresses at oblique bending
for the chosen cross-section (Fig. 9.5 ¢)

My My

= + S[O'].
Wy Wy

O max

From the strength condition, determine the width of the rectangular cross-
section

=0,0831 m.

?Jslle +1,5 My

) [o]

Take b =85 mm , correspondingly, the cross-cut height h =170 mm.
Write down the equation of the neutral line in the dangerous beam cross-section

M M
Mx o e My o
I % ly

i/s-lz,os +15.37.08
160 -10 3

where
_h-b® 17.85°
12 12

10 8-870 .10 m*:

I'x

8 4

b-h® 85.17° )
- - 10 8=3480 .10 ¥ m*.

12 12

Iy

Substituting the values, obtain

3 3

12,08 -10 ~ 37,0810
P e
870 -10 3480 -10 ~
then
Yo = —0,767 X, tgfp=2%=_0767; p=-375".
X0

In Fig. 9.6 the rational placement of the beam cross-section relative to the
load and the location of the neutral line are shown.

To draw the spatial diagram of stresses distribution on the contour of the
dangerous cross-section, normal stresses in the junction points of this cross-
section (see Fig. 9.6) are determined by formula
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where x;, y; are coordinates of the junction section points:

X, =8,5-10 % m; y, =4,25-10 % m;
-2 -2 .
X2 :8,510 m, y2 :—4,2510 m,
-2 . -2 .
X3 =-8,5-10 m; y3 =-4,25-10 m;
—2 ) -2
X4 =—85-10 ° m; y, =4,25-10"° m.

Determine the stresses at the junction section points:

12.08-10 "3 .4,25 .10 72 L 37.08 10°%.85.10 2

s 5 = —-150 MPa ;
870 -10 3480 -10

0-1:

o,=—(-59 +91)=-32 MPa ;
o3 =—(-59 -91)=150 MPa ;
o4 =-(59 -91)=232 MPa .

By the obtained results, draw the diagram of distribution of normal
stresses at the cross-section (see Fig. 9.6).

=8 150
P 3
X
&
Q
50 , f 0, MPa
+37 |
Y neufral line
Figure 9.6
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Determine deflexion of the beam in section A using graphic-analytical
method of solving Mohr integral.

Vertical deflexion in point A determine by formula

where «; is the area of the diagram of bending moments from external
loads of the i-segment (Fig. 9.5 d);
M ¢ IS the value of the bending moment from the singular load (force)
(Fig. 9.5h), that lies under the gravity (weight) center
of i-diagram (Fig. 9.5 1).

Respectively,

ver wy-Mc1+w, - Mc2+wz-Mc2

fao = ,
A E-1y
1 ) —
where @, = - =-3,54 -1= 1,77 kNm “; Mc1=-0,667 m;

2

w, =854 -1=-854 kNm °; Mca=-15m;
1 ’ —

w5 =—E-(12,08—8,54).1=—1,77 kNm “; Mc3=-1,667 m.

Having substituted the values, obtain

g ver _ 1,77 -0,667 +8,54 -1,5+1,77 -1,667

A - . 1073 =0,0097 m=97m.
2.10°.870 -10 ~

Horizontal deflection in point A work out by formula

or
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where @, =6-1=6 kNm ; Mca=-05m;

1 -

ws =—(21,54 —6)-1=7,77 kNm °; M cs = —0,667 m;
2

wg = 21,54 -1= 21,54 kNm *; Mce =-15m;
1 ) —

w7 = E-(37,08 ~21,54).1=7,77 kNm “; Mc7 =-1,667 m,

Substituting the values, obtain

6-(—0,5)+7,77(— 0,667 )+ 21,54 (—1,5)+ 7,77 (- 1,667 B
fAhor _ ( )+ ( )+ ( . )+ ( ).10 3 — 7.7 mm.
2.10°.3480 10~

Absolute section of deflextion in point A equals

fp= \/(f,Zer )2 o for )2 9,72+ (=777 =12,4mm .
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10. JOINT ACTION OF BENDING WITH TORSION

Joint action of bending with torsion is a type of resistance to combined
stress in which external forces acting on the beam cause the following internal
force factors: torque, bending moments and shear (cutting) forces.

Under the action of bending and torsion in the cross section of the beam
there are normal stresses from the bending moment in two planes and tangential
shear stresses from torsion and shear forces.

Most shafts (straight bars of round or annular cross-section) undergo
simultaneous bending and torsion deformations.

When calculating the shafts, the torque and bending moments are taken
into account. Shear (cutting) forces are not considered, as the corresponding to
them tangential (shear) stresses are relatively small.

With the combined action of bending and torsion, the material element in
the dangerous section is in a plane stress state (Fig. 10.1).

T The maximum normal and tangential
(shear) stresses for round shafts are

——— .
determined by formula
Mgy 32ZMpgy |
‘O-OC ‘ - - 3 !
Wy z-d
_ M  16Mrg
— ro|= = —,
Tﬁ WP z-d
where W, =W, /2;
Figure 10.1 7, = -7 5, law of parity of tangential

(shear) stresses.

Normal and tangential stresses reach the greatest value on a shaft surface.

To determine the bending moment, the bending of the shaft in two
mutually perpendicular planes (vertical and horizontal) is considered. Diagrams
of bending moments in two planes and total are drawn. The values of bending
moments in the characteristic sections are reduced to the total (equivalent) by
the formula

Dangerous sections of the shaft are determined by comparing the plots of
the total bending moments and torque. Sections are dangerous, where M g, and

M s Simultaneously reach the highest values.
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Under the simultaneous action of normal and tangential (shear) stresses,
the strength of the material is evaluated by one of the theories of strength.

Theories of strength are used for their intended purpose, i.e. the first and
second theory are used for brittle materials, the third and fourth for the plastic
ones; Mohr and Pisarenko-Lebedev theories are used for materials with
different yield strengths during tension and compression.

The calculation of shaft strength at resistance to combined stress is
carried out by the reduced (equivalent, calculation) moment M g (Ivl equ ) It is

determined depending on the accepted theory of strength:
—according to the third theory of strength (maximum tangential stresses)

2 2
MR:\/MBN + Mg

— according to the third theory of strength (energetic)

M g =\/|v| 2, +0,75M & .
Condition of strength under the joint action of bending with torsion

Oeqv = Me :32 MsR S[O']1
Wy 7 -d

where o, is theequivalent (calculation) normal stress;

w, is the axial moment of the beam resistance section for the round
cross-section Wy = 7 -d°/32 .
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Task 12
Calculation of the shaft for bending with torsion

Steel transmission shaft (Fig. for task 12, Table for task 12) rotates at
speed n rpm and transmits the power through two driven pulleys of belt
transmission given in table 12. Diameters of the pulleys: D, =60 cm ,

D,=40cm, D;=30cm; distance a=100 cm; material is steel 45,
[c]=100 MPa. Find the diameter of the shaft from the condition of strength.

Plan of solving the task:

1. Determine the power on the pulley (from the condition of power
balance) where it is not specified.

2. Determine the torques on each pulley, the torques on the shaft sections
and draw a diagram of the torques.

3. Determine the pressure transmitted by each pulley to the shaft,
assuming that the tension of the leading branch of the belt is twice more than
the tension of the driven, T, = 2t;.

4. Determine the values of the components of the pressure forces acting in
the horizontal and vertical planes.

5. Draw the diagrams of bending moments in the horizontal and vertical
planes.

6. Determine the total bending moments in the characteristic cross-
sections of the shaft. Draw a diagram of the total bending moments.

7. Determine the calculation moment using the third theory of strength.

8. Determine the diameter of the shaft from the condition of strength.

Table for task 12

Nr 4’ a2’ B nmpm e w e,k | ey kw
(degree) | (degree) | (degree)

1 0 270 360 150 - 10 20
2 90 0 180 100 10 - 20
3 180 270 0 200 10 20 -
4 270 360 0 300 - 30 40
5 360 0 90 400 30 - 40
6 0 90 180 500 30 40 -
7 90 180 270 600 - 50 60
8 180 270 360 700 50 - 60
9 270 360 0 800 50 60 -
0 90 0 180 900 - 90 50
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Figure for task 12
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Example of solving the task 12
Calculation of the shaft for bending with torsion

Steel transmission shaft rotates at speed n =300 rpm and transmits the
power through two driven pulleys of belt transmission P, =70 kw and
P; =40 kw  (Fig. 10.2 a). Diameters of the pulleys are: D, =60 cm,
D, =40cm, D3=30cm. Inclination angle of pulleys are «;=30°,
ay,=240° a4 =180° (on Fig. 10.2 the angles are indicated from the axe Y ),
distance a =100 cm. The material of the shaft is steel 45; [c]=100 MPa . Find
the diameter of the shaft from the condition of strength.

Solution

From the balance of power determine the power on the pulley transmitted
by the driven pulley

P, = P, +P; =70 + 40 =110 kW.

The values of the moments transmitted by the pulleys determine by
formula

M i = PI /60 )
where « is the angular speed of the shaft, determine it by formula

7-n x-300 1
® = = =31,4s ~.

30 30

Torques on pulleys:
M, =70/31,4 = 2,23 kNm ;

M, =110/31,4 = 3,50 kNm ;
M 3 =40/31,4 =1,27 kNm .

Using the sections method, draw a diagram of torques M ;¢ (Fig. 10.2 b).
Determine the tensile forces of the belt drives by the formula

Respectively
22,23 23,50 21,27
t, = =7,43kN; t,= =175kN; t3= = 8,47 kN.
0,6 0,4 0,3
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The pressure force on the shaft at the pulley fits is determined by the
formula

That is
F, =3-7,43 =22,3kN;

F, =3:17,5=52,4 kN ;
F3 =3-8,47 = 25,4 kN .
Resolve the pressure forces into vertical and horizontal components:
Fi; =—F;-sin30°=-22,3-s5in30° =-11,2 kN ;
Fiy = F-cos30°=22,3-cos 30°=19,3 kN ;
F,, =F,-sin60°=52,4-sin 60° = 45,4 kN ;
F,y =—F,-cos 60°=-52,4-cos 60°=-26,2 kN ;
Faz =0;
Fay = —F3 =254 kN.

Consider the vertical plane (Fig. 10.2 c).
Vertical components of the reaction of supports A and B are determined

from the equilibrium equations:
then

45,4-3-11,2 -2
A, = — 28,4 kN ;
4

45,4.1-11,2 .2
B, = ~58kN.
4

Verification: > Z =-A; + F,; - F;; - B, =

=-28,4+45,4-11,2-58=45,4-45,4=0.
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Determine the bending moments in the characteristic points of the vertical
plane:

My =My =0;
My =-A, -1=-28,4-1=-28,4 kNm ;
My =—-Ay -2+ F,, 1=-28,4-2+45,4.1=—11,4 kNm ;

My =-B, -1=-58-1=-58 kNm .

Draw the diagrams of bending moments in the vertical plane (Fig. 10.2 d).
Consider a horizontal plane (Fig. 10.2 e).
Determine the supporting reactions:

=16,4-26,2+19,3-25,4+15,9=51,6 - 51,6 = 0;
that is the supporting reactions are determined correctly.

Determine the bending moments in the characteristic points of the
horizontal plane:

M2 =M2 =0;
M~y =A -1=16,4-1=16,4 kNm ;
My =Ay -2—Fyy 1=16,4-2-26,2-1=6,6 kNm ;
MY =By -1=159-1=159kNm .

Draw a diagram of bending moments in horizontal plane (Fig. 10.2 f).

Determine the total bending moments in the characteristic cross-sections
of the shaft by formula
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Find:

MK /28,42 116,42 = 32,8 kN :

ML —\11,42 46,67 —13,2kNm ;

M S, = 58% +15,92 — 16,9 kNm .

Draw a diagram of the total bending moments (Fig. 10.2 g).
From the analysis of the diagrams Mz (see Fig.10.2Db) and M g,

(see Fig. 10.2 g) find the dangerous section; it is section K in which

M o = 32,8 kNm ; M1k = 3,5 kNm .

BN

Determine the calculation moment using the third theory of strength.

Mg = \/M 2 M2 —32,82 4352 — 33 kNm.
From the condition of strength under joint action of bending and torsion

S M g :32 M3R S[O‘],
Wy z-d

determine the diameter of the shaft

32 M, 32.33.0 s
d >3 =3 3=149~10 m,
w-lo] 7 +100 -10

accept d =150 mm .
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11. STABILITY OF CENTRALLY-COMPRESSED RODS

The conditions of strength and rigidity are supplemented by the condition
of stability, which provides preserving of the original form of equilibrium of the
structure or its individual elements under the action of a given load.

Loads at which stability is lost are called critical and the corresponding
states are called critical states.

The danger of loss of stability arises for thin-walled structures such as
flexible rods, long compressed rods, plates and shells.

The critical force is the largest value of the compressive force applied
centrally, to which the rectilinear form of
equilibrium of the rod is stable. The bend caused
by the loss of stability of the rectilinear shaped
rod is called the longitudinal bend.

Due to the curvature of the axis in the cross-
sections of the rod there are two internal force
factors — the longitudinal force N =F and
bending moment M g, (Fig. 11.1). Therefore, the

curved rod undergoes both deformations of
central compression and transverse bending.

Figure 11.1

Determination of critical loads is an important part of the calculation of
structure and makes it possible to avoid loss of stability by introducing the
appropriate stability margin coefficient.

N, = R
F

To ensure stability, it is necessary that the compressive force F acting on
the rod is less than critical F.g . The rod stability is sufficient if n_, >1. The
value of the coefficient of stability depends on the purpose of the rod and its
material. For steels n_,, =18..3; for cast iron n_,, =5..55; for wood
Ny = 2,8..3,2.

The equilibrium of absolutely rigid solid can be stable, indifferent and
unstable. It can be similarly referred to a deformed solid.

The long rod under the action of axial compressive load undergoes three
forms of equilibrium: stable, indifferent, unstable.

The compressed rod is in the state of stable equilibrium (Fig. 11.2 a) if
the compressive force F does not exceed the critical value F-; . That is, if the
rod is slightly bent by some transverse load and then when this load is removed,
the rod will align again and take the initial position.

c
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The equilibrium form of a compressed rod is indifferent (Fig. 11.2 b) if
the compressive force reaches a certain value equal to the critical force. With a
slight deviation from the initial position, under the action of shear force, the rod
does not return back.

When the value of the compressive force exceeds the critical, the
rectilinear form of equilibrium of the rod becomes unstable, the rod loses its
original shape (Fig. 11.2 c).

F<’E(/ey F:’E[/e' F”C(/e*
n Inl —
| :
’ék a ’% b ’ c/
LOC Nnoo o

Figure 11.2

The loss of stability of the rod may occur even when the stress under the
action of a critical force has not reached the limit of proportionality.

The smallest value of the compressive force at which the rod loses the
ability to keep a rectilinear shape is called critical and is indicated Fy .

The task of determining the magnitude of the critical force was first
solved by the academician of the St. Petersburg Academy of Sciences Leonard
Euler in 1744. Euler’s formula

Fcer =

where g is the elasticity modulus of the first kind;
IS the minimum axial moment of inertia of the rod cross-
section;
# 1s  the coefficient of reduction of length depends on the method
of fixing the ends of the rod;
| is the length of the rod.

min
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Ways of fixing the ends of the rod are shown in Fig. 11.3.

\ \ (
\ / / ke
\ { /
\ \
\ \
— —— —
U=z u=q7 U=0s

Figure 11.3

Use of Euler’s formula. Yasinsky’s formula
Euler’s formula is obtained from the differential equation of the curved
axis of the rod with hinged ends. The Euler's formula is derived basing on
Hooke's law, which is valid until the stress in the material does not exceed the
limit of proportionality.

”Z'E'lmin 7z2-E
L0 o = = <o
O CR pr CR 5 pr

2
(:U'I) A ;tmax

where A is the area of the rod cross-section;
Amax 1S maximum flexibility of the rod; depends on the geometry of
the rod, ways of fixation of its ends. It is determined by
formula

_HT

A max . J
Imin

where i, IS minimum radius of inertia of the rod cross-section, depends
on geometric parameters. It is determined by formula

imin - =~/ Tmin /A'

Euler's formula is used for flexibilities that are greater than the ultimate
flexibility of the rod 2, which depends on the material of the rod and is

determined by formula
/7[2 -E
10 = .
(@2 pr
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Euler’s formula is used when the flexibility of the rod is greater or
equal to the ultimate flexibility of the material from which it is made

Arax = o
As the example, the ultimate flexibility of the steel St.3 can be
determined, for which &, =200 MPa, modulus of elasticity E = 2.10° MPa.

Ao = /3147 2.10° 10 /(200 -10°) = 100 .

For low-carbon steel rods, Euler’s formula is used when their flexibility
A >100 . Similarly the ultimate flexibility of other materials is determined. In
particular, for cast iron 1, = 80 ; for wood 2, =110 .

If the flexibility of the rods is less than the ultimate one, in particular,
for steels 2 = 40...100 , Yasinsky’s empirical formula is used to determine

stresses
Ocr =a—b- Ay

where a, b are coefficients that depend on the material of the rod. For steel
St.3 these values are equal

a =310 MPa |, b=114 MPa .
If flexibility is 2 < 40, rods can be calculated for strength under simple

compression without taking into account the danger of the longitudinal bending,
that is by formulas

o=F/A; [G]:Gye/ncm:GCR/ncm'
The graph of the dependence of critical stresses on flexibility for rods
made of low-carbon steel is shown in Fig. 11.4.

0. "z Yaf/ﬁs/(yig formula
0 ye :2 40 wjﬂw{
0 ,-=200
g Rods Rods tuler's fU/“/277U/L7
of low of average T°F
flexibility Hexibility Op- T
100 \ max
Rods
of greaf \
flexibility
0 40 50 100 750 y)
Figure 11.4
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Note that:
1) at small values of 1 the critical stress is equal to the yield strength

OCR = O yes
2) at average values of 4 the critical stress is less than the yield strength
but more than the proportionality limit o, <ocgr <oy

3) at large values of 1 the critical stress is less than the proportionality
limitog <o or *

The value of the critical force that can be applied to the rod is obtained in
the following sequence. Determine:

a) ultimate flexibility 2, ;

b) maximum actual flexibility of the rod 2,

C) with 4, and 4, , to determine the critical stresses, use one of the
following formulas:

-when A, > 4 Euler’s formula,  ocg =72 -E/22, ;

-when 2., <2 <4y Yasinsky’sformula, ocg =a-b-Ap, ;

-when  Ap.y <4, formula for compression, ocg =0 e ;

d) with or find Fegr =ocg - A.

The allowable value of the force applied to the rod is defined as

[Fl=Fcr /nem -

In calculations of stability, the critical stress is as destructive as the yield
strength or strength limit in calculations of strength. Therefore, the concept of
allowable stability stress [o¢; | is introduced, which is defined as part of the
critical stress

[osr 1= 0cr /Nem -

The stability condition requires that the stress occuring during

compression does not exceed the allowable stability stress

o = rr/;ax < [O‘ST ]

However, the calculation of the allowable stability stress is complicated
by the fact that the critical stress depends not only on the properties of the
material, but also on the flexibility of the rod. Therefore, the concept of the
coefficient of reduction of the main allowable strength stress when

calculating the stability is introduced

where [o] is the allowable strength stress under compression [o]= oy, /n.
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The coefficient ¢ for each material can be determined at any value of

flexibility. Its value for certain materials is given in Annex 5.
Thus, the condition of stability is

F
o=—"<[o].
@A

Three types of tasks are solved with stability condition.

Choosing the cross-section of the rod or project calculation.

This calculation is carried out by determining the cross-sectional area
from the condition of stability

Determining of allowable load from the condition of stability is
performed similarly to p.1, except for the last action, instead of which the
allowable load is calculated.

Verification calculation. Stability test, i.e. compliance with the condition
of stability. Perform in the following sequence:

- determine the minimum moment of inertia of the rod cross-section and
the minimum radius of inertia (with the same fixation in the main planes);

- flexibility of the rod is calculated;

- choose the reduction factor of the main allowable stress ¢ ;

- obtained data are substituted in a condition of stability and their
performance is verified.

There is no single solution to this task, because the inequality includes
two unknown quantities: the cross-sectional area A and the coefficient ¢

which depends on still undetermined cross-sectional dimensions, its shape and
the length of the rod. The task is solved by the method of successive
approximations with verification of intermediate results using the stability
condition. In the first approximation, the random value of the reduction factor
of the main allowable stress, approximately ¢ =0,5...0,6, is taken.

Determining the size of the cross-section of the rod during stability is
complicated by the fact that it is not known in advance in which range the
actual flexibility of the rod will occur, i.e. which of the formulas to use:
Euler’s, Yasinsky’s or for simple compression.
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Task 13
Calculation of stability of compressed rod

For the given rod (Fig. for task 13, Table for task 13) choose the elements
of its cross-section from the condition of stability. Material of the elements is
steel St.3; [c]=160 MPa ; 1, =100 . Elements of the rod are welded to each

other.
Plan of solving the task:

1. Draw the given scheme, placing the elements (angles, channels or
I-beams) under the rod.

2. Determine the plane of the minimum rigidity (the plane in which the
axis is deformed when the force reaches a critical value).

3. Carry out the calculation of the rod stability in the plane of maximum
flexibility, using the table of assortment for shaped rolling (Annexes 1, 2, 3, 4)
and the table of coefficients of reduction of the main allowable stress (Annex 5).
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Figure for task 13
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Table for task 13

NrlF,]1, Cross-section Nr| F, |1, Cross-section
KN m KN I m
1 [130j25) " W | | 6 |130]20 K — N
D ", ; 7
2 |180/4,5 ‘ 7 1180 |2,5 -
D) 7
3 100 8 |100 (4,0 > - -
D \
|
%
—N t — = T
4 180 13,0 9 80 2,0 e
— |
|
519035 Y | 0|9 |60 % ‘ ’E_
| =
J )
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Example of solving the task 13
Calculation of stability of compressed rod

For the given rod (Fig. 11.5 a) choose the I-beam section. Material of the
rod is steel St.3; [c]=160 MPa ; A, =100 ; F =200 kN ; | =3 m.

K A

al - 5

Figure 11.5

Solution

Place the cross-section under the rod (Fig. 11.5 b).

Calculation is carried out by the method of approximation.

The first approximation, take the value of the coefficient of longitudinal
bending ¢, =0,5.

From the condition of stability determine the cross-sectional area
F 200 4

- =25,0-10 "
¢-[o] 05-.160 -10°
From the standard GOST 8239-56 (Annex 1) choose I-beam Nr 10 for

which: Ay, =25,4cm?, iy, =212 cm, i,y =751 cm.
Determine the flexibility of the rod in two planes:

m2 =25 cm2.

A >

-1 0,5-300
/1Y1: } = z?l;
Iy 2,12
-1 0,5-300
ﬂz]_:lu = z20
I 7,51

z
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Since iy, > 1,4, the calculation is made in the plane xoz
(see Fig. 11.5 b). Using the method of linear interpolation, we determine the
specified value of the coefficient of longitudinal bending, which corresponds to
the flexibility 1,, = 71. From the Table (4nnex 5) write out:

when 2 =70; ¢=081; when 1 =80; ¢=0,75.

Determine the coefficients of reduction of the main allowable stress for
flexibility 1,, =71

0,81 -0,75

901/ =081-—:1=10,804.
10

Determine the actual stress

= 200 -10 3
- — 78 7MPa .

Ape1 25.4.10 4

Osacl =

Determine the allowable stress
/
o] a1 = #1 -[0]=0,804 -160 =129 MPa .
Understress makes

o s (< 78,7 —-129 ich i
‘ s.acl [ ]s.all‘_loo % = ——.100 % = 38,7 %, which is

[G]S.all 129
unacceptable.

The second approximation, we take

g1+ @, 0,5+0,804

¢ =
2 2 2

= 0,652 .

Then

200 4
A, > ~19,2-10

> . m2=192cm?.
0,652 -160 -10

Accept I-beam Nri16 (4nnex1), for which A,, =20,2cm?;
iy, =170 cm; i,, = 6,57 cm.
Determine the flexibility of the rod

P 0,5-300 -
Y27 170 '
which corresponds
/ 0,75 - 0,69
¢, =075 - ————-8=10,702.

10
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Actual stress

200 -10 -3

= 2 =99 MPa .
20,210

s.ac 2

Allowable stress
o] 4, =0,702 -160 =112 MPa .

Understressing makes
112 — 99
112

100 % =11,6 % , which is more than 5%.

The third approximation, we take

/
+ b 0,652 +0,702
(p3=(p22¢2= . — 0,677 .

Then
200 4
A; = =18,5-10

3 m2 =18,5 sz_
0,677 -160 -10

Take I-beam Nr 14 (4nnex 1), for which A, =17,4 cm ?; iy3 =155 cm;

i,3 =5,73 cm.
Determine flexibility

0,5-300
et T
that corresponds
/ 0,69 — 0,60
¢3 20!69_ 720,627
10
Actual stress

200 -10 73

Tsacs =, =115 MPa .
17 ,4-10

Allowable stresses
o] 43 = 0,627 -160 =100 MPa .

: 115 - 100 .
Overstressing makes ——————-100 % =15 % , which is unacceptable.
100

Therefore, for this rod we take 1-beam cross-section Nr 16, for which the
understress is 11,6 %, because for the rod with I-beam cross-section Nr 14
overstressing is 15 %, which is unacceptable.
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12. DYNAMIC LOADS.
DETERMINING IMPACT STRESSES AND DISPLACEMENTS

Dynamic load is load which is partially or completely caused by the
forces of inertia (at accelerated movement of parts, during their rotation and
oscillation), as well as at instantaneous load and impact. The same structural
elements and their material are deformed differently depending on how they are
loaded: statically or dynamically.

The peculiarity of fracture under dynamic action of forces is that plastic
materials, such as low-carbon steel, demonstrate brittle properties under
instantaneous (impact) load, i.e. they are destroyed without significant residual
deformations and at much lower deformation energy. Mechanical
characteristic of material, which reflects its ability to resist impact loads, is
called impact viscosity. Impact strength is characterized by the area of the stress
diagram ¢ — o before failure (see Chapter 2). The modules of elasticity under
dynamic loading are also different than under the static one. In strength of
materials, approximate theory of impact is used, taking into consideration that
Hooke’s law is kept, the modules of elasticity are unchanged and there is
no energy dissipation during impact.

Operation of some machines (pressing, driving in piles, etc.) is
accompanied by an impact load, for example, a load Q falling from a certain

height h on a stationary elastic system. At the moment of impact, stresses and
deformations reach the maximum values in a structure.

Impact load by a free-falling body

In the systems in which the load is falling there may occur different kinds
of deformations: compression (Fig. 12.1 a), bending (Fig. 12.1 b, ¢), torsion
(Fig. 12.1 d).

To obtain the formulas of strength and rigidity under such a load (in
approximate form) the following assumptions are taken:

1. Acceleration and inertia force of the body causing the impact increase
without changing the direction from zero to the final value.

2. Body under impact has only one degree of freedom.

3. Body that impacts is absolutely rigid and does not deform; impact is
elastic, but the bodies after the impact displace together (without bounce).

4. Deformations of the body under the impact are elastic and Hooke’s law
Is acceptable to it.

5. Mass of the elastic system is neglected in approximate calculations.

6. Energy dissipation during impact is neglected. Kinetic energy of the
falling load is completely converted into potential energy of elastic system.
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Let us consider the simplest case of the impact load of a vertical column
by a free-falling perfectly rigid body (Fig. 12.1 a).

Al

i
al
7
S ‘ q
—— | Y2 -
— =
53 i | | 3
/ < < [_L:
b/ T '/

Figure 12.1

It is impossible to use the D’Alembert principle in this case, because the
acceleration is unknown when the column itself is deformed. Using the law of
conservation of energy, we make the equation of energy balance of the system
falling body — structure for the moment of maximum displacement Al

Kr =Uca s (12-1)

where K. is kinematic energy of the falling body with taking into account
its displacement (together with the dynamic shortening of the
column by Aly) up to stop at the end of the maximum

displacement of impact point
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Ky =Q (h+Alg). (12.2)

Potential energy of elastic deformation that will accumulate during such
shortening of the column

where N is maximum internal force during elastic deformation,
Np = Q isunknown parameter as well as Al .
We write down the relations between these parameters, assuming that
Hooke's law is satisfied:
Np -l

Alp -E-A
Al = : then Np = —2——.
E-A |

The energy of deformation will be corresponding to (12.3)

2
U = M (12.4)
21
Due to the balance of energy (12.2) and (12.4) compare
2

Q(h+A|D)=A'DZ'#. (12.5)

Write down the quadratic equation in the simplest way

2Q-I 2Q-I-h

Al3 - Al - =0. 12.6
0~ A Mo, (12.6)
Expression % Is shortening of the column (according to Hooke’s law)

under the static action of the weight Q, i.e. it is alg, (displacement of the

cross-section of the elastic system from the static action of the load).
Dynamic shortening can be obtained as

Alp = Algy ++/AIZ, + 2Algy -h, (12.7)

The expression in brackets is considered to be the impact coefficient of a
free-falling body.

or
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When h = 0, that is when the body falls from zero height (or under the so-
called instantaneous application of force kp =1+ Vi=2.

In most cases elastic deformations are much less than h, therefore the
coefficient of impact can be taken

2h
Alg,

sz

(12.9)

The larger the denominator, the smaller k is. This means that a more
susceptible to deformation (less rigid) system is stronger under impacts and
vibrations.

When obtaining the dependence for the coefficient of impact, the own
mass of the deformed body is neglected. This is acceptable only for
approximate calculations.

Similarly, determine the displacement and stress of the beam under the
axial impact (Fig. 12.2).

N
| T—A
7| NN g
=
- W///J' ' V////l
E_‘LE__ln_l__:l
Figure 12.2

Based on the linear relationship between force and displacement, it can be
written down that

op =07 "kp; Tp =7g1 "Kp,

where o, rp are dynamic normal and tangential (shear) stresses;

ogr, Tgr are static normal and tangential (shear) stresses determined
in the structural elements from the static action of the
load.
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Task 14
Determining maximum dynamic stresses
and displacements under the impact

For the given elastic system (Fig. for the task 14, Table for the task 14)
determine the maximum stresses under the impact that occur during falling of
the load Q =100 N from the height h = 0,5 m and the displacement value (see
table for the task Nr 14) in the direction of the impact. The material of the
elastic systemis steel; 1 =2m; d =4 cm.

Plan of solving the task:

1. Determine the types of deformation for which the structural elements
work.

2. Draw the diagrams of internal force factors under static action of the
load Q.

3. Determine the maximum static stresses in the structural elements.

4. Determine the static displacement in the given cross-section.

5. Determine the static displacement in the place of impact.

6. Determine the coefficient of impact (without considering the own mass
of the elastic system).

7. Determine the maximum dynamic stresses.

8. Determine displacement during the impact in the given cross-section

(£, abo ©g).
Table for task 14

Nr D, cm Displacement
1 4,5 fao
2 4,0 ®p
3 5,0 fa
4 6,0 ©p
5 7,0 fa
6 8,0 ®p
7 9,0 fa
8 10,0 ©p
9 11,0 fao
0 12,0 Op
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Example of solving the task 14.1

For the given elastic system (Fig. 12.3 a) determine the maximum stresses
that occur under the impact of the load Q =100 N falling from the height

h =0,5m and the value of displacement in the cross-section on which the load
is falling. Given: E =2.10" Pa; 1=2m; d =4cm; D =5cm.

Solution

The given rod system (Fig. 12.3 b) works for such kinds of deformation:
segments AB, BC — symmetrical transverse bending.

Determine the maximum internal force factors under the static load
Q =100 N. Draw the diagram of bending moments (Fig. 12.3 c).

Segment AB, cross-section B: M gy g =100 Nm .
Segment BC , M gy gc =100 Nm.
Determine maximum static stresses.

Segment B :
M 100
GSTB: BN .5 = :15,9 MPa y
: -6
Wi, 6,28 -10
where
T -d3 T -43 3 -6 3
Wo, = = =6,28cm” =6,28 -10 m-.
32 32
Segment BC :
M 100
osrpc = ——PE = ~ 815 MPa |,
: -6
W 12.,3-10
where
7r-D3 7[-53 3 6 3
Wg, = = =12,3cm™ =12,3-10 m°-.
32 32

Determine the static displacement in the cross-section on which the load
is falling by the graphoanalytical method of solving the Mohr integral
(Fig. 12.3d, e)

Algy = wp-Mcgy +

@y - M =
= Eoly - OF

1 (50 .0,67 200 .1) 1
= + .
2.10M | 12,56 30,6 ) 1078

~=593.10 > m:
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173




1
where w; = —-100 -1 = 50; w, =100 -2 = 200;
2

2
3
7 -d 744
loy = = =12,56 cm* =12,56 .10 ° m*;
64 64
4 4
.D 5 _
lp = —— =22 _306cm*=30,610"°m*

Find the coefficient of impact

2.h 2.0,5
kp =1+ |1+ =1+ 1+—3=14,O.
Algr 5,93-10

Determine dynamic stresses in the construction elements:
cross-section B,

opp =05t Kp =15,9-14 = 223 MPa .
segment BC ,
op pc =815-14 =114 MPa .
Vertical bending of cross-section A during the impact
fo o =Algr 4 -kKp =5,93-14 =83 mm

where Algr o = Algr .
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Example of solving the task 14.2

For the given elastic system (Fig. 12.4) determine the maximum stresses
that occur under the impact of the load Q =100 N falling from the height

h=0,5m and the value of displacement in the cross-section B on which the
load is falling. Given: E=2.10°MPa; I=2m; d=4cm; D=4cm;
G =8-10* MPa.
Solution

The given rod system (Fig. 12.4 a) works for such kinds of deformation:
segments BA and AC - bending; segment CK — torsion.

Determine the maximum internal force factors under the static load
Q =100 N (Fig. 12.4 b).

Segment BA, A; Mgy 5 =100 -:1=100 Nm.

Segment AC, cross-section C; Mgy ¢ =100 -2 =200 Nm .

Segment CK, Mg c =200 Nm.

Draw the diagrams of internal force factors (Fig. 12.4 c).
Determine the maximum static stresses.

: M 100
Cross-section A oo o= A -15,9 MPa ,

W, 6,28

7r-d3 _7r-43

where Wo, = ~6,286cm° =6,28-10 °m°.
32 32
_ M 200
Cross-section C : g o = —2C = 18,7 MPa,
| Wo, 10,7
2 3
d-D* 4 .
where W, = =—=10,7cm>=10,7-10 ° m°.
6 6
: M 200
Cross-section CK : Tor o = — = = 15,9 MPa,
Wp 12,6
3 3
D 4 _
where we =22 _126em®=12610"°%m?

16 16
Determine the static displacement in the cross-section on which the load

is falling

where Algr ;g IS displacement of the segment from the torsion strain of the
segment CK
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176



M Ny 200 -2
p = —REK_CK _ —0.,0199 rad:

G-lp 8.10° .251.10 7

4 4
.D .4
lp=2— =22 _o51em®=25110"% m*;
32 32
Algr gy IS displacement of the section B under the bending deformation of
BC segment, determined by the graphoanalytical method of

solving the Mohr integral (Fig. 12.4 d)

Al =
ST .BN E -y E -y,

(0y Mgy +w@g-Mcy)=

50 - 0,667 1
- + (100 -1,5+ 50 -1,667 ) =

2.10M .1256.107% 2.10%.213.1078

3

=6,79-10 " m;
where o, =0,5-100 = 50; My = 0,667 ;
@, =100 -1=100; Mg, =1,5;
w4 = 50; Mgy =1+0,667 =1,667;

r-d® x4t
_ ~1256 cm* =12.56-10 2 m*;

Loy =

64 64
3 4
d-D° 4 _
lgp =———=-—=21,3cm* =21,3-10 % m*,
12 12

Determine the coefficient of impact

2 H 2-0,5
kp =1+ |1+ =1+ |1+ =5,74.
Algr 0,0466

Determine the maximum dynamic stresses and displacements of the
section B at the time of falling of the load:

op.4=0s7.a Kp =15,9-574 =91,3 MPa ;
opc =0g7 ¢ -kp =18,7-5,74 =107 MPa ;

T -kp =15,9-5,74 = 91,3 MPa ;

D.CK — fsT.cK
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Annex 1

Y

! Iﬂdﬂnpe 16
= | X X
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y# b-d/%

2 e —

Rolled steel. I-beams. Assortment. TOCT 8239-89
Shape Dimensios Sz(iggn )I(?eifexrence values for axe; —
M=y g | d |t A, Ix Wy | dix | Sx | Iy [ Wy | iy
bers 2
mm sm” | sm® [ sm® | sm | sm |[sm®|sm®| sm

10 |100| 55 | 45 | 7,2 12,0 198 | 39,7 14,06 | 23,0 | 17,9 | 6,49 | 1,22
12 1120, 64 | 48 | 7,3 14,7 350 | 584 (488 33,7279 |8,72|1,38
14 140 | 73 | 49 | 7,5 17,4 572 | 81,7 |573|46,8 419|115 155
16 |160| 81 | 50 | 7,8 20,2 873 | 109 | 6,57 | 62,3 | 58,6 | 145 | 1,70
18 |180| 90 | 5,1 | 8,1 23,4 1290 | 143 | 7,42 | 81,4 | 82,6 | 18,4 | 1,88
20 (200100 5,2 | 84 26,8 1840 | 184 |8,28 | 104 | 115 | 23,1 | 2,07
22 (220|110 | 54 | 8,7 30,6 2550 | 232 9,13 | 131 | 157 | 28,6 | 2,27
24 240 115| 56 | 9,5 34,8 3460 | 289 (9,97 | 163 | 198 | 34,5 | 2,37
27 |270(125| 6.0 | 9,8 40,2 5010 | 371 11,2 | 210 | 260 | 41,5 | 2,54
30 |300 (135 6,5 |10,2 46,5 7080 | 472 (12,3 | 268 | 337 | 49,9 | 2,69
33 330140 7,0 {11,2 53,8 9840 | 597 |13,5| 339 | 419 | 59,9 | 2,79
36 |360(145| 7,5 | 12,3 61,9 13380 | 743 | 14,7 | 423 | 516 | 71,1 | 2,89
40 [400|155| 8,0 | 13,0 71,4 18930 | 947 | 16,3 | 540 | 665 | 85,9 | 3,05
45 1450|160 | 6,6 | 14,2 83,0 27450 | 1220 | 18,2 | 699 | 807 | 101 | 3,12
50 |500 (170 9,5 |15,2 97,3 39120 | 1560 | 20,1 | 899 | 1040 | 122 | 3,28
55 |550(180|10,0]16,5 113 54810 | 1990 | 22,0 | 1150 | 1350 | 150 | 3,46
60 |600|19010,8]|17,8 131 75010 | 2500 | 23,9 | 1440 | 1720 | 181 | 3,62
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Annex 2
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Rolled steel. U-beam. Assortment. TOCT 8240-89
Dimensios Section Reference values for axes
Shape area X — X y-y
nbuerps- h b | d | t A’z J, Wy | ix | Iy [ Wy | iy 2o
mm sm” | sm* | sm® | sm | sm® [ sm® | sm | sm
5 50 | 32 |44 | 7,0 6,16 22,8 | 9,10 | 192 | 561 | 2,75 | 0,954 | 1,16
6,5 65 | 36 |44 | 7,2 7,51 48,6 | 150 | 254 | 8,70 | 3,68 | 1,08 | 1,24
8 80 | 40 | 45| 7.4 8,98 89,4 | 224 316 | 128 | 4,75 | 1,19 | 1,31

10 [100| 46 |45 | 7,6 10,9 174 | 34,8 3,99 | 20,4 | 6,46 | 1,37 | 1,44
12 120 52 |48 | 78 13,3 304 | 50,6 | 4,78 | 31,2 | 852 | 1,53 | 1,54
14 |140| 58 | 49| 8,1 15,6 491 | 70,2 | 560 | 454 | 11,0 | 1,70 | 1,67
16 160 | 64 | 50 | 84 18,1 747 | 934 | 642 | 63,3 | 13,8 | 1,87 | 1,80
18 [180| 70 |51 | 87 20,7 1090 | 121 | 7,24 | 86,0 | 17,0 | 2,04 | 1,94
20 (200 76 |52 9,0 23,4 1520 | 152 | 8,07 | 113 | 20,5 | 2,20 | 2,07
22 |220| 82 (54|95 26,7 2110 | 192 8,89 | 151 | 251 | 2,37 | 2,21
24 240 | 90 | 5,6 | 10,0 30,6 2900 | 242 | 9,73 | 208 | 31,6 | 2,60 | 2,42
27 |270| 95 | 6,0 |105| 352 4160 | 308 | 10,9 | 262 | 37,3 | 2,73 | 2,47
30 [300100| 65 |11,0| 405 5810 | 387 | 12,0 | 327 | 43,6 | 2,84 | 2,52
33 [330(105| 7,0 |11,7| 465 7980 | 484 | 13,1 | 410 | 51,8 | 2,97 | 2,59
36 [360(110|75|126| 534 [10820| 601 |14,2| 513 | 61,7 | 3,10 | 2,68
40 | 400|115|8,0 |135| 61,5 |15220| 761 |157 | 642 | 73,4 | 3,23 | 2,75
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Equal leg angle steel rolled steel. Assortment. TOCT 8509-86
Dimensios Section Reference values for axes
Shape area X — X _

numbers b d R A’z Jy I fo
mm sm sm” sm sm

1 2 3 4 5 6 7 8
3 1,13 0,40 0,59 0,60
2 20{ 4 3,5 1,46 0,50 0,58 0,64
3 1,43 0,81 0,75 0,73
2,5 25{ 4 3,5 1,86 1,03 0,74 0,76
2,8 28 3 4 1,62 1,16 0,85 0,80
3 1,86 1,77 0,97 0,89
3.2 32{ 4 4,5 243 | 226 | 096 | 0094
3 2,10 2,56 1,10 0,99
3,6 36{ 4 4.5 2,75 3,29 1,09 1,04
3 2,35 3,55 1,23 1,09
4 40{ 4 5 3,08 458 1,22 1,13
3 2,65 5,13 1,39 1,21
45 45{ 4 5 3,48 6,63 1,38 1,26
5 4,29 8,03 1,37 1,30
3 2,96 7,11 1,55 1,33
5 50{ 4 55 3,89 9,21 1,54 1,38
5 4.80 11,2 1,53 1,42
3,5 3,86 11,6 1,73 1,50
5,6 56{ 4 6 4.38 13,1 1,73 1,52
5 5,41 16,0 1,72 1,57
4 4,96 18,9 1,95 1,69
6,3 63{ 5 7 6,13 23,1 1,94 1,74
6 7,28 27,1 1,93 1,78
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Annex 3 (continued)

(continued)

Equal leg angle steel rolled steel. Assortment. TOCT 8509-86

1 2 3 4 5 6 7 8
45 620 | 290 | 216 | 188

5 686 | 319 | 216 | 1.90

7 70 6 8.0 815 | 376 | 215 | 194
7 042 | 430 | 214 | 1.99

8 107 | 482 | 213 | 202

5 739 | 395 | 231 | 202

6 878 | 466 | 230 | 206

75 | 715 7 9 101 | 533 | 229 | 210
8 115 | 598 | 228 | 215

9 128 | 661 | 227 | 218

55 863 | 527 | 247 | 217

6 038 | 570 | 247 | 219

8 80{ 7 J 108 | 653 | 245 | 223
8 123 | 734 | 244 | 227

6 106 | 821 | 278 | 243

7 123 | 943 | 277 | 247

9 90{ 8 10 13.9 106 | 276 | 251
9 156 118 | 275 | 255

6.5 12.8 122 | 300 | 268

( 7 138 131 | 308 | 271

J 8 15,6 147 3,07 275

10 | 100 10 12 192 179 | 305 | 283
| 12 228 209 3,03 2,91

[ 14 26,3 237 3,00 2,99

16 297 264 | 298 | 306

7 152 176 | 340 | 2.96

11| 110{ 8 12 17.2 198 | 339 | 3.00
8 197 204 | 387 | 346

J 9 22,0 327 | 386 | 340

10 243 360 | 385 | 345

125 | 12 12 14 28.9 422 | 382 | 353
| 14 334 | 482 | 380 | 361

16 37.8 530 | 378 | 368

9 207 | 466 | 434 | 3.78

14 140{ 10 14 273 512 | 433 | 382
12 325 602 | 431 | 3.90
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Annex 4
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Unequal leg angle rolled steel. Assortment. TOCT 8510-86
Dimensios Reference values for axes
Section | X~ X Y-¥ A% YN
Distance from the
area
Shape B b d | R . : center of gravity
numbers A, J, i Jy iy
sm? Yo Xo
mm sm*| sm|sm*|sm| sm sm
1 2 3 4 | 5 6 7 8 9 10 11 12
2,5/1,6 25 16 3 135 1,16 0,70 10,78 | 0,22 | 0,44 0,86 0,42
3 1,49 152 {101 0,46 | 0,55 1,08 0,49
2 2 2 20 ) ) ) ) ) ) )
3.2/ 3 { 4 3 1,94 1,93 | 1,00 | 0,57 | 0,54 1,12 0,53
3 1,89 3,06 | 1,27 | 0,93 | 0,70 1,32 0,59
4/2.5 40 | 25 40 ’ ’ ’ ’ ’ ’ ’
’ { 4 ’ 2,47 3,93 11,26 1,18 | 0,69 1,37 0,63
3 2,14 441 (1431 1,32 | 0,79 1,47 0,64
28 ) ) ) ) ) ) )
45128 45 { 4 > 2,80 568 | 1,42 | 1,69 | 0,78 1,51 0,68
3 2,42 6,17 |160| 1,99 | 0,91 1,60 0,72
5/3,2 50 | 32 55 ’ ’ ’ ’ ’ ’ ’
3, { 4 ’ 3,17 798 | 1,59 2,56 | 0,90 1,65 0,76
3,5 3,16 10,1 | 1,79 | 3,30 | 1,02 1,80 0,82
5,6/3,6 | 56 36{ 4 |60| 358 |11,41,78(3,70 |1,02| 1,82 0,84
5 441 13,8 | 1,77 | 4,48 | 1,01 1,86 0,88
4 4.04 16,3 12,01 | 5,16 | 1,13 2,03 0,91
5 498 199 | 2,00 | 6,26 | 1,12 2,08 0,95
40 ’ ’ ’ ’ ’ ’ ’
6.3/4.0 63 { 6 7.0 5,90 23,3 1199 7,28 | 1,11 2,12 0,99
8 7,68 29,6 11,96 9,15 | 1,09 2,20 1,07
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Annex 4 (continued)

Unequal leg angle rolled steel. Assortment. TOCT 8510-86

continued)

1 21 3 |45 6 71789 0] 11 12
45 507 | 253 2231825128 225 | 1.03

45 ) ) ) ) ) ) ) )

745 |70\ 4501 TS Ceo | o7g (203 005 |127| 228 | 105
5 611 | 348 239|125 |143| 239 | 117

755 | 75 (500 | 6| 8| 725 |409|238|146|142| 244 | 121
8 047 |524 235|185 |140| 252 | 129

5 6.36 | 416 | 256 | 12.7 | 141 26 | 113

8/5 |80 | 801 | o | 8 | 55 | 490|255 148 | 140| 265 | 117
55 786 | 653 | 288 19.7 |158| 292 | 1.26

956 | 90 56{ 6| 9| 854 |706 288|212 158 295 | 128
8 1118 | 909 | 285|271 |156| 304 | 136

6 959 | 983 32 1306|179 323 | 142

7 111 | 113 | 319|350 |1.78| 328 | 146

10/6,3 | 100 63{ g |10 126 | 127 |318]302 |177| 332 | 150
10 155 | 154 | 315|471 |1.75| 3.40 | 158

6.5 114 | 142 |353|456| 2 | 355 | 158

177 | 110 70{ 7 110| 123 | 152 |352|487 |199| 357 | 16
8 139 | 172 | 351|546 |1.98| 361 | 154

7 141 | 227 | 4011 73.7 |229] 401 | 18

8 16 | 256 | 4 |830|228| 405 | 1,84

12,58 | 125 80{ 10| ] 197 | 312 398|100 [226| 414 | 1.92
12 234 | 356 |3.95| 117 |224| 422 2

3 18 | 364 | 449 120 | 258 | 449 | 2.02

1419 1140 90 | (0112 | 5o | aaa (447 | 146 | 256| 458 | 212
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Annex 5
Coefficients ¢ of reduction of the main allowable stress

Fle;dbility f;gg

of rods St.OC, Steel Steel Cast iron Wood
St.2, St.5

P )

! St.4
0 1,00 1,00 1,00 1,00 1,00
10 0,99 0,98 0,97 0,97 0,99
20 0,96 0,95 0,95 0,91 0,97
30 0,94 0,92 0,91 0,81 0,93
40 0,92 0,89 0,87 0,69 0,87
50 0,89 0,86 0,83 0,57 0,80
60 0,86 0,82 0,79 0,44 0,71
70 0,81 0,76 0,72 0,34 0,60
80 0,75 0,70 0,65 0,26 0,48
90 0,69 0,62 0,55 0,20 0,38
100 0,60 0,51 0,43 0,16 0,31
110 0,52 0,43 0,35 = 0,25
120 0,45 0,36 0,30 _ 0,22
130 0,40 0,33 0,26 _ 0,18
140 0,36 0,29 0,23 — 0,16
150 0,32 0,26 0,21 _ 0,14
160 0,29 0,24 0,19 — 0,12
170 0,26 0,21 0,17 _ 0,11
180 0,23 0,19 0,15 _ 0,10
190 0,21 0,17 0,14 _ 0,09
200 0,19 0,16 0,13 _ 0,08
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ANnnex 6

Areas » and coordinates z. of the gravity center of simple figures

Figure @ Zc
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= ™| Quadratic parabola
£ ) —1]-h .
C,[ 3 2
[
V.
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—1-h —I
= [ 3 8
\ |
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MAIN DEFINITIONS OF STRENGTH OF MATERIALS

Strength of materials is the science of engineering methods for
calculating the strength, rigidity and durability of machines and structures
elements.

Strength is the ability of material or structure to withstand mechanical
stress without fracture.

Rigidity is the ability of the structure and its elements to withstand
elastic deformations, i.e. the ability to perceive external loading without
changing the geometric dimensions and shape.

Durability is the ability of the structure or its elements to retain, under
the action of given forces, the initial shape of the elastic equilibrium.

Rod (bar) is a body of prismatic shape where one size (length) is much
bigger than the other two (transverse) dimensions.

Plate is the prismatic (cylindrical) body in which one size (thickness) is
much smaller than two others.

Shell is a body restricted by two curvilinear surfaces, the distance
between which (thickness) is small in comparison with other dimensions. This
is a plate with curved middle surface. Examples: walls of thin-walled tanks,
walls of boilers, domes of building structures, hulls of aircrafts, rockets,
submarines.

Solid (massive body) is the body which dimensions are of the same order
in all (three) directions. Examples: foundations of structures, retaining walls,
foundations of powerful presses and machine tools.

Calculation scheme is the real object, free of insignificant features. More
than one calculation scheme may be developed for the same object, depending
on the load features and operating conditions.

Tensile-compressive is a type of deformation in which only longitudinal
(axial) force N occurs in the cross sections of a straight bar.

Shear. Is the type of deformation, in which the cross-section of the rod
(bar) only shear (cutting) force Q acts. The shear deformation results in
material fracture. Rivets, bolts, keys, seams of welded joints undergo shear.

Torsion is type of deformation in which only torque moment » 5 , acts
in the cross sections of the rod. The circular cross-section rod (bar) transmiting
power during rotational motion is called the shaft. Torsion is often accompanied
by bending or other deformation.

Direct lateral bending is type of deformation in which the bending
moment M g, and the shear (cutting) force Q occur at the cross sections of the
beam. The bending rod (bar) is called the beam. This bending occurs in axes,
bridge and floor beams, gear-wheel teeth, leaf springs.
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Complex strength is the combination of two or more simple types of
deformation, such as: bending + torsion; compression + bending, etc.

Diagram is the graph showing the distribution of internal forces factors
or displacements along the axis of the rod. Diagrams are lined
perpendiculary to the axis of the rod (bar).

The tangential (shear) stress is the intensity of the tangent forces at the
given point of section.

The normal stress is the intensity of normal forces at the given point of
section.

Tension (compression) is the type of deformation (type of resistance) in
which only longitudinal (axial, normal) force N or N, directed along the

axis of the rod (bar) and applied at the center of cross-section gravity occurs.

The limit of proportionality, in this section deformation is proportional
to the load, the highest stress, at which Hooke law is correct.

The limit of elasticity, up to this stress the material retains its elastic
properties (no residual deformations occur in the sample at load removal).

The vyield strength is the stress at which the increase of plastic
deformation of the sample at constant load occurs, this is the main mechanical
characteristic for evaluation the durability of plastic materials (steels).

The tensile strength is the stress at which the fracture of the sample
material occurs, that is, the conditional stress that corresponds to the highest
load that the sample can withstand up to fracture.

The allowable stresses are those in which the safe work of the part is
guaranteed.

The static moment of the plane figure area with respect to the axis
lying in the same plane is the sum of the products of the areas of elementary
planes at their distance from that axis.

The axial moment of inertia of a plane figure with respect to the axis
lying in the same plane is the sum products over the whole area by the
elementary areas squared by their distance from that axis.

Central axes are the axes that pass through the center of gravity of the
plane figure.

The polar moment of inertia of the plane figure with respect to the pole
lying in the same plane is the sum of the product of the areas of the elementary
plane by the squares of their distances from the pole.

Main axes of inertia are axes in relation to which the axial moments of
inertia of the section (plane figure) reach the maximum and minimum values.

The main moments of inertia of the section are the axial moments of
inertia relatively to the principal axes.
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The principal central axes are the main axes that pass through the center
of gravity of the section (plane figure). If the figure has at least one axis of
symmetry, then this axis will always be one of the main central axes.

The main central moments of inertia of the section (plane figure) are
the moments of inertia with respect to the principal central axes.

Shear is a type of deformation in which at any cross-section of the bar
only shear (cutting) force @ acts.

The shear deformation resulting in material fracture is shear.
Torsion is a type of deformation in which only torque moment M

occurs at any cross-section of the bar.

The circular cross-section bar, which operates for torsional deformation,
is called the shaft.

The torque diagram is the graph showing the law of torque change
along the bar length is called.

Complex stressed condition. The set of normal and tangential (shear)
stresses occurring on planes crossing the given point characterize the stressed of
the body at that point.

Bending is the bar resistance state in which bending or change of the
curvature of its axis occurs. The bar that works in bending is called the beam.

Flat, or straight, bending is the case of bending in which the beam axis
Is curved in the direction of external forces and loads, i.e. in the same plane
with external forces.

Straight transverse bending is a type of deformation in which the shear
(cutting) force Q and bending moment M g, occur in the cross-sections of

the beam. If the shear force does not occur, then it is the pure bending.

All forces, active and reactive are the beam loads.

Shear (cutting) force at any cross-section of the beam is equal to the
algebraic sum of the projections of all external forces acting on the right or left
of the intersection on the axis perpendicular to the axis of the beam.

Bending moment at any cross section of the beam is equal to the
algebraic sum of the moments of all external forces acting to the right or left of
the intersection relatively to the center of gravity of the section.

Linear displacement y, = y(x,) of the gravity center of the section in

the direction perpendicular to the undeformed axis of the beam, which is
referred to as deflection.

Angular displacement ® , = ©(x, ) is a slope of the elastic curve around
the neutral axis of the section relative to its initial position.

Redundant (auxiliary) beam is a given beam without external loads.
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Statically indeterminate systems are systems in which the reactions of
junctions and internal forces are impossible to determine by the equilibrium
equations only.

The main system is statically determinate geometrically unchangeable
system made of statically indetermitate one is defined.

Oblique bending is a complex type of deformation. It occurs when the
plane of absolute bending moment action does not coincide with any of its main
planes, i.e. planes drawn through the beam axis and the main axis of cross-cut
inertia.

The neutral (zero) section line is a geometric place of the points where
normal stresses equal zero. This line must run through the weight centre of the
Cross-cut.

Joint action of bending with torsion is a type of resistance to combined
stress in which external forces acting on the beam cause the following internal
force factors: torque, bending moments and shear (cutting) forces.

The critical force is the largest value of the compressive force applied
centrally, to which the rectilinear form of equilibrium of the rod is stable. The
bend caused by the loss of stability of the rectilinear shaped rod is called the
longitudinal bend.

The smallest value of the compressive force at which the rod loses the
ability to keep a rectilinear shape is called critical and is indicated Fy .

Dynamic load is load which is partially or completely caused by the
forces of inertia (at accelerated movement of parts, during their rotation and
oscillation), as well as at instantaneous load and impact.

Mechanical characteristic of material, which reflects its ability to resist
impact loads, is called impact viscosity.
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MAIN FORMULAS OF STRENGTH OF MATERIALS
Hooke law
E = 0/8.

Tensile-compression strength condition

N
o=—X|o
<lo]
Condition of shearing strength
Q
T = X < [T] sS
Hooke’s shear law
r=G-y.

Condition of tensile strength (torsion)

_ Mg

T <l7].
o =<l
Hooke’s shear law (torsion)
Moo . Ms -1 180°
p=—"— [rad]; p=—"r—. [degree ].

Condition of rigidity of the shaft at rotation (torsion)

M 180 °
g M

<[8].

Bending strength condition under normal stresses

o :MBN—-WHXS[G].

max WX
Tensile strength condition D.1. Zhuravsky formula (bending)

Qy -Sx (y)
b(y) Iy

T =
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Strength conditions under bending according to shear stresses

S
e L e

b(y)- 1

Approximate differential equation of the bent axis of the beam
E-lg-y"(x)=Mpgy (x).

Equation of the curved axis of the beam
1
y(x):—jdx jM (x)dx +C -x+ D .
E-I

Mohr integral which spans all the length of the beam

M (x)-M (x) "
E-|

Aly, ©)=3% |

General formula for determining displacements under bending

C()i'MCi
E-I

n

1 -
A(y,@):zﬁjM (x)-M (x)dx = Y
T i=1

Writing down the equation of strain compatability (continuity of
displacements) for the equivalent system as the condition of zero equality of
displacements by the direction of any removed junction

AI = X15|1+ X2 5|2 + ...+ Xm 5"] +A|(F,q, M )=O

System of canonic (the simplest) equations:
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Normal stress at oblique bending at any cross-cut point, e.g. at point C
with coordinates x. and vy, is found as algebraic sum of normal stresses

from the components of the bending moment M , and M,

MX MY
o7 qm =02 M)+ oz My) = S ye S
X Y

Equation of the neutral line at oblique bending

M M
Xy + Y =0

I'x ly

Stresses at oblique bending

Shearing stresses at oblique bending are determined as a sum of
shearing stresses r, , ry obtained from the cross-cut forces Q y , Qy

2 2
T = Tx+TY.

Absolute bending of the beam

f=qfs+ ).

Direction of absolute bending is determined by angle
f
y = arctg X,
( fy J
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Condition of strength under the joint action of bending with torsion
Oeqv = = [O'].

According to the third theory of strength (maximum tangential
stresses)

2 2
MR:\/MBN + Mg .

According to the third theory of strength (energetic)

M g =\/|v| SN +0,75M 7

Euler’s formula

OCR SO prs OCrR = = SO prs

Yasinsky’s formula

O'CR =a-— b . /Imax .
Maximum flexibility of the rod

uel

/Imax .

I min

Allowable stability stress
losr I=0cr /Nem -

The condition of stability
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PERSONALITIES

Robert Hooke

Robert Hooke (28 July[O.S. 18
July] 1635— 3 March 1703) was an
English scientist and architect, a polymath,
recently called "England's Leonardo", who,
using a microscope, was the first to
visualize a microorganism. An
impoverished scientific inquirer in young
adulthood, he found wealth and esteem by
performing over half of the architectural
SR surveys after London's great fire of 1666.
Hooke was also a member of the Royal
Society, by now the world's oldest
continuously operating scientific society,
and since 1662 was its curator of
experiments. Hook was also the Professor
of Geometry at Gresham College.

As an assistant to physician Thomas Willis and to physical scientist
Robert Boyle, Hooke built the vacuum pumps used in Boyle's experiments on
gas law, and himself conducted experiments. In 1673, Hooke built the earliest
Gregorian telescope, and then he observed the rotations of the planets Mars and
Jupiter. Hooke's 1665 book Micrographia spurred microscopic investigations.
Thus observing microscopic fossils, Hooke endorsed biological evolution.
Investigating in optics, specifically light refraction, he inferred a wave theory of
light. And his is the first recorded hypothesis of heat expanding matter, air's
composition by small particles at larger distances, and heat as energy.

In physics, he approximated experimental confirmation that gravity heeds
an inverse square law, and first hypothesised such a relation in planetary
motion, too, a principle furthered and formalised by Isaac Newton in Newton's
law of universal gravitation. Priority over this insight contributed to the rivalry
between Hooke and Newton, who thus antagonized Hooke's legacy. In geology
and paleontology, Hooke originated the theory of a terraqueous globe, disputed
the literally Biblical view of the Earth's age, hypothesised the extinction of
organism species, and argued that fossils atop hills and mountains had become
elevated by geological processes. Hooke's pioneering work in land surveying
and in mapmaking aided development of the first modern plan-form map,
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although his grid-system plan for London was rejected in favour of rebuilding
along existing routes. Even so, Hook was key in devising for London a set of
planning controls that remain influential.

Life and works

Much of what is known of Hooke's early life comes from an
autobiography that he commenced in 1696 but never completed. Richard
Waller mentions it in his introduction to The Posthumous Works of Robert
Hooke, M.D. S.R.S., printed in 1705. In the chapter Of Dr. Dee's Book of
Spirits, Hooke argues that John Dee made use of Trithemian steganography, to
conceal his communication with Queen Elizabeth I. The work of Waller, along
with John Ward's Lives of the Gresham Professors (with a list of his major
works) and John Aubrey's Brief Lives, form the major near-contemporaneous
biographical accounts of Hooke.

Early life

Robert Hooke was born in 1635 in Freshwater on the Isle of Wight to
Cecily Gyles and John Hooke, a Church of England priest, the curate of
Freshwater's Church of All Saints. Father John Hooke's two brothers, Robert's
paternal uncles, were also ministers. A royalist, John Hooke likely was among a
group that went to pay respects to Charles | as he escaped to the Isle of Wight.
Expected to join the church, Robert, too, would become a staunch monarchist.
Robert was the youngest, by seven years, of four siblings, two boys and two
girls. Their father led a local school as well, yet at least partly homeschooled
Robert, frail in health. The young Robert Hooke was fascinated by observation,
mechanical works, and drawing. He dismantled a brass clock and built a
wooden replica that reportedly worked "well enough”. He made his own
drawing materials from coal, chalk, and ruddle (iron ore).

On his father's death in 1648, Robert inherited 40 pounds. With it, he
bought an apprenticeship. Although he went to London to begin apprenticeship,
he studied briefly with Samuel Cowper and Peter Lely, and soon entered
Westminster School, in London, under Dr. Richard Busby. Hooke quickly
mastered Latin and Greek, studied Hebrew some, mastered Euclid's Elements,
and began his lifelong study of mechanics.

Hooke may have been among a group of students that Busby taught in
parallel to the school's main courses. Contemporary accounts call him "not
much seen" in school, apparently true of others positioned similarly. Busby, an
ardent and outspoken royalist (he had the school observe a fast-day on the
anniversary of the King's beheading), was by all accounts trying to preserve the
nascent spirit of scientific inquiry that had begun to flourish in Carolean
England but which was at odds with the literal Biblical teachings of the
Protectorate. To Bushby and his select students the Anglican Church was a
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framework to support the spirit of inquiry into God's work, those who were able
were destined by God to explore and study His creation, and the priesthood
functioned as teachers to explain it to those who were less able. This was
exemplified in the person of George Hooper, the Bishop of Bath and Wells,
whom Busby described as "the best scholar, the finest gentleman and will make
the completest bishop that ever was educated at Westminster School".

Science

Mechanics

In 1660, Hooke discovered the law of elasticity which bears his name and
which describes the linear variation of tension with extension in an elastic
spring. He first described this discovery in the anagram "ceiiinosssttuv", whose
solution he published in 1678 as "Ut tensio, sic vis" meaning "As the extension,
so the force." Hooke's work on elasticity culminated, for practical purposes, in
his development of the balance spring or hairspring, which for the first time
enabled a portable timepiece — a watch — to keep time with reasonable accuracy.
A bitter dispute between Hooke and Christiaan Huygens on the priority of this
invention was to continue for centuries after the death of both; but a note dated
23 June 1670 in the Hooke Folio (see External linksbelow), describing a
demonstration of a balance-controlled watch before the Royal Society, has been
held to favour Hooke's claim.

It is interesting[to whom?] from a twentieth-century vantage point that
Hooke first announced his law of elasticity as an anagram. This was a method
sometimes used by scientists, such as Hooke, Huygens, Galileo, and others, to
establish priority for a discovery without revealing details.

Hooke became Curator of Experiments in 1662 to the newly founded
Royal Society, and took responsibility for experiments performed at its weekly
meetings. This was a position he held for over 40 years. While this position
kept him in the thick of science in Britain and beyond, it also led to some
heated arguments with other scientists, such as Huygens (see above) and
particularly with Isaac Newton and the Royal Society's Henry Oldenburg. In
1664 Hooke also was appointed Professor of Geometry at Gresham College in
London and Cutlerian Lecturer in Mechanics.

On 8 July 1680, Hooke observed the nodal patterns associated with the
modes of vibration of glass plates. He ran a bow along the edge of a glass plate
covered with flour, and saw the nodal patterns emerge. In acoustics, in 1681 he
showed the Royal Society that musical tones could be generated from spinning
brass cogs cut with teeth in particular proportions.
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Blaise Pascal

Blaise Pascal (19 June 1623 — 19
August 1662) was a French
mathematician, physicist, inventor,
writer and Catholic theologian. He was
a child prodigy who was educated by
his father, a tax collector in Rouen.
Pascal's earliest work was in the natural
and applied sciences, where he made
important contributions to the study of
fluids, and clarified the concepts of
pressure and vacuum by generalising
the work of Evangelista Torricelli.
Pascal also wrote in defence of the
scientific method.

In 1642, while still a teenager, he started some pioneering work on
calculating machines. After three years of effort and 50 prototypes, he built 20
finished machines (called Pascal's calculators and later Pascalines) over the
following 10 years, establishing him as one of the first two inventors of the
mechanical calculator.

Pascal was an important mathematician, helping create two major new
areas of research: he wrote a significant treatise on the subject of projective
geometry at the age of 16, and later corresponded with Pierre de Fermat on
probability theory, strongly influencing the development of modern economics
and social science. Following Galileo Galilei and Torricelli, in 1647, he
rebutted Aristotle's followers who insisted that nature abhors a vacuum. Pascal's
results caused many disputes before being accepted.

In 1646, he and his sister Jacqueline identified with the religious
movement within Catholicism known by its detractors as Jansenism. Following
a religious experience in late 1654, he began writing influential works on
philosophy and theology. His two most famous works date from this period: the
Lettres provinciales and the Pensées, the former set in the conflict between
Jansenists and Jesuits. In that year, he also wrote an important treatise on the
arithmetical triangle. Between 1658 and 1659, he wrote on the cycloid and its
use in calculating the volume of solids.

Throughout his life, Pascal was in frail health, especially after the age of
18; he died just two months after his 39th birthday.

Early life and education

Pascal was born in Clermont-Ferrand, which is in France's Auvergne
region. He lost his mother, Antoinette Begon, at the age of three. His father,
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Etienne Pascal (1588-1651), who also had an interest in science and
mathematics, was a local judge and member of the "Noblesse de Robe". Pascal
had two sisters, the younger Jacqueline and the elder Gilberte.

In 1631, five years after the death of his wife, Etienne Pascal moved with
his children to Paris. The newly arrived family soon hired Louise Delfault, a
maid who eventually became an instrumental member of the family. Etienne,
who never remarried, decided that he alone would educate his children, for they
all showed extraordinary intellectual ability, particularly his son Blaise. The
young Pascal showed an amazing aptitude for mathematics and science.

Particularly of interest to Pascal was a work of Desargues on conic
sections. Following Desargues' thinking, the 16-year-old Pascal produced, as a
means of proof, a short treatise on what was called the "Mystic Hexagram",
Essai pour les coniques (“"Essay on Conics") and sent it — his first serious work
of mathematics — to Pére Mersenne in Paris; it is known still today as Pascal's
theorem. It states that if a hexagon is inscribed in a circle (or conic) then the
three intersection points of opposite sides lie on a line (called the Pascal line).

Pascal's work was so precocious that Descartes was convinced that
Pascal's father had written it. When assured by Mersenne that it was, indeed, the
product of the son and not the father, Descartes dismissed it with a sniff: "l do
not find it strange that he has offered demonstrations about conics more
appropriate than those of the ancients," adding, "but other matters related to this
subject can be proposed that would scarcely occur to a 16-year-old child."

In France at that time offices and positions could be — and were — bought
and sold. In 1631, Etienne sold his position as second president of the Cour des
Aides for 65,665 livres. The money was invested in a government bond which
provided, if not a lavish, then certainly a comfortable income which allowed the
Pascal family to move to, and enjoy, Paris. But in 1638 Richelieu, desperate for
money to carry on the Thirty Years' War, defaulted on the government's bonds.
Suddenly Etienne Pascal's worth had dropped from nearly 66,000 livres to less
than 7,300.

Like so many others, Etienne was eventually forced to flee Paris because
of his opposition to the fiscal policies of Cardinal Richelieu, leaving his three
children in the care of his neighbour Madame Sainctot, a great beauty with an
infamous past who kept one of the most glittering and intellectual salons in all
France. It was only when Jacqueline performed well in a children's play with
Richelieu in attendance that Etienne was pardoned. In time, Etienne was back in
good graces with the cardinal and in 1639 had been appointed the king's
commissioner of taxes in the city of Rouen — a city whose tax records, thanks to
uprisings, were in utter chaos.

In 1642, in an effort to ease his father's endless, exhausting calculations,
and recalculations, of taxes owed and paid (into which work the young Pascal
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had been recruited), Pascal, not yet 19, constructed a mechanical calculator
capable of addition and subtraction, called Pascal's calculator or the Pascaline.
Of the eight Pascalines known to have survived, four are held by the Musée des
Arts et M¢étiers in Paris and one more by the Zwinger museum in Dresden,
Germany, exhibit two of his original mechanical calculators. Although these
machines are pioneering forerunners to a further 400 years of development of
mechanical methods of calculation, and in a sense to the later field of computer
engineering, the calculator failed to be a great commercial success. Partly
because it was still quite cumbersome to use in practice, but probably primarily
because it was extraordinarily expensive, the Pascaline became little more than
a toy, and a status symbol, for the very rich both in France and elsewhere in
Europe. Pascal continued to make improvements to his design through the next
decade, and he refers to some 50 machines that were built to his design.

Philosophy of mathematics

Pascal's major contribution to the philosophy of mathematics came with
his De I'Esprit géométrique ("Of the Geometrical Spirit"), originally written as a
preface to a geometry textbook for one of the famous "Petites-Ecoles de Port-
Royal" ("Little Schools of Port-Royal™). The work was unpublished until over a
century after his death. Here, Pascal looked into the issue of discovering truths,
arguing that the ideal of such a method would be to found all propositions on
already established truths. At the same time, however, he claimed this was
impossible because such established truths would require other truths to back
them up — first principles, therefore, cannot be reached. Based on this, Pascal
argued that the procedure used in geometry was as perfect as possible, with
certain principles assumed and other propositions developed from them.
Nevertheless, there was no way to know the assumed principles to be true.

Pascal also used De I'Esprit géométrique to develop a theory of definition.
He distinguished between definitions which are conventional labels defined by
the writer and definitions which are within the language and understood by
everyone because they naturally designate their referent. The second type would
be characteristic of the philosophy of essentialism. Pascal claimed that only
definitions of the first type were important to science and mathematics, arguing
that those fields should adopt the philosophy of formalism as formulated by
Descartes.

In De I'Art de persuader ("On the Art of Persuasion"), Pascal looked
deeper into geometry's axiomatic method, specifically the question of how
people come to be convinced of the axioms upon which later conclusions are
based. Pascal agreed with Montaigne that achieving certainty in these axioms
and conclusions through human methods is impossible. He asserted that these
principles can be grasped only through intuition, and that this fact underscored
the necessity for submission to God in searching out truths.
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Contributions to the physical sciences

Pascal's work in the fields of the study of hydrodynamics and hydrostatics
centered on the principles of hydraulic fluids. His inventions include the
hydraulic press (using hydraulic pressure to multiply force) and the syringe. He
proved that hydrostatic pressure depends not on the weight of the fluid but on
the elevation difference. He demonstrated this principle by attaching a thin tube
to a barrel full of water and filling the tube with water up to the level of the
third floor of a building. This caused the barrel to leak, in what became known
as Pascal's barrel experiment.

By 1647, Pascal had learned of Evangelista Torricelli's experimentation
with barometers. Having replicated an experiment that involved placing a tube
filled with mercury upside down in a bowl of mercury, Pascal questioned what
force kept some mercury in the tube and what filled the space above the
mercury in the tube. At the time, most scientists contended that, rather than a
vacuum, some invisible matter was present. This was based on the Aristotelian
notion that creation was a thing of substance, whether visible or invisible; and
that this substance was forever in motion. Furthermore, "Everything that is in
motion must be moved by something,” Aristotle declared. Therefore, to the
Avristotelian trained scientists of Pascal's time, a vacuum was an impossibility.
How so? As proof it was pointed out:

Light passed through the so-called "vacuum™ in the glass tube.

Avristotle wrote how everything moved, and must be moved by something.

Therefore, since there had to be an invisible "something” to move the
light through the glass tube, there was no vacuum in the tube. Not in the glass
tube or anywhere else. Vacuums — the absence of any and everything — were
simply an impossibility.

Following more experimentation in this vein, in 1647 Pascal produced
Experiences nouvelles touchant le vide ("New experiments with the vacuum®"),
which detailed basic rules describing to what degree various liquids could be
supported by air pressure. It also provided reasons why it was indeed a vacuum
above the column of liquid in a barometer tube. This work was followed by
Récit de la grande expérience de I'équilibre des liqueurs ("Account of the great
experiment on equilibrium in liquids™) published in 1648.

The Torricellian vacuum found that air pressure is equal to the weight of
30 inches of mercury. If air has a finite weight, Earth's atmosphere must have a
maximum height. Pascal reasoned that if true, air pressure on a high mountain
must be less than at a lower altitude. He lived near the Puy de Dome mountain,
4,790 feet (1,460 m) tall, but his health was poor so could not climb it.
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Legacy

In honour of his scientific contributions, the name Pascal has been given
to the SI unit of pressure, to a programming language, and Pascal's law (an
important principle of hydrostatics), and as mentioned above, Pascal's triangle
and Pascal's wager still bear his name.

Pascal's development of probability theory was his most influential
contribution to mathematics. Originally applied to gambling, today it is
extremely important in economics, especially in actuarial science. John Ross
writes, "Probability theory and the discoveries following it changed the way we
regard uncertainty, risk, decision-making, and an individual's and society's
ability to influence the course of future events." However, Pascal and Fermat,
though doing important early work in probability theory, did not develop the
field very far. Christiaan Huygens, learning of the subject from the
correspondence of Pascal and Fermat, wrote the first book on the subject. Later
figures who continued the development of the theory include Abraham de
Moivre and Pierre-Simon Laplace.

In France, prestigious annual awards, Blaise Pascal Chairs are given to
outstanding international scientists to conduct their research in the lle de France
region. One of the Universities of Clermont-Ferrand, France — Université Blaise
Pascal — is named after him. The University of Waterloo, Ontario, Canada,
holds an annual math contest named in his honour.

Sir Isaac Newton

Sir Isaac Newton (25 December 1642 — 20
March  1726/27[a]) was an  English
mathematician, physicist, astronomer,
theologian, and author (described in his own day
as a "natural philosopher") who is widely
recognised as one of the most influential
scientists of all time and as a key figure in the
scientific revolution. His book Philosophiz
Naturalis Principia Mathematica (Mathematical
Principles of Natural Philosophy), first
published in 1687, laid the foundations of
classical mechanics. Newton also made seminal
contributions to optics, and shares credit with
Gottfried Wilhelm Leibniz for developing the
infinitesimal calculus.
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In Principia, Newton formulated the laws of motion and universal
gravitation that formed the dominant scientific viewpoint until it was
superseded by the theory of relativity. Newton used his mathematical
description of gravity to prove Kepler's laws of planetary motion, account for
tides, the trajectories of comets, the precession of the equinoxes and other
phenomena, eradicating doubt about the Solar System's heliocentricity. He
demonstrated that the motion of objects on Earth and celestial bodies could be
accounted for by the same principles. Newton's inference that the Earth is an
oblate spheroid was later confirmed by the geodetic measurements of
Maupertuis, La Condamine, and others, convincing most European scientists of
the superiority of Newtonian mechanics over earlier systems.

Newton built the first practical reflecting telescope and developed a
sophisticated theory of colour based on the observation that a prism separates
white light into the colours of the visible spectrum. His work on light was
collected in his highly influential book Opticks, published in 1704. He also
formulated an empirical law of cooling, made the first theoretical calculation of
the speed of sound, and introduced the notion of a Newtonian fluid. In addition
to his work on calculus, as a mathematician Newton contributed to the study of
power series, generalised the binomial theorem to non-integer exponents,
developed a method for approximating the roots of a function, and classified
most of the cubic plane curves.

Newton was a fellow of Trinity College and the second Lucasian
Professor of Mathematics at the University of Cambridge. He was a devout but
unorthodox Christian who privately rejected the doctrine of the Trinity.
Unusually for a member of the Cambridge faculty of the day, he refused to take
holy orders in the Church of England. Beyond his work on the mathematical
sciences, Newton dedicated much of his time to the study of alchemy and
biblical chronology, but most of his work in those areas remained unpublished
until long after his death. Politically and personally tied to the Whig party,
Newton served two brief terms as Member of Parliament for the University of
Cambridge, in 1689-90 and 1701-02. He was knighted by Queen Anne in 1705
and spent the last three decades of his life in London, serving as Warden (1696—
1700) and Master (1700-1727) of the Royal Mint, as well as president of the
Royal Society (1703-1727).

Early life

Isaac Newton was born (according to the Julian calendar, in use in
England at the time) on Christmas Day, 25 December 1642 (NS 4 January
1643[a]) "an hour or two after midnight", at Woolsthorpe Manor in
Woolsthorpe-by-Colsterworth, a hamlet in the county of Lincolnshire. His
father, also named Isaac Newton, had died three months before. Born
prematurely, Newton was a small child; his mother Hannah Ayscough
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reportedly said that he could have fit inside a quart mug. When Newton was
three, his mother remarried and went to live with her new husband, the
Reverend Barnabas Smith, leaving her son in the care of his maternal
grandmother, Margery Ayscough (née Blythe). Newton disliked his stepfather
and maintained some enmity towards his mother for marrying him, as revealed
by this entry in a list of sins committed up to the age of 19: "Threatening my
father and mother Smith to burn them and the house over them." Newton's
mother had three children (Mary, Benjamin and Hannah) from her second
marriage.

From the age of about twelve until he was seventeen, Newton was
educated at The King's School, Grantham, which taught Latin and Greek and
probably imparted a significant foundation of mathematics. He was removed
from school and returned to Woolsthorpe-by-Colsterworth by October 1659.
His mother, widowed for the second time, attempted to make him a farmer, an
occupation he hated. Henry Stokes, master at The King's School, persuaded his
mother to send him back to school. Motivated partly by a desire for revenge
against a schoolyard bully, he became the top-ranked student, distinguishing
himself mainly by building sundials and models of windmills.

In June 1661, he was admitted to Trinity College, Cambridge, on the
recommendation of his uncle Rev William Ayscough, who had studied there.
He started as a subsizar — paying his way by performing valet's duties — until he
was awarded a scholarship in 1664, guaranteeing him four more years until he
could get his MA. At that time, the college's teachings were based on those of
Aristotle, whom Newton supplemented with modern philosophers such as
Descartes, and astronomers such as Galileo and Thomas Street, through whom
he learned of Kepler's work. He set down in his notebook a series of
"Quaestiones" about mechanical philosophy as he found it. In 1665, he
discovered the generalised binomial theorem and began to develop a
mathematical theory that later became calculus. Soon after Newton had
obtained his BA degree in August 1665, the university temporarily closed as a
precaution against the Great Plague. Although he had been undistinguished as a
Cambridge student, Newton's private studies at his home in Woolsthorpe over
the subsequent two years saw the development of his theories on calculus,
optics, and the law of gravitation.

In April 1667, he returned to Cambridge and in October was elected as a
fellow of Trinity. Fellows were required to become ordained priests, although
this was not enforced in the restoration years and an assertion of conformity to
the Church of England was sufficient. However, by 1675 the issue could not be
avoided and by then his unconventional views stood in the way. Nevertheless,
Newton managed to avoid it by means of special permission from Charles I1.

His studies had impressed the Lucasian professor Isaac Barrow, who was
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more anxious to develop his own religious and administrative potential (he
became master of Trinity two years later); in 1669 Newton succeeded him, only
one year after receiving his MA. He was elected a Fellow of the Royal Society
(FRS) in 1672.

Middle years. Mathematics

Newton's work has been said "to distinctly advance every branch of
mathematics then studied.” His work on the subject usually referred to as
fluxions or calculus, seen in a manuscript of October 1666, is now published
among Newton's mathematical papers. The author of the manuscript De analysi
per aequationes numero terminorum infinitas, sent by Isaac Barrow to John
Collins in June 1669, was identified by Barrow in a letter sent to Collins in
August of that year as "[...] of an extraordinary genius and proficiency in these
things."

Newton later became involved in a dispute with Leibniz over priority in
the development of calculus (the Leibniz—Newton calculus controversy). Most
modern historians believe that Newton and Leibniz developed calculus
independently, although with very different mathematical notations.
Occasionally it has been suggested that Newton published almost nothing about
it until 1693, and did not give a full account until 1704, while Leibniz began
publishing a full account of his methods in 1684. Leibniz's notation and
"differential Method", nowadays recognised as much more convenient
notations, were adopted by continental European mathematicians, and after
1820 or so, also by British mathematicians.

Such a suggestion fails to account for the calculus in Book 1 of Newton's
Principia itself and in its forerunner manuscripts, such as De motu corporum in
gyrum of 1684; this content has been pointed out by critics [Like whom?] of
both Newton's time and modern times.

His work extensively uses calculus in geometric form based on limiting
values of the ratios of vanishingly small quantities: in the Principia itself,
Newton gave demonstration of this under the name of "the method of first and
last ratios" and explained why he put his expositions in this form, remarking
also that "hereby the same thing is performed as by the method of indivisibles."

Because of this, the Principia has been called "a book dense with the
theory and application of the infinitesimal calculus™ in modern times and in
Newton's time "nearly all of it is of this calculus.”" His use of methods involving
"one or more orders of the infinitesimally small" is present in his De motu
corporum in gyrum of 1684 and in his papers on motion "during the two
decades preceding 1684".

Newton had been reluctant to publish his calculus because he feared
controversy and criticism. He was close to the Swiss mathematician Nicolas
Fatio de Duillier. In 1691, Duillier started to write a new version of Newton's
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Principia, and corresponded with Leibniz. In 1693, the relationship between
Duillier and Newton deteriorated and the book was never completed.

Starting in 1699, other members [who?] of the Royal Society accused
Leibniz of plagiarism. The dispute then broke out in full force in 1711 when the
Royal Society proclaimed in a study that it was Newton who was the true
discoverer and labelled Leibniz a fraud; it was later found that Newton wrote
the study's concluding remarks on Leibniz. Thus began the bitter controversy
which marred the lives of both Newton and Leibniz until the latter's death in
1716.

Newton is generally credited with the generalised binomial theorem, valid
for any exponent. He discovered Newton's identities, Newton's method,
classified cubic plane curves (polynomials of degree three in two variables),
made substantial contributions to the theory of finite differences, and was the
first to use fractional indices and to employ coordinate geometry to derive
solutions to Diophantine equations. He approximated partial sums of the
harmonic series by logarithms (a precursor to Euler's summation formula) and
was the first to use power series with confidence and to revert power series.
Newton's work on infinite series was inspired by Simon Stevin's decimals.

When Newton received his MA and became a Fellow of the "College of
the Holy and Undivided Trinity" in 1667, he made the commitment that "I will
either set Theology as the object of my studies and will take holy orders when
the time prescribed by these statutes [7 years] arrives, or | will resign from the
college." Up until this point he had not thought much about religion and had
twice signed his agreement to the thirty-nine articles, the basis of Church of
England doctrine.

He was appointed Lucasian Professor of Mathematics in 1669, on
Barrow's recommendation. During that time, any Fellow of a college at
Cambridge or Oxford was required to take holy orders and become an ordained
Anglican priest. However, the terms of the Lucasian professorship required that
the holder not be active in the church — presumably,[weasel words] so as to
have more time for science. Newton argued that this should exempt him from
the ordination requirement, and Charles IlI, whose permission was needed,
accepted this argument. Thus a conflict between Newton's religious views and
Anglican orthodoxy was averted.

Mechanics and gravitation

In 1679, Newton returned to his work on celestial mechanics by
considering gravitation and its effect on the orbits of planets with reference to
Kepler's laws of planetary motion. This followed stimulation by a brief
exchange of letters in 1679-80 with Hooke, who had been appointed to manage
the Royal Society's correspondence, and who opened a correspondence
intended to elicit contributions from Newton to Royal Society transactions.
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Newton's reawakening interest in astronomical matters received further
stimulus by the appearance of a comet in the winter of 1680-1681, on which he
corresponded with John Flamsteed. After the exchanges with Hooke, Newton
worked out proof that the elliptical form of planetary orbits would result from a
centripetal force inversely proportional to the square of the radius vector.
Newton communicated his results to Edmond Halley and to the Royal Society
in De motu corporum in gyrum, a tract written on about nine sheets which was
copied into the Royal Society's Register Book in December 1684. This tract
contained the nucleus that Newton developed and expanded to form the
Principia.

The Principia was published on 5 July 1687 with encouragement and
financial help from Edmond Halley. In this work, Newton stated the three
universal laws of motion. Together, these laws describe the relationship
between any object, the forces acting upon it and the resulting motion, laying
the foundation for classical mechanics. They contributed to many advances
during the Industrial Revolution which soon followed and were not improved
upon for more than 200 years. Many of these advancements continue to be the
underpinnings of non-relativistic technologies in the modern world. He used the
Latin word gravitas (weight) for the effect that would become known as
gravity, and defined the law of universal gravitation.

In the same work, Newton presented a calculus-like method of
geometrical analysis using "first and last ratios”, gave the first analytical
determination (based on Boyle's law) of the speed of sound in air, inferred the
oblateness of Earth's spheroidal figure, accounted for the precession of the
equinoxes as a result of the Moon's gravitational attraction on the Earth's
oblateness, initiated the gravitational study of the irregularities in the motion of
the Moon, provided a theory for the determination of the orbits of comets, and
much more.

Newton made clear his heliocentric view of the Solar System—developed
in a somewhat modern way because already in the mid-1680s he recognised the
"deviation of the Sun" from the centre of gravity of the Solar System. For
Newton, it was not precisely the centre of the Sun or any other body that could
be considered at rest, but rather "the common centre of gravity of the Earth, the
Sun and all the Planets is to be esteem'd the Centre of the World", and this
centre of gravity "either is at rest or moves uniformly forward in a right line"
(Newton adopted the "at rest" alternative in view of common consent that the
centre, wherever it was, was at rest).

Newton's postulate of an invisible force able to act over vast distances led
to him being criticised for introducing "occult agencies" into science. Later, in
the second edition of the Principia (1713), Newton firmly rejected such
criticisms in a concluding General Scholium, writing that it was enough that the
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phenomena implied a gravitational attraction, as they did; but they did not so far
indicate its cause, and it was both unnecessary and improper to frame
hypotheses of things that were not implied by the phenomena. (Here Newton
used what became his famous expression "hypotheses non-fingo™). With the
Principia, Newton became internationally recognised. He acquired a circle of
admirers, including the Swiss-born mathematician Nicolas Fatio de Duillier.

Later life

In the 1690s, Newton wrote a number of religious tracts dealing with the
literal and symbolic interpretation of the Bible. A manuscript Newton sent to
John Locke in which he disputed the fidelity of 1 John 5:7 the Johannine
Comma and its fidelity to the original manuscripts of the New Testament,
remained unpublished until 1785.

Newton was also a member of the Parliament of England for Cambridge
University in 1689 and 1701, but according to some accounts his only
comments were to complain about a cold draught in the chamber and request
that the window be closed. He was, however, noted by Cambridge diarist
Abraham de la Pryme to have rebuked students who were frightening locals by
claiming that a house was haunted.

Newton moved to London to take up the post of warden of the Royal
Mint in 1696, a position that he had obtained through the patronage of Charles
Montagu, 1st Earl of Halifax, then Chancellor of the Exchequer. He took charge
of England's great recoining, trod on the toes of Lord Lucas, Governor of the
Tower, and secured the job of deputy comptroller of the temporary Chester
branch for Edmond Halley. Newton became perhaps the best-known Master of
the Mint upon the death of Thomas Neale in 1699, a position Newton held for
the last 30 years of his life. These appointments were intended as sinecures, but
Newton took them seriously. He retired from his Cambridge duties in 1701, and
exercised his authority to reform the currency and punish clippers and
counterfeiters.

As Warden, and afterwards as Master, of the Royal Mint, Newton
estimated that 20 percent of the coins taken in during the Great Recoinage of
1696 were counterfeit. Counterfeiting was high treason, punishable by the felon
being hanged, drawn and quartered. Despite this, convicting even the most
flagrant criminals could be extremely difficult, however, Newton proved equal
to the task.

Disguised as a habitué¢ of bars and taverns, he gathered much of that
evidence himself. For all the barriers placed to prosecution, and separating the
branches of government, English law still had ancient and formidable customs
of authority. Newton had himself made a justice of the peace in all the home
counties. A draft letter regarding the matter is included in Newton's personal
first edition of Philosophie Naturalis Principia Mathematica, which he must
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have been amending at the time. Then he conducted more than 100 cross-
examinations of witnesses, informers, and suspects between June 1698 and
Christmas 1699. Newton successfully prosecuted 28 coiners.

Newton was made President of the Royal Society in 1703 and an
associate of the French Académie des Sciences. In his position at the Royal
Society, Newton made an enemy of John Flamsteed, the Astronomer Royal, by
prematurely publishing Flamsteed's Historia Coelestis Britannica, which
Newton had used in his studies.

In April 1705, Queen Anne knighted Newton during a royal visit to
Trinity College, Cambridge. The knighthood is likely to have been motivated
by political considerations connected with the parliamentary election in May
1705, rather than any recognition of Newton's scientific work or services as
Master of the Mint. Newton was the second scientist to be knighted, after Sir
Francis Bacon.

As a result of a report written by Newton on 21 September 1717 to the
Lords Commissioners of His Majesty's Treasury, the bimetallic relationship
between gold coins and silver coins was changed by Royal proclamation on 22
December 1717, forbidding the exchange of gold guineas for more than 21
silver shillings. This inadvertently resulted in a silver shortage as silver coins
were used to pay for imports, while exports were paid for in gold, effectively
moving Britain from the silver standard to its first gold standard. It is a matter
of debate as to whether he intended to do this or not. It has been argued that
Newton conceived of his work at the Mint as a continuation of his alchemical
work.

Newton was invested in the South Sea Company and lost some £20,000
(US$3 million in 2003) when it collapsed in around 1720. Toward the end of
his life, Newton took up residence at Cranbury Park, near Winchester with his
niece and her husband, until his death in 1727. His half-niece, Catherine Barton
Conduitt, served as his hostess in social affairs at his house on Jermyn Street in
London; he was her "very loving Uncle", according to his letter to her when she
was recovering from smallpox.

Death

Newton died in his sleep in London on 20 March 1727 (OS 20 March
1726; NS 31 March 1727).[a] His body was buried in Westminster Abbey.
Voltaire may have been present at his funeral. A bachelor, he had divested
much of his estate to relatives during his last years, and died intestate. His
papers went to John Conduitt and Catherine Barton. After his death, Newton's
hair was examined and found to contain mercury, probably resulting from his
alchemical pursuits. Mercury poisoning could explain Newton's eccentricity in
late life.
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Leonhard Euler

Leonhard Euler (15 April 1707 —
18 September 1783) was a Swiss
mathematician, physicist, astronomer,
geographer, logician and engineer who
made important and influential
discoveries in  many branches of
mathematics, such as infinitesimal
calculus and graph theory, while also
! making pioneering contributions to
4 several branches such as topology and

analytic number theory. He also
~ introduced much of the modern
mathematical terminology and notation,
& particularly for mathema-tical analysis,
such as the notion of a mathematical
‘ function. He is also known for his work

in mechanics, fluid dynamics, optics, astronomy and music theory.

Euler was one of the most eminent mathematicians of the 18th century
and is held to be one of the greatest in history. He is also widely considered to
be the most prolific, as his collected works fill 92 volumes, more than anyone
else in the field. He spent most of his adult life in Saint Petersburg, Russia, and
in Berlin, then the capital of Prussia.

A statement attributed to Pierre-Simon Laplace expresses Euler's
influence on mathematics: "Read Euler, read Euler, he is the master of us all."

Early life

Leonhard Euler was born on 15 April 1707, in Basel, Switzerland, to Paul
[11 Euler, a pastor of the Reformed Church, and Marguerite née Brucker,
another pastor's daughter. He had two younger sisters, Anna Maria and Maria
Magdalena, and a younger brother, Johann Heinrich. Soon after the birth of
Leonhard, the Eulers moved from Basel to the town of Riehen, Switzerland,
where Leonhard spent most of his childhood. Paul was a friend of the Bernoulli
family; Johann Bernoulli, then regarded as Europe's foremost mathematician,
would eventually be the most important influence on young Leonhard.

Euler's formal education started in Basel, where he was sent to live with
his maternal grandmother. In 1720, at age thirteen, he enrolled at the University
of Basel. In 1723, he received a Master of Philosophy with a dissertation that
compared the philosophies of Descartes and Newton. During that time, he was
receiving Saturday afternoon lessons from Johann Bernoulli, who quickly
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discovered his new pupil's incredible talent for mathematics. At that time
Euler's main studies included theology, Greek and Hebrew at his father's urging
to become a pastor, but Bernoulli convinced his father that Leonhard was
destined to become a great mathematician.

In 1726, Euler completed a dissertation on the propagation of sound with
the title De Sono. At that time, he was unsuccessfully attempting to obtain a
position at the University of Basel. In 1727, he first entered the Paris Academy
Prize Problem competition; the problem that year was to find the best way to
place the masts on a ship. Pierre Bouguer, who became known as "the father of
naval architecture”, won and Euler took second place. Euler later won this
annual prize twelve times.

Career

Saint Petersburg

Around this time Johann Bernoulli's two sons, Daniel and Nicolaus, were
working at the Imperial Russian Academy of Sciences in Saint Petersburg. On
31 July 1726, Nicolaus died of appendicitis after spending less than a year in
Russia. When Daniel assumed his brother's position in the mathematics/physics
division, he recommended that the post in physiology that he had vacated be
filled by his friend Euler. In November 1726 Euler eagerly accepted the offer,
but delayed making the trip to Saint Petersburg while he unsuccessfully applied
for a physics professorship at the University of Basel.

Euler arrived in Saint Petersburg on 17 May 1727. He was promoted from
his junior post in the medical department of the academy to a position in the
mathematics department. He lodged with Daniel Bernoulli with whom he often
worked in close collaboration. Euler mastered Russian and settled into life in
Saint Petersburg. He also took on an additional job as a medic in the Russian
Navy.

The Academy at Saint Petersburg, established by Peter the Great, was
intended to improve education in Russia and to close the scientific gap with
Western Europe. As a result, it was made especially attractive to foreign
scholars like Euler. The academy possessed ample financial resources and a
comprehensive library drawn from the private libraries of Peter himself and of
the nobility. Very few students were enrolled in the academy to lessen the
faculty's teaching burden. The academy emphasized research and offered to its
faculty both the time and the freedom to pursue scientific questions.

The Academy's benefactress, Catherine |, who had continued the
progressive policies of her late husband, died on the day of Euler's arrival. The
Russian nobility then gained power upon the ascension of the twelve-year-old
Peter 11. The nobility, suspicious of the academy's foreign scientists, cut funding
and caused other difficulties for Euler and his colleagues.

211


https://en.wikipedia.org/wiki/Greek_language
https://en.wikipedia.org/wiki/Hebrew_language
https://en.wikipedia.org/wiki/Speed_of_sound
https://en.wikipedia.org/wiki/French_Academy_of_Sciences
https://en.wikipedia.org/wiki/Mast_(sailing)
https://en.wikipedia.org/wiki/Pierre_Bouguer
https://en.wikipedia.org/wiki/Daniel_Bernoulli
https://en.wikipedia.org/wiki/Nicolaus_II_Bernoulli
https://en.wikipedia.org/wiki/Russian_Academy_of_Sciences
https://en.wikipedia.org/wiki/Saint_Petersburg
https://en.wikipedia.org/wiki/Russian_Navy
https://en.wikipedia.org/wiki/Russian_Navy
https://en.wikipedia.org/wiki/Peter_I_of_Russia
https://en.wikipedia.org/wiki/Catherine_I_of_Russia
https://en.wikipedia.org/wiki/Peter_II_of_Russia

Conditions improved slightly after the death of Peter Il, and Euler swiftly
rose through the ranks in the academy and was made a professor of physics in
1731. Two years later, Daniel Bernoulli, who was fed up with the censorship
and hostility he faced at Saint Petersburg, left for Basel. Euler succeeded him as
the head of the mathematics department.

On 7 January 1734, he married Katharina Gsell (1707-1773), a daughter
of Georg Gsell, a painter from the Academy Gymnasium. The young couple
bought a house by the Neva River. Of their thirteen children, only five survived
childhood.

Berlin

Concerned about the continuing turmoil in Russia, Euler left St.
Petersburg on 19 June 1741 to take up a post at the Berlin Academy, which he
had been offered by Frederick the Great of Prussia. He lived for 25 years in
Berlin, where he wrote over 380 articles. In Berlin, he published the two works
for which he would become most renowned: the Introductio in analysin
infinitorum, a text on functions published in 1748, and the Institutiones calculi
differentialis, published in 1755 on differential calculus. In 1755, he was
elected a foreign member of the Royal Swedish Academy of Sciences.

In addition, Euler was asked to tutor Friederike Charlotte of Brandenburg-
Schwedt, the Princess of Anhalt-Dessau and Frederick's niece. Euler wrote over
200 letters to her in the early 1760s, which were later compiled into a best-
selling volume entitled Letters of Euler on different Subjects in Natural
Philosophy Addressed to a German Princess. This work contained Euler's
exposition on various subjects pertai-ning to physics and mathematics, as well
as offering valuable insights into Euler's personality and religious beliefs. This
book became more widely read than any of his mathematical works and was
published across Europe and in the United States. The popularity of the
"Letters" testifies to Euler's ability to communicate scientific matters effectively
to a lay audience, a rare ability for a dedicated research scientist.

Despite Euler's immense contribution to the Academy's prestige, he
eventually incurred the ire of Frederick and ended up having to leave Berlin.
The Prussian king had a large circle of intellectuals in his court, and he found
the mathematician unsophisticated and ill-informed on matters beyond numbers
and figures. Euler was a simple, devoutly religious man who never questioned
the existing social order or conventional beliefs, in many ways the polar
opposite of Voltaire, who enjoyed a high place of prestige at Frederick's court.
Euler was not a skilled debater and often made it a point to argue subjects that
he knew little about, making him the frequent target of Voltaire's wit. Frederick
also expressed disappointment with Euler's practical engineering abilities:

| wanted to have a water jet in my garden: Euler calculated the force of
the wheels necessary to raise the water to a reservoir, from where it should fall
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back through channels, finally spurting out in Sanssouci. My mill was carried
out geometrically and could not raise a mouthful of water closer than fifty paces
to the reservoir. Vanity of vanities! Vanity of geometry!

Personal life

Eyesight deterioration

Euler's eyesight worsened throughout his mathematical career. In 1738,
three years after nearly expiring from fever, he became almost blind in his right
eye, but Euler rather blamed the painstaking work on cartography he performed
for the St. Petersburg Academy for his condition. Euler's vision in that eye
worsened throughout his stay in Germany, to the extent that Frederick referred
to him as "Cyclops". Euler remarked on his loss of vision, "Now | will have
fewer distractions.” He later developed a cataract in his left eye, which was
discovered in 1766. Just a few weeks after its discovery, a failed surgical
restoration rendered him almost totally blind. He was 59 years old then.
However, his condition appeared to have little effect on his productivity, as he
compensated for it with his mental calculation skills and exceptional memory.
For example, Euler could repeat the Aeneid of Virgil from beginning to end
without hesitation, and for every page in the edition he could indicate which
line was the first and which the last. With the aid of his scribes, Euler's
productivity on many areas of study actually increased. He produced, on
average, one mathematical paper every week in the year 1775. The Eulers bore
a double name, Euler-Scholpi, the latter of which derives from schelb and
schief, signifying squint-eyed, cross-eyed, or crooked. This suggests that the
Eulers may have had a susceptibility to eye problems.

Return to Russia and death

In 1760, with the Seven Years' War raging, Euler's farm in
Charlottenburg was ransacked by advancing Russian troops. Upon learning of
this event, General lvan Petrovich Saltykov paid compensation for the damage
caused to Euler's estate, with Empress Elizabeth of Russia later adding a further
payment of 4000 roubles — an exorbitant amount at the time. The political
situation in Russia stabilized after Catherine the Great's accession to the throne,
so in 1766 Euler accepted an invitation to return to the St. Petersburg Academy.
His conditions were quite exorbitant — a 3000 ruble annual salary, a pension for
his wife, and the promise of high-ranking appointments for his sons. All of
these requests were granted. He spent the rest of his life in Russia. However, his
second stay in the country was marred by tragedy. A fire in St. Petersburg in
1771 cost him his home, and almost his life. In 1773, he lost his wife Katharina
after 40 years of marriage.

Three years after his wife's death, Euler married her half-sister, Salome
Abigail Gsell (1723-1794). This marriage lasted until his death. In 1782 he was
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elected a Foreign Honorary Member of the American Academy of Arts and
Sciences.

In St. Petersburg on 18 September 1783, after a lunch with his family,
Euler was discussing the newly discovered planet Uranus and its orbit with a
fellow academician Anders Johan Lexell, when he collapsed from a brain
hemorrhage. He died a few hours later. Jacob von Staehlin-Storcksburg wrote a
short obituary for the Russian Academy of Sciences and Russian mathematician
Nicolas Fuss, one of Euler's disciples, wrote a more detailed eulogy, which he
delivered at a memorial meeting. In his eulogy for the French Academy, French
mathematician and philosopher Marquis de Condorcet, wrote:

il cessa de calculer et de vivre — ... he ceased to calculate and to live.

Euler was buried next to Katharina at the Smolensk Lutheran Cemetery
on Goloday Island. In 1785, the Russian Academy of Sciences put a marble
bust of Leonhard Euler on a pedestal next to the Director's seat and, in 1837,
placed a headstone on Euler's grave. To commemorate the 250th anniversary of
Euler's birth, the headstone was moved in 1956, together with his remains, to
the 18th-century necropolis at the Alexander Nevsky Monastery.

Contributions to mathematics and physics

Euler worked in almost all areas of mathematics, such as geometry,
infinitesimal calculus, trigonometry, algebra, and number theory, as well as
continuum physics, lunar theory and other areas of physics. He is a seminal
figure in the history of mathematics; if printed, his works, many of which are of
fundamental interest, would occupy between 60 and 80 quarto volumes. Euler's
name is associated with a large number of topics.

Euler is the only mathematician to have two numbers named after him:
the important Euler's number in calculus, e, approximately equal to 2.71828,
and the Euler—Mascheroni constant y (gamma) sometimes referred to as just
"Euler's constant", approximately equal to 0.57721. It is not known whether v is
rational or irrational.

Mathematical notation

Euler introduced and popularized several notational conventions through
his numerous and widely circulated textbooks. Most notably, he introduced the
concept of a function and was the first to write f(x) to denote the function f
applied to the argument x. He also introduced the modern notation for the
trigonometric functions, the letter e for the base of the natural logarithm (now
also known as Euler's number), the Greek letter £ for summations and the letter
I to denote the imaginary unit. The use of the Greek letter « to denote the ratio
of a circle's circumference to its diameter was also popularized by Euler,
although it originated with Welsh mathematician William Jones.
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Jean-Baptiste le Rond d'Alembert

Jean-Baptiste le Rond d'Alembert (16
November 1717 — 29 October 1783) was a
French mathematician, mechanician, physicist,
philosopher, and music theorist. Until 1759 he
was, together with Denis Diderot, a co-editor
of the Encyclopédie. D'Alembert's formula for
obtaining solutions to the wave equation is
named after him. The wave equation is
sometimes referred to as d'Alembert's
equation, and the Fundamental theorem of
algebra is named after d'Alembert in French.

Early years

Born in Paris, d'Alembert was the
natural son of the writer Claudine Guérin de
Tencin and the chevalier Louis-Camus Destouches, an artillery officer.
Destouches was abroad at the time of d'Alembert's birth. Days after birth his
mother left him on the steps of the Saint-Jean-le-Rond de Paris [fr] church.
According to custom, he was named after the patron saint of the church.
D'Alembert was placed in an orphanage for foundling children, but his father
found him and placed him with the wife of a glazier, Madame Rousseau, with
whom he lived for nearly 50 years. She gave him little encouragement. When
he told her of some discovery he had made or something he had written she
generally replied,

You will never be anything but a philosopher - and what is that but an ass
who plagues himself all his life, that he may be talked about after he is dead.

Destouches secretly paid for the education of Jean le Rond, but did not
want his paternity officially recognised.

Studies and adult life

D'Alembert first attended a private school. The chevalier Destouches left
d'Alembert an annuity of 1200 livres on his death in 1726. Under the influence
of the Destouches family, at the age of 12 d'Alembert entered the Jansenist
Collége des Quatre-Nations (the institution was also known under the name
"College Mazarin"). Here he studied philosophy, law, and the arts, graduating
as baccalauréat en arts in 1735.

In his later life, d'Alembert scorned the Cartesian principles he had been
taught by the Jansenists: "physical promotion, innate ideas and the vortices".
The Jansenists steered d'Alembert toward an ecclesiastical career, attempting to
deter him from pursuits such as poetry and mathematics. Theology was,
however, "rather unsubstantial fodder" for d'Alembert. He entered law school
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for two years, and was nominated avocat in 1738.

He was also interested in medicine and mathematics. Jean was first
registered under the name "Daremberg", but later changed it to "d'Alembert".
The name "d'Alembert" was proposed by Frederick the Great of Prussia for a
suspected (but non-existent) moon of Venus.

Career

In July 1739 he made his first contribution to the field of mathematics,
pointing out the errors he had detected in Analyse démontrée (published 1708
by Charles-René Reynaud) in a communication addressed to the Académie des
Sciences. At the time L'analyse démontrée was a standard work, which
d'Alembert himself had used to study the foundations of mathematics.
D'Alembert was also a Latin scholar of some note and worked in the latter part
of his life on a superb translation of Tacitus, for which he received wide praise
including that of Denis Diderot.

In 1740, he submitted his second scientific work from the field of fluid
mechanics Mémoire sur la réfraction des corps solides, which was recognised
by Clairaut. In this work d'Alembert theoretically explained refraction.

In 1741, after several failed attempts, d'Alembert was elected into the
Académie des Sciences. He was later elected to the Berlin Academy in 1746
and a Fellow of the Royal Society in 1748.

In 1743, he published his most famous work, Traité de dynamique, in
which he developed his own laws of motion.

When the Encyclopédie was organised in the late 1740s, d'Alembert was
engaged as co-editor (for mathematics and science) with Diderot, and served
until a series of crises temporarily interrupted the publication in 1757. He
authored over a thousand articles for it, including the famous Preliminary
Discourse. D'Alembert "abandoned the foundation of Materialism” when he
"doubted whether there exists outside us anything corresponding to what we
suppose we see." In this way, d'Alembert agreed with the ldealist Berkeley and
anticipated the transcendental idealism of Kant.[citation needed]

In 1752, he wrote about what is now called D'Alembert's paradox: that the
drag on a body immersed in an inviscid, incompressible fluid is zero.

In 1754, d'Alembert was elected a member of the Académie des sciences,
of which he became Permanent Secretary on 9 April 1772.

In 1757, an article by d'Alembert in the seventh volume of the
Encyclopedia suggested that the Geneva clergymen had moved from Calvinism
to pure Socinianism, basing this on information provided by Voltaire. The
Pastors of Geneva were indignant, and appointed a committee to answer these
charges. Under pressure from Jacob Vernes, Jean-Jacques Rousseau and others,
d'Alembert eventually made the excuse that he considered anyone who did not
accept the Church of Rome to be a Socinianist, and that was all he meant, and
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he abstained from further work on the encyclopaedia following his response to
the critique.

He was elected a Foreign Honorary Member of the American Academy of
Arts and Sciences in 1781.

Legacy

In France, the fundamental theorem of algebra is known as the
d'Alembert/Gauss theorem, as an error in d'Alembert's proof was caught by
Gauss.

He also created his ratio test, a test to see if a series converges.

The D'Alembert operator, which first arose in D'Alembert's analysis of
vibrating strings, plays an important role in modern theoretical physics.

While he made great strides in mathematics and physics, d'Alembert is
also famously known for incorrectly arguing in Croix ou Pile that the
probability of a coin landing heads increased for every time that it came up
tails. In gambling, the strategy of decreasing one's bet the more one wins and
increasing one's bet the more one loses is therefore called the D'Alembert
system, a type of martingale.

Thomas Young

Thomas Young (13 June 1773 — 10
May 1829) was a British polymath who made
notable contributions to the fields of vision,
light, solid mechanics, energy, physiology,
language, musical harmony, and Egyptology.
He "made a number of original and insightful
innovations" in the decipherment of Egyptian
hieroglyphs (specifically the Rosetta Stone)
before Jean-Frangois Champollion eventually
expanded on his work.

Young has been described as "The Last
Man Who Knew Everything". His work
informed that later done by William Herschel,
Hermann von Helmholtz, James Clerk
Maxwell, and Albert Einstein. Young is credited with establishing the wave
theory of light, in contrast to the particle theory of Isaac Newton. Young's work
was subsequently supported by the work of Augustin-Jean Fresnel.

Biography

Young belonged to a Quaker family of Milverton, Somerset, where he
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was born in 1773, the eldest of ten children. At the age of fourteen Young had
learned Greek and Latin and was acquainted with French, Italian, Hebrew,
German, Aramaic, Syriac, Samaritan, Arabic, Persian, Turkish and Amharic.

Young began to study medicine in London at St Bartholomew's Hospital
in 1792, moved to the University of Edinburgh Medical School in 1794, and a
year later went to Gottingen, Lower Saxony, Germany, where he obtained the
degree of doctor of medicine in 1796 from the University of Gottingen. In 1797
he entered Emmanuel College, Cambridge. In the same year he inherited the
estate of his grand-uncle, Richard Brocklesby, which made him financially
independent, and in 1799 he established himself as a physician at 48 Welbeck
Street, London (now recorded with a blue plague). Young published many of
his first academic articles anonymously to protect his reputation as a physician.

In 1801, Young was appointed professor of natural philosophy (mainly
physics) at the Royal Institution. In two years, he delivered 91 lectures. In 1802,
he was appointed foreign secretary of the Royal Society, of which he had been
elected a fellow in 1794. He resigned his professorship in 1803, fearing that its
duties would interfere with his medical practice. His lectures were published in
1807 in the Course of Lectures on Natural Philosophy and contain a number of
anticipations of later theories.

In 1811, Young became physician to St George's Hospital, and in 1814 he
served on a committee appointed to consider the dangers involved in the
general introduction of gas for lighting into London. In 1816 he was secretary
of a commission charged with ascertaining the precise length of the second's or
seconds pendulum (the length of a pendulum whose period is exactly 2
seconds), and in 1818 he became secretary to the Board of Longitude and
superintendent of the HM Nautical Almanac Office.

Young was elected a Foreign Honorary Member of the American
Academy of Arts and Sciences in 1822. A few years before his death he became
interested in life insurance, and in 1827 he was chosen one of the eight foreign
associates of the French Academy of Sciences. In 1828, he was elected a
foreign member of the Royal Swedish Academy of Sciences.

In 1804, Young married Eliza Maxwell. They had no children.

Research

Wave theory of light

In Young's own judgment, of his many achievements the most important
was to establish the wave theory of light. To do so, he had to overcome the
century-old view, expressed in the venerable Newton's Opticks, that light is a
particle. Nevertheless, in the early 19th century Young put forth a number of
theoretical reasons supporting the wave theory of light, and he developed two
enduring demonstrations to support this viewpoint. With the ripple tank he
demonstrated the idea of interference in the context of water waves. With
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Young's interference experiment, or double-slit experiment, he demonstrated
interference in the context of light as a wave.

Young, speaking on 24 November 1803, to the Royal Society of London,
began his now-classic description of the historic experiment:

The experiments | am about to relate ... may be repeated with great ease,
whenever the sun shines, and without any other apparatus than is at hand to
every one.

In his subsequent paper, titled Experiments and Calculations Relative to
Physical Optics (1804), Young describes an experiment in which he placed a
card measuring approximately 0,85 millimetres (0,033 in) in a beam of light
from a single opening in a window and observed the fringes of colour in the
shadow and to the sides of the card. He observed that placing another card in
front or behind the narrow strip so as to prevent the light beam from striking
one of its edges caused the fringes to disappear. This supported the contention
that light is composed of waves.

Young performed and analysed a number of experiments, including
interference of light from reflection off nearby pairs of micrometre grooves,
from reflection off thin films of soap and oil, and from Newton's rings. He also
performed two important diffraction experiments using fibres and long narrow
strips. In his Course of Lectures on Natural Philosophy and the Mechanical
Arts (1807) he gives Grimaldi credit for first observing the fringes in the
shadow of an object placed in a beam of light. Within ten years, much of
Young's work was reproduced and then extended by Augustin-Jean Fresnel.

Young's modulus

Young described the characterization of elasticity that came to be known
as Young's modulus, denoted as E, in 1807, and further described it in his
Course of Lectures on Natural Philosophy and the Mechanical Arts. However,
the first use of the concept of Young's modulus in experiments was by
Giordano Riccati in 1782 — predating Young by 25 years. Furthermore, the idea
can be traced to a paper by Leonhard Euler published in 1727, some 80 years
before Thomas Young's 1807 paper.

The Young's modulus relates the stress (pressure) in a body to its
associated strain (change in length as a ratio of the original length); that is,
stress = E X strain, for a uniaxially loaded specimen. Young's modulus is
independent of the component under investigation; that is, it is an inherent
material property (the term modulus refers to an inherent material property).
Young's Modulus allowed, for the first time, prediction of the strain in a
component subject to a known stress (and vice versa). Prior to Young's
contribution, engineers were required to apply Hooke's F=kx relationship to
identify the deformation (x) of a body subject to a known load (F), where the
constant (k) is a function of both the geometry and material under
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consideration. Finding k required physical testing for any new component, as
the F=kx relationship is a function of both geometry and material. Young's
Modulus depends only on the material, not its geometry, thus allowing a
revolution in engineering strategies.

Young's problems in sometimes not expressing himself clearly were
shown by his own definition of the modulus: "The modulus of the elasticity of
any substance is a column of the same substance, capable of producing a
pressure on its base which is to the weight causing a certain degree of
compression as the length of the substance is to the diminution of its length."”
When this explanation was put to the Lords of the Admiralty, their clerk wrote
to Young saying "Though science is much respected by their Lordships and
your paper is much esteemed, it is too learned ... in short it is not understood."

Vision and colour theory

Young has also been called the founder of physiological optics. In 1793
he explained the mode in which the eye accommodates itself to vision at
different distances as depending on change of the curvature of the crystalline
lens; in 1801 he was the first to describe astigmatism; and in his lectures he
presented the hypothesis, afterwards developed by Hermann von Helmholtz,
(the Young-Helmholtz theory), that colour perception depends on the presence
in the retina of three kinds of nerve fibres. This foreshadowed the modern
understanding of colour vision, in particular the finding that the eye does indeed
have three colour receptors which are sensitive to different wavelength ranges.

Young-Laplace equation

In 1804, Young developed the theory of capillary phenomena on the
principle of surface tension. He also observed the constancy of the angle of
contact of a liquid surface with a solid, and showed how from these two
principles to deduce the phenomena of capillary action. In 1805, Pierre-Simon
Laplace, the French philosopher, discovered the significance of meniscus radii
with respect to capillary action.

In 1830, Carl Friedrich Gauss, the German mathematician, unified the
work of these two scientists to derive the Young-Laplace equation, the formula
that describes the capillary pressure difference sustained across the interface
between two static fluids.

Young was the first to define the term "energy" in the modern sense.

Young's equation and Young-Dupré equation

Young's equation describes the contact angle of a liquid drop on a plane
solid surface as a function of the surface free energy, the interfacial free energy
and the surface tension of the liquid. Young's equation was developed further
some 60 years later by Dupré to account for thermodynamic effects, and this is
known as the Young-Dupré equation.
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Siméon Denis Poisson

Baron Siméon Denis Poisson (21 June
1781 — 25 April 1840) was a French
mathematician, engineer, and physicist who
made many scientific advances.

Biography

Poisson was born in Pithiviers, Loiret
district in France, the son of Siméon Poisson,
., an officer in the French army.

In 1798, he entered the Ecole
Polytechnique in Paris as first in his year, and
immediately began to attract the notice of the
professors of the school, who left him free to

wiowt.” i make his own decisions as to what he woul_d
= study. In 1800, less than two years after his
entry, he published two memoirs, one on Etienne Bézout's method of
elimination, the other on the number of integrals of a finite difference equation.
The latter was examined by Sylvestre-Frangois Lacroix and Adrien-Marie
Legendre, who recommended that it should be published in the Recueil des
savants étrangers, an unprecedented honor for a youth of eighteen. This success
at once procured entry for Poisson into scientific circles. Joseph Louis
Lagrange, whose lectures on the theory of functions he attended at the Ecole
Polytechnique, recognized his talent early on, and became his friend.
Meanwhile, Pierre-Simon Laplace, in whose footsteps Poisson followed,
regarded him almost as his son. The rest of his career, till his death in Sceaux
near Paris, was nearly occupied by the composition and publication of his many
works and in fulfilling the duties of the numerous educational positions to
which he was successively appointed.

Immediately after finishing his studies at the Ecole Polytechnique, he was
appointed répétiteur (teaching assistant) there, a position which he had occupied
as an amateur while still a pupil in the school; for his schoolmates had made a
custom of visiting him in his room after an unusually difficult lecture to hear
him repeat and explain it. He was made deputy professor (professeur suppléant)
in 1802, and, in 1806 full professor succeeding Jean Baptiste Joseph Fourier,
whom Napoleon had sent to Grenoble. In 1808 he became astronomer to the
Bureau des Longitudes; and when the Faculté des sciences de Paris [fr] was
instituted in 1809 he was appointed a professor of rational mechanics
(professeur de mécanique rationelle). He went on to become a member of the
Institute in 1812, examiner at the military school (Ecole Militaire) at Saint-Cyr
in 1815, graduation examiner at the Ecole Polytechnique in 1816, councillor of
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the university in 1820, and geometer to the Bureau des Longitudes succeeding
Pierre-Simon Laplace in 1827.

In 1817, he married Nancy de Bardi and with her, he had four children.
His father, whose early experiences had led him to hate aristocrats, bred him in
the stern creed of the First Republic. Throughout the Revolution, the Empire,
and the following restoration, Poisson was not interested in politics,
concentrating on mathematics. He was appointed to the dignity of baron in
1821; but he neither took out the diploma nor used the title. In March 1818, he
was elected a Fellow of the Royal Society, in 1822 a Foreign Honorary Member
of the American Academy of Arts and Sciences, and in 1823 a foreign member
of the Royal Swedish Academy of Sciences. The revolution of July 1830
threatened him with the loss of all his honours; but this disgrace to the
government of Louis-Philippe was adroitly averted by Frangois Jean
Dominique Arago, who, while his "revocation™ was being plotted by the council
of ministers, procured him an invitation to dine at the Palais-Royal, where he
was openly and effusively received by the citizen king, who "remembered" him.
After this, of course, his degradation was impossible, and seven years later he
was made a peer of France, not for political reasons, but as a representative of
French science.

As a teacher of mathematics Poisson is said to have been extraordinarily
successful, as might have been expected from his early promise as a répétiteur
at the Ecole Polytechnique. As a scientific worker, his productivity has rarely if
ever been equaled. Notwithstanding his many official duties, he found time to
publish more than three hundred works, several of them extensive treatises, and
many of them memoirs dealing with the most abstruse branches of pure
mathematics, applied mathematics, mathematical physics, and rational
mechanics. (Arago attributed to him the quote, "Life is good for only two
things: doing mathematics and teaching it.")

A list of Poisson's works, drawn up by himself, is given at the end of
Arago's biography. All that is possible is a brief mention of the more important
ones. It was in the application of mathematics to physics that his greatest
services to science were performed. Perhaps the most original, and certainly the
most permanent in their influence, were his memoirs on the theory of electricity
and magnetism, which virtually created a new branch of mathematical physics.

Next (or in the opinion of some, first) in importance stand the memoirs on
celestial mechanics, in which he proved himself a worthy successor to Pierre-
Simon Laplace. The most important of these are his memoirs Sur les inégalités
séculaires des moyens mouvements des planetes, Sur la variation des constantes
arbitraires dans les questions de mécanique, both published in the Journal of the
Ecole Polytechnique (1809); Sur la libration de la lune, in Connaissance des
temps (1821), etc.; and Sur le mouvement de la terre autour de son centre de
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gravité, in Mémoires de 1'Académie (1827), etc. In the first of these memoirs,
Poisson discusses the famous question of the stability of the planetary orbits,
which had already been settled by Lagrange to the first degree of approximation
for the disturbing forces. Poisson showed that the result could be extended to a
second approximation, and thus made an important advance in planetary theory.
The memoir is remarkable inasmuch as it roused Lagrange, after an interval of
Inactivity, to compose in his old age one of the greatest of his memoirs, entitled
Sur la théorie des variations des ¢léments des planetes, et en particulier des
variations des grands axes de leurs orbites. So highly did he think of Poisson's
memoir that he made a copy of it with his own hand, which was found among
his papers after his death. Poisson made important contributions to the theory of
attraction.

His is one of the 72 names inscribed on the Eiffel Tower.

Mathematics

In pure mathematics, his most important works were his series of
memoirs on definite integrals and his discussion of Fourier series, the latter
paving the way for the classic researches of Peter Gustav Lejeune Dirichlet and
Bernhard Riemann on the same subject; these are to be found in the Journal of
the Ecole Polytechnique from 1813 to 1823, and in the Memoirs de I'Académie
for 1823. He also studied Fourier integrals. We may also mention his essay on
the calculus of variations (Mem. de l'acad., 1833), and his memoirs on the
probability of the mean results of observations (Connaiss. d. temps, 1827, &c).
The Poisson distribution in probability theory is named after him.

Mechanics

In his Trait¢ de mécanique (2 vols. 8vo, 1811 and 1833), which was
written in the style of Laplace and Lagrange and was long a standard work, he
showed many novelties such as an explicit usage of momenta:

oT
o(a)
ot
which influenced the work of Hamilton and Jacobi. A translation of Poisson's
Treatise on Mechanics was published in London in 1842.
Other works
Besides his many memoirs, Poisson published a number of treatises, most
of which were intended to form part of a great work on mathematical physics,
which he did not live to complete. Among these may be mentioned:
Nouvelle théorie de I'action capillaire (4to, 1831);

Théorie mathématique de la chaleur (4to, 1835);
Supplement to the same (4to, 1837);

p; =
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Recherches sur la probabilité des jugements en matieres criminelles et
matiére civile (4to, 1837), all published at Paris.

In 1815 Poisson studied integrations along paths in the complex plane. In
1831 he derived the Navier—Stokes equations independently of Claude-Louis
Navier.

Dmitrii lvanovich Zhuravskii

Dmitrii Ivanovich Zhuravskii (Dec. 17
(29), 1821 — Nov. 18 (30), 1891) (1821-1891)
was a Russian engineer who was one of the
pioneers of bridge construction and structural
mechanics in Russia.

Zhuravskii attended the Nezhin lycée
and entered the St. Petersburg Institute of the
Corps of Railroad Engineers where he was
h Influenced by the academician Mikhail
) Ostrogradsky. He graduated from the institute
as first in his class in 1842.

In the beginning of his career he took
part in the surveying and planning of the
Moscow — Saint Petersburg Railway. In 1857-
58 he led the reconstruction of the Peter and Paul Cathedral in Saint Petersburg.
In 1871-76 he took part in the reconstruction of the Mariinsky Canal System.

He was awarded the prestigious Demidov Prize in 1855 by the Russian
Academy of Sciences.

The Zhuravskii Shear Stress formula is named after him (derived it in
1855):

V.Q
T:—l

| -t

where
vV — total shear force at the location in question;
Q — statical moment of area;
t —thickness in the material perpendicular to the shear;
I —moment of Inertia of the entire cross sectional area.
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Christian Otto Mohr

Christian Otto Mohr (8 October
1835 — 2 October 1918) was a German civil
engineer.

He was born on 8 October 1835 to a
landowning family in Wesselburen in the
Holstein region. At the age of 16 attended
the Polytechnic School in Hannover.

Starting in 1855, his early working
life was spent in railroad engineering for
the Hanover and Oldenburg state railways,
designing some famous bridges and making
some of the earliest uses of steel trusses.

Even during his early railway years,
Mohr had developed an interest in the
theories of mechanics and the strength of
materials. In 1867, he became professor of mechanics at Stuttgart Polytechnic,
and in 1873 at Dresden Polytechnic. Mohr had a direct and unpretentious
lecturing style that was popular with his students. In addition to a lone textbook,
Mohr published many research papers on the theory of structures and strength
of materials.

In 1874, Mohr formalised the idea of a statically indeterminate structure.

Mohr was an enthusiast for graphical tools and developed the method, for
visually representing stress in three dimensions, previously proposed by Carl
Culmann. In 1882, he famously developed the graphical method for analysing
stress known as Mohr's circle and used it to propose an early theory of strength
based on shear stress. He also developed the Williot-Mohr diagram for truss
displacements and the Maxwell-Mohr method for analysing statically
indeterminate structures, it can also be used to determine the displacement of
truss nodes and forces acting on each member.

The Maxwell-Mohr method is also referred to as the virtual force method
for redundant trusses.

He retired in 1900, yet continued his scientific work in Dresden until his
death on 2 October 1918.
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Stepan Prokofyevich Timoshenko

Stepan Prokofyevich Timoshenko
(December 23, 1878 — May 29, 1972), was a
Ukrainian, Russian and later, an American
engineer and academician. He is considered to be
the father of modern engineering mechanics. An
inventor and one of the pioneering mechanical
engineers at the St. Petersburg Polytechnic
University. A founding member of the Ukrainian
Academy of Sciences, Timoshenko wrote
seminal works in the areas of engineering
mechanics, elasticity and strength of materials,
many of which are still widely used today.
Having started his scientific career in the

Russian Empire, Timoshenko emigrated to the
Kingdom of Serbs, Croats and Slovenes during the Russian Civil War and then
to the United States.

Biography

Timoshenko was born in the village of Shpotovka in the Chernigov
Governorate which at that time was a territory of the Russian Empire (today in
Konotop Raion, Ukraine). He studied at a Realschule in Romny, Poltava
Governorate (now in Sumy Oblast) from 1889 to 1896. In Romny his
schoolmate and friend was future famous semiconductor physicist Abram loffe.
Timoshenko continued his education towards a university degree at the St
Petersburg Institute of engineers Ways of Communication. After graduating in
1901, he stayed on teaching in this same institution from 1901 to 1903 and then
worked at the Saint Petersburg Polytechnical Institute under Viktor Kirpichov
1903-1906. In 1905 he was sent for one year to the University of Gottingen
where he worked under Ludwig Prandtl.

In the fall of 1906 he was appointed to the Chair of Strengths of Materials
at the Kyiv Polytechnic Institute. The return to his native Ukraine turned out to
be an important part of his career and also influenced his future personal life.
From 1907 to 1911 as a professor at the Polytechnic Institute he did research in
the earlier variant of the Finite Element Method of elastic calculations, the so-
called Rayleigh method. During those years he also pioneered work on
buckling, and published the first version of his famous Strength of Materials
textbook. He was elected dean of the Division of Structural Engineering in
19009.
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In 1911 he signed a protest against Minister for Education Kasso and was
fired from the Kiev Polytechnic Institute. In 1911 he was awarded the
D.I. Zhuravski prize of the St.Petersburg Ways of Communication Institute that
helped him survive after losing his job. He went to St Petersburg where he
worked as a lecturer and then a Professor in the Electrotechnical Institute and
the St Petersburg Institute of the Railways (1911-1917). During that time he
developed the theory of elasticity and the theory of beam deflection, and
continued to study buckling. In 1918 he returned to Kiev and assisted Vladimir
Vernadsky in establishing the Ukrainian Academy of Sciences — the oldest
academy among the Soviet republics other than Russia. In 1918-1920
Timoshenko headed the newly established Institute of Mechanics of the
Ukrainian Academy of Sciences, which today carries his name. Younger
brother of Stephen, Serhiy Tymoshenko, was a Ukrainian Minister of
Communication and participated in the Second Winter Campaign against the
Soviet regime.

After the Armed Forces of South Russia of general Denikin had taken
Kiev in 1919, Timoshenko moved from Kiev to Rostov-on-Don. After travel
via Novorossiysk, Crimea and Constantinople to the Kingdom of Serbs, Croats
and Slovenes, he arrived in Zagreb, where he got professorship at the Zagreb
Polytechnic Institute. In 1920, during the brief liberation of Kiev from
Bolsheviks, Timoshenko travelled to the city, reunited with his family and
returned with his family to Zagreb.

He is remembered for delivering lectures in Russian while using as many
words in Croatian as he could; the students were able to understand him well.

United States

In 1922 Timoshenko moved to the United States where he worked for the
Westinghouse Electric Corporation from 1923 to 1927, after which he became a
faculty professor in the University of Michigan where he created the first
bachelor's and doctoral programs in engineering mechanics. His textbooks have
been published in 36 languages. His first textbooks and papers were written in
Russian; later in his life, he published mostly in English. In 1928 he was an
Invited Speaker of the ICM in Bologna. From 1936 onward he was a professor
at Stanford University.

In 1957 ASME established a medal named after Stephen Timoshenko; he
became its first recipient. The Timoshenko Medal honors Stephen P.
Timoshenko as the world-renowned authority in the field of mechanical
engineering and it commemorates his contributions as author and teacher. The
Timoshenko Medal is given annually for distinguished contributions in applied
mechanics.

In addition to his textbooks, Timoshenko wrote Engineering Education in
Russia and an autobiography, As I Remember, the latter first published in
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Russian in 1963 with its English translation appearing in 1968.

In 1960 he moved to Wuppertal (Western Germany) to be with his
daughter. He died in 1972 and his ashes are buried in Alta Mesa Memorial
Park, Palo Alto, California. In 1963 Timoshenko wrote a book As | Remember
in the Russian language. It was translated into English in 1968 by sponsorship
of the Stanford University. Jacob Pieter den Hartog (1901-1989), who was
Timoshenko's co-worker in early 1920s at Westinghouse, wrote a review in the
magazine Science stating that "... Between 1922 and 1962 he [S.P.
Timoshenko] wrote a dozen books on all aspects of engineering mechanics,
which are in their third or fourth U.S. edition and which have been translated
into half a dozen foreign languages each, so that his name as an author and
scholar is known to nearly every mechanical and civil engineer in the entire
world. Then, Den Hartog stressed: "There is no question that Timoshenko did
much for America. It is an equally obvious truth that America did much for
Timoshenko, as it did for millions of other immigrants for all over the world.
However, our autobiographer has never admitted as much to his associates and
pupils who, like myself often have been pained by his casual statements in
conversation. That pain is not diminished by reading these statements on the
printed page and one would have wished for a little less acid and a little more
human kindness."

It should be emphasized that the celebrated theory that takes into account
shear deformation and rotary inertia was developed by Timoshenko in
collaboration with Paul Ehrenfest (1880-1933), famous Austrian-Dutch
physicist, as the recent handbook by Elishakoff shows, and thus, should be
referred to as Timoshenko-Ehrenfest beam theory. This fact was testified by
Timoshenko. The interrelation between Timoshenko-Ehrenfest beam and Euler-
Bernoulli beam theories was investigated in the book by Wang, Reddy and Lee.
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Heorhij Stepanowytsch Pyssarenko

Heorhij Stepanowytsch Pyssarenko (*
30. Oktoberjul./ 12. November 1910greg. in
Poltawa, Russisches Kaiserreich; 9. Januar
2001 in Kiew, Ukraine) war ein sowjetisch-
ukrainischer Bauingenieur.

Biografie

Pyssarenko  stammte aus  einer
Kosakenfamilie und studierte Schiffbau am
Industrie-Institut in Gorki mit dem Abschluss
1936. Ab 1939 war er zu weiteren Studien
am Polytechnikum in Kiew, an dem er 1948
promoviert wurde. Aullerdem war er ab 1939
am Institut fir Baustatik der Akademie der
Wissenschaften der Ukrainischen SSR, das er
1966 bis 1988 leitete. 1952 bis 1984 leitete er die Abteilung Festigkeitslehre am
Polytechnikum in Kiew.

Er griindete eine international bekannte Schule der Festigkeitslehre,
insbesondere forschte er seit seiner Dissertation liber Festigkeit unter extremen
Bedingungen.

1957 wurde er korrespondierendes und 1964 volles Mitglied der
Ukrainischen Akademie der Wissenschaften. 1962 bis 1966 war er deren
Generalsekretir und 1970 bis 1978 deren Vizeprisident. Im wurde der
Leninorden verliehen, 1969 und 1980 erhielt er den Staatspreis der Ukraine und
1982 den sowjetischen Staatspreis.
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MAIN SYMBOLS OF STRENGTH OF MATERIALS

Terms

Symbols

Measurements

Cuma
Force
longitudinal (axial, normal) force,
shear (cutting) force, critical force

FIQ’N

MomeHT
Moment
bending moment, torque moment

Nm

AOCOIIOTHE BUIOBXKEHHS

Total longitudinal elongation
of the rod (absolute longitudinal
deformation, linear elongation,
linear deformation)

Al

Bignocna aedopmariist
Relative longitudinal
deformation

Moayns npykHocTi [-ro pomy
Modulus of elasticity (modulus of
elasticity of the first kind, Young’s
modulus, normal elastic modulus,
longitudinal elastic modulus)

MPa

Monyns npyxHocTi 1I-ro pony
The shear modulus or modulus of
elasticity of the second type,
characterizing the material rigidity

MPa

Koedimient Ilyaccona
Mechanical characteristic of the
material (coefficient of transverse
deformation or Poisson)

[ToTyXHICTB
Power

kW

JliniliHe nepeMilleHHs
Linear displacement

KyToBe nepeminieHHs
Angular displacement
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Terms

Symbols

Measurements

Hanpyxenns:
Stresses:

HOpPMaJIbHI
the normal stresses

(o3

MPa

JIOTHYHI
the tangential
(shear) stresses

MPa

Oy CTUMI
the allowable
stresses

MPa

['panuni:
Limits
(strength):

MIIIHOCTI
the tensile limit

MPa

MPY>KHOCTI
of elasticity limit

MPa

POTIOPIIITHOCTI
of proportionality
limit

MPa

TEKYy4OCTI
the yield limit

MPa

['eomeTpuyHi
XapaKTEPUCTUKH
MOTIEPEYHHX
MEepPETHHIB

Geometric
characteristics
of transverse
sections

IIJ10I11a
the area

CTaTUYHUUA MOMEHT
TLIOIIII

static moments of
the section area

OCHOBHUH MOMEHT
1HepIii

the axial moment of
inertia

HOJISIpHI/IfI MOMCHT
1HepIii

the polar moment of
inertia

OCHOBHII MOMEHT
OIopy

the axial moment of
resistance

MOJIIPHUN MOMEHT
(0)1(0)0)%

the polar moment of
resistance
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UKRAINIAN-ENGLISH VOCABULARY
OF BASIC TERMS

OCHOBHI I[IOHATTA OIIOPY MATEPIAJIIB
BASIC CONCEPTS OF STRENGTH OF MATERIALS

omip MaTepiajiB

strength of materials

TEOPist MIITHOCTI

theory of strength

npuInyIieHHs (T1InoTe3n)

assumption (hypotheses)

rinores3a npo CyIUIbHICTh MaTepiary

hypothesis of the material
continuity

rinoTe3a npo OJHOPIIHICTh Ta
130TPONHICTh

hypothesis of homogeneity and
isotropy

rinoTe3a Mnpo iieanbHy IPY>KHICTh Ta
MIPUPOJIHY HE HAIIPY>KEHICTh

hypothesis of the ideal elasticity
and natural tension of the material

Marepiaity

mIoIia — |area

MILHICTh — | strength
KOPCTKICTh, JOCTATHSI )KOPCTKICTh — | rigidity, sufficient rigidity
CTIHKICTB — | durability

CTPWKEHb (CTEPIKCHB) — |rod

TPSIMUI CTPYKEHB — | direct rod
CTPWKHEBA CHCTEMa — | rod system
TJTaCTHHA — | plate

000I0HKa — | shell

MacuB (MacHBHE TiJIO) — | solid (massive body)
HABAHTAKEHHS — | load

30BHIIIIHE HABAHTAKCHHS — | external load
CTaTUYHE HaBaHTAKCHHS — | static load
IWHAMIYHE HABAHTAKCHHS — | dynamic load

PIBHOMIPHO PO3MOALICHE
HABaHTa)KCHHS

evenly distributed load

HaBaHTAXEHHSI PO3MOJIICHI Ha JIIHIT

distributed on line load

IHTEHCUBHICTh PO3MOJIJICHOTO
HaBaHTAKEHHS

intensity of the distributed load

CUJIOBHM (haKTop

force factor

BHYTPIIIHIN CHIIOBUH (hakTOp

internal force factor

BHYTPILIHE 3yCUILIA

internal force

30CCPCAKCHA CHJIa

concentrated force

PIBHOMIMHUMT

equivalent
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KpUTHYHA CHUJId

critical force

cuia iHepIi

inertia force

CUjla TUCKY

pressure force

MOMCHT

moment

pPO3paxyHKOBa CXeMa

calculation scheme

nedopmarris (mepeMineHHs)

deformation (displacement)

JiHiMHA Aedopmarltis (mepeMileHHs)

linear deformation (displacement)

BIJIHOCHA Jiepopmartist

relative deformation

BIJIHOCHA 3MiHA 00’ €My

relative change in volume

MO3/TOBXKHS Jiepopmartis

longitudinal deformation

nonepevHa aedopmartis

transverse deformation

IINTIOCKAa CUCTEMA CHUJI

plane system of forces

CHUCTCMaA IapaJICIbHUX CHUJI

system of parallel forces

MIPABHUJIO 3HAKIB sign rule
OITYKJIICTh convexity
3pa3oK speciment
IJIOIIAIKA, TJIOIIHHA plane

3amac MIIHOCTI
(koedILIeHT 3amacy MIIHOCTI)

margin of safety

BUOIp, MiA01p

choice

IIPpAMOKYTHA CUCTEMA KOOPAHWHAT

rectangular coordinate system

IIOYaTOK KOOPpAWHAT

coordinate origin

IIOTOYHA KOOpAMWHATA

current coordinate

B32€EMHO TMEPIEHIUKYISIPHI
TJIOIIAKA

mutually perpendicular planes

JIIHIMHA 3aJIEXKHICTh

linear relationship

3aKOH PO3MOALTY

law of distribution

MIPUCKOPEHHS

acceleration

CTYIIIHb

degree

a0COJIFOTHO YKOPCTKE T1JIO

absolutely rigid body

npy>kHa gedopmariis

elastic deformation

MpYy>KHA CUCTEMA

elastic system

KOHCTPYKIIS

construction

PIBHSIHHSI CTATUKU

static equation

PIBHSIHHSI pIBHOBaru

equilibrium equation

piBHOBara equilibrium
3HAYEHHS, BEJINYNHA value
dbopma (epeTrHy) shape
BiJlOMa BeJIMYMHA known value
piBEHB level

11ap BOJIOKOH fiber layer

HEUTPAJIbHUAN 1Iap

neutral layer




BEPXHIN mIap

upper layer

HIDKHIN 11ap — | lower layer
OJIMHUIIS] BUMIPIOBAHHS, PO3MIPHICTb — | measurement
nepeBara — | advantage
HEJOMIK — | drawback
0COOJINBICTD — | peculiarity
pama — | frame
CyMiCHa Jiist — | joint action
st — | action
pO3B’si3yBaHHs (PO3B’S30K) — | solution
JIBOTaBP — | I-beam
TIBEJICP — | U-beam
KOpOTKa OaJika — | short beam
TOYHUM — | exact
yMOBa — | condition
TOYKA — | point
BEKTOP — | vector
BY30I1 — | nod

HAXHJT — | slope
Bropy — |up

BHU3 — | down (downwards)
KpPUBHM3HA — | curvature
TUIOCKA KPHBa — | plane curve
pYHHIBHUIA — | destructive

METO/I IEPETHHIB

section method

IJIOCKUU TOTIEPEYHUN NTEPETUH

plane cross-section (section)

HOPMaJIbHUI (TTOTIEPEYHUI) IEPETHH

normal (shear) section

JTOBUIBHUH (KOCHI 200 MOXUIIHI)
MEPETUH

random (oblique or inclined)
cross-section

yMOBHUH (YSIBHUI) EPETUH

Imaginary section

HeOe3MeYyHn NepeTHH

dangerous section

aiarpama, ermopa — | diagram
pO3Mip — | dimension
BHCOTA — | height
IMpYHA — | width
JOBKHHA — | length
aiameTp — | diameter
KOJIO — | circle
KUJIBIIE — | ring

KpyT — | round
IICHTP KOJIa — | circle center
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IPSIMOKYTHHK — | rectangle

00’em — | volume

Bara — | weight

IIEHTP Baru — | center of gravity (weight)

IIEHTPAJIbHUM PO3TAT-CTUCK ITPIMUX CTPIKHIB
CENTRAL TENSION AND COMPRESSION OF DIRECT RODS (BARS)

HCHTpaJIBHI/Iﬁ PO3TATr-CTUCK

central tension and compression

IIO3JO0BXKH (HOpMaJILHa OCBOBa) CHJIa

longitudinal (normal, axial) force

MOAYJIb IPYKHOCTI
(Momynb FOHra)

modulus of elasticity
(Young’s modulus)

Koe(ilieHT nmonepevHoi aedopmariii
(koedimient Ilyaccona)

coefficient of transverse
deformation or Poisson

3CyB (3pi3)

shear

nonepeyHa (mepepizyroua) cumia

cross-cut, shear (cutting) force

MOJYJIb 3CYBY

shear modulus

CKOJJIIOBaHHs

chipping

MJIACTUYHHUM MaTepian

plastic material

KPUXKHI MaTepiaj

brittle material

cTajib — | steel
YaByH — | cast iron
JICPEBO — | wood

JiarpaMa po3TAry

stress-strain diagram

I'PaHULSI TPONOPLIHHOCTI

limit of proportionality

I'PaHULSI IPY>KHOCTI

limit of elasticity

T'PAaHUIIS TEKYYOCTI

yield (strength) limit

TPAHUIlS MIITHOCTI1

tensile strength

MOTEHITIabHA eHepris aedopmariii

potential deformation energy

PO3paxyHOK Ha MIITHICTh

strength calculation

HaIpyKEHHS

stress

HOPMAaJIbHE HAIPYKEHHS

normal stress

JOTUYHE HANIPYKECHHS

tangential (shear) stress

TI'OJIOBHC HAITPY’KCHHA

main (principal) stress

poboue ((hakTuyHe) HaNPyKEHHS

working (actual) stress

rPaHUYHE HAIPYKEHHS

boundary stress

JNOMYCTUME HaIpy>KEHHS

allowable stress

Koe(iIiEHT 3amacy MiIfHOCTI

strength factor

YMOBa MIITHOCTI

strength condition

ITPOEKTHUM PO3PAXYHOK

design calculation

NEePEeBIPHUN PO3PAXYHOK

validation calculation
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HAOJIMKCHHI PO3PaXyHOK | — | approximate calculation

I'EOMETPUYHI XAPAKTEPUCTUKHU INIOCKUX ITEPETHHIB
GEOMETRIC CHARACTERISTICS OF PLANE SECTIONS

reoMeTpHYHA XapaKTEePUCTHKA geometric characteristics
IUIOCKUX TEPETHHIB | of plane sections

TUIOIIA JIOBUTBHOT OpMH — | area of arbitrary shape
eJIEeMEHTapHa IIoNIa — | elementary plane

CTaTUYHHMIA MOMEHT ITONTI — | static moment of the area
HOJIIPHUI MOMEHT 1HEpIli — | polar moment of inertia
OCBOBHMI MOMEHT iHEpIIii — | axial moment of inertia
IICHTpaJIbHA BiCh — | central axis

HEHTpaJIbHA BICh — | neutral axis

[EHTPAIHbHIUI MOMEHT 1HEpIl| — | central moment of inertia
rOJIOBHA BICh 1HEPITii — | main axis of inertia

TOJIOBHUH MOMEHT iHEPIIii — | main moment of inertia
TOJIOBHUH IIEHTPAILHUA MOMEHT main central moment of inertia
1HepIii B

rOJIOBHA IIEHTpaJbHA BIiCh — | principal central axis

OCBOBHI MOMEHT OIOPY — | axial moment of resistance
MOJIIPHUN MOMEHT OTIOPY — | polar moment of intersection resistance

3CYB. KPYUEHHA
SHEAR. TORSION

Kpy4YeHHS — | torsion

KPYTHUH MOMEHT — | torque moment
o0epTarunii MOMEHT — | rotating moment

BaJl — | shaft

IKIB (JIMCK) — | pulley

MOTYXHICTb — | power

JacToTa 0OCpTaHHs Baja — | shaft rotation frequency
KYT 3aKpydyBaHHS — | twist angle

BiTHOCHUI KYT 3aKpy4yBaHHSI — | relative twist angle

[IPSIMUM [TOIEPEUHUM 3T MH
STRAIGHT TRANSVERSE BENDING

NpSIMUN TIOTIEPEYHHIA 3THH — | direct lateral bending
HaTpYy>KEHHS MPH 3TUHI — | bending stress
3THHAJILHUN MOMEHT — | bending moment
KOHCOJIbHA 0ajiKa — | cantilever beam
OaJika Ha OImopax — | supported beam
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JIHIAHUA 3aKOH

linear law

HIDKHI BOJIOKHA MaTepiainy

lower fibers of material

BEpPXHI BOJIOKHA MaTepiairy

upper fibers of material

HEUTpaJIbHI BOJIOKHA MaTepiaity

neutral fibers of material

peaxiis

reaction

OTIOpHA PeaKIlis

support reaction

BIJIKHHYTA B’5I3b

rejected link

dKTHBHAa CHJIa

active force

PCAKTHBHA CHJIA

reactive force

BUTbHUH (HE3aKpIMJICHUI) KiHElb

free end

oropa

support

HIapHIPHO-PYXOMa OIopa

hinged-movable support

[IapHIPHO-HEPYXOMa OIopa

hinged-fixed support

KOPCTKE 3aKPITIIICHHS
3aTHCHEHHS (3aI[eMJICHHS])

rigid fastening,
rigidly fixed (clamping)

37I0M (ETIOpH)

breaking

3aKpIIUICHHS Ha ONOpax

fixation on supports

nepeBipka — | validation, verification
MIPaBUJIbHICTh — | correctness

MeKa, TPaHuIs — | boundary

GbyHKIS — | function

JiBa CTOPOHA — | left side

paBa CTOPOHA — | right side

EKCTPEMAIbHUI MOMEHT

extreme moment

JIIHIS HaXWJIEHA 10 OCl

line inclined to the axis

JH1A MapajesibHa 0ci

line parallel to the axis

CTpUOOK — | jump
KBaJIpaTHYHA Tapadosa — | quadratic parabola
3pOCTaTh — | increase

criajiaTu — | decrease

nudepeHiagbHa 3aJeXKHICTh

differential dependency

MOX1IHa

derivative

HeneopMoBaHa BiCh

undeformed axis

3iCHYTA BIiCh — | bent axis
BUTHYTA BiCh — | curved axis
npy>KHA JIiHis — | elastic line
BUKPUBJICHHS (CITIOTBOPEHHS) — | distortion
POTUH — | deflection

KyTOBE TIEPEMIITICHHS

angular displacement

KYT IOBOPOTY

slope of the elastic curve

KOCHU 3TUH

oblique bending

YUCTUN KOCUU 3TUH

pure oblique bending
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HeWTpasbHa JiHIS IEPETHHY

| — [ neutral (zero) crossing line

CKJIAJTHUI HAITPYKEHUM CTAH
COMPLEX STRESSED STATE

CKJIJIHUH OTIip

complex strength
(resistance to combined stress)

CKJIQJIHUM HAIIPYKCHUW CTaH

complex stressed state

T'OJIOBHHI €JICMCHT — | main element
T'OJIOBHA IUIONTMHA (TIIOIIA IKA) — | main plane
TOJIOBHE HAIIPYKCHHS — | main stress

O1JIbIIIE 3 TOJIOBHUX HAIMPYXKEHb

maximum main stress

MCHIIC 3 I'OJIOBHHX HAIIPYKCHb

minimum main stress

PO3PAXYHKOBC HAIIPYKCHH

calculated stress

JIHIAHUAN HaNPY>KEHUW CTaH

linear stress state

IJIOCKUM HAIPY)KEHHUM CTaH

plane stress state

CTATUYHO-HEBU3HAUYYBAHI CUCTEMH
STATICALLY INDETERMINATE SYSTEMS

CTaTUYHO HECBH3HA4YyBaHa CUCTCMA

statically indeterminate system

CTyHiHb CTATUYHOI HEBU3HAYEHOCTI

degree of static indeterminance

3aiiBU (HAIJIMIIKOBUM) 3B’ SI30K

redundant (auxiliary) junction

BIIKUHYTHUH 3B’ 130K

removed junction

HE3MIHHA CUCTEMA

unchangeable system

OCHOBHAa CHUCTCMaA

main system

€KBIBAJICHTHA CUCTEMA

equivalent system

YMOBa HEPO3PUBHOCTI

condition of continuity

YMOBa CYMICHOCTI Aedhopmaltiii

condition of strain compatability

rinepcTaTuyHa CUucTeMa

hyperstatic system

OIMHHWYHC HaBaHTAaXCHHSI

singular load

TepeMIIIeHHS BiJI OJUHUYHOTO
HABAHTAKEHHS (CUIIM @00 MOMEHTY)

singular displacement

OJIMHUYHA CUJIa

singular force

OJJVMHUYHUYN MOMEHT

singular moment

KaHOHIYHE PIBHSHHS

canonic equation

BUIbHUN YIEH PIBHSIHHS

absolute term of equation

HEBIJIOMa CUJIa

unknown force

MOBHE NEPEMIIICHHS

complete displacement

nudepeHItiaabHe PIBHIHHS

differential equation

Oe3nocepeiHe IHTerpyBaHHs

direct integration

HaOmxeHe qudepeHiiiaabHe
PIBHSIHHS

approximate differential equation

PIBHSIHHS IPY>KHOT JITHIi

equation of the elastic line

BUKPHBJICHHS OC1 (3MiHA KPUBU3HU
oci)

curvature of axis
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JIOTIOMD)KHA Oajika

redundant (auxiliary) beam

MHOTOYWICH — | polynomial
MIePEMHOKCHHS — | multiplication
po3iapoBaHo (o0yI0Ba eImop layered form
okpemux Qiryp) -

aJIMTUBHICTH (O€3IePEPBHICTD)
byHKIi

additivity (continuity) of the function

CTIMKICTh HEHTPAJILHO CTUCHEHUX CTPUKHIB
STABILITY OF CENTRALLY-COMPRESSED RODS

KPUTUYHUN CTaH

critical state

MO3I0BXKHIN 3TUH

longitudinal bending

piBHOBara CTiiKa

stable equilibrium

piBHOBara 0Oaiiyxa

indifferent equilibrium

piBHOBara HecTika

unstable equilibrium

Koe(iIieHT 3amacy CTIMKOCTI

stability margin factor

THYYKICTh CTPUKHS

flexibility of the rod

KO€(]il1€EHT 3MEHILICHHS! OCHOBHOTO
JIOMYCTUMOTO HaINpyKEHHS

coefficient of reduction of the main
allowable strength stress

HCOOHAIIPYKCHHA

understressing

MIepEHANPYKEHHS

overstressing

J1MCHE HAPYKEHHS

actual stress

YAAPHI HABAHTAXXEHHA. BUSHAUEHHA
HAIIPYXEHbD I IIEPEMIIIEHD ITPU YV JIAPI
DYNAMIC LOADS. DETERMINING IMPACT
STRESSES AND DISPLACEMENTS

HaOJIMKEeHa Teopist yaapy

approximated theory of impact

yaap — im_paqt
OCBOBHIH yaap — | axial impact
KOJIMBaHHSI — | vibration (oscillation)

MUTTEBC HABAHTAXKCHHA

instantaneous load

yAapHe HaBaHTaKCHHS

impact load

yaapHa B’SI3KICTh

impact viscosity

PO3CIIOBaHHS €HEepTii

energy dissipation

a0COJIIOTHO TBEPJIC TUIO

perfectly rigid body

BUIBHO MMAJar0ue T1JI0

free-falling body (falling body)

piBHSIHHS OajlaHCy eHeprii

equation of energy balance

JUHAMIYHE BKOPOUEHHS
(mepeminieHHs )

dynamic shortening

BKOPOYCHHS (TIEPEMIIIECHHS)
KOJIOHHM (TIpH yJ1api)

shortening of the column

Koe(MiIieHT TMHAMIYHOCTI

coefficient of impact
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