МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ Тернопільський національний технічний університет імені Івана Пулюя

Кафедра автоматизації технологічних процесів та виробництв

Методичні вказівки до лабораторної роботи №11 «Ввід/вивід даних через порти мікроконтролера на програмному симуляторі AVR Simulator IDE» з курсу «Мікропроцесорні та програмні засоби автоматизації»

Тернопіль 2020

Методичні вказівки до лабораторної роботи №11 «Ввід/вивід даних через порти мікроконтролера на програмному симуляторі AVR Simulator IDE» з курсу «Мікропроцесорні та програмні засоби автоматизації».

Методичні вказівки розглянуті і схвалені кафедрою «Автоматизація технологічних процесів та виробництв», протокол № 8 від 18.02.2020 р.

Відповідальні за випуск

доцент, к.т.н. Медвідь В.Р., асистент Пісьціо В.П.

Лабораторна робота №11

Ввід/вивід даних через порти мікроконтролера на програмному симуляторі AVR Simulator IDE

1. Послідовність роботи з програмним симулятором AVR Simulator IDE

Основне вікно програми AVR Simulator IDE має вигляд, показаний на (рис. 1).

File Simulation Rate Tools Options Help 1 Program Location Microcontroller ATmega32 Clock Frequency 4.0 Last Instruction Next Instruction Next Instruction Program Counter Simulation Statistics PC 000000 Instructions: 0) MHz	Real Tir	2 me Dura	ation
Program Location Microcontroller ATmega32 Clock Frequency 4.0 Last Instruction Program Counter PC 000000 Instructions: 0 Clock Frequency 4.0 Next Instruction) MHz	Real Tir	2 ne Dura	ation
Program Location ATmega32 Clock Frequency 4.0 Last Instruction Next Instruction Program Counter Simulation Statistics PC 000000 Instructions: 0 Older Dependence of the program Counter 0) MHz	Real Tir	me Dura	ation
Microcontroller ATmega32 Clock Frequency 4.0 Last Instruction Next Instruction Program Counter Simulation Statistics PC 000000 Instructions: 0) MHz	Real Tir	me Dura	ation
Last Instruction Next Instruction Program Counter Simulation Statistics PC 000000 Instructions: 0		Real Tir	me Dura	ation
Program Counter Simulation Statistics PC 000000 Instructions: 0 Clark Only 1		Real Tir	ne Dura	ation
Program Counter Simulation Statistics PC 0000000 Instructions: 0		Real Tir	me Dura	ation
Program Counter Simulation Statistics PC 000000 Instructions: 0 Olaph Survey 0 0 0 0		Real Tir 0.	me Dura	ation
PC 000000 Instructions: 0		Real Tir 0.	me Dura	ation
Charles Charles 0		0.		
LIOCK LUCIES'		U.	UUus	
General Purpose Working and I/O Registers	Data S	SRAM		
Hex Binary Value	Hex		Hex	5)
Address and Name Value 76543210 Addr.	Value	Addr.	Value	\smile
\$000 R0 00 55555 \$060	00	\$070	00	
\$001 R1 00 \$061	00	\$071	00	
\$002 R2 00 \$062	00	\$072	00	
\$003 R3 00 \$063	00	\$073	00	
\$004 R4 00 \$064	00	\$074	00	
\$005 R5 00 \$065	00	\$075	00	
\$006 R6 00 \$066	00	\$076	00	
\$007 R7 00 \$067	00	\$077	00	
\$UU8 R8 UU \$068	00	\$078	00	
\$009 R9 00 \$069	00	\$079	00	
\$00A RTU UU \$06A	00	\$U/A	00	
\$000 R12 00 \$000 \$000	00	\$07B	00	
\$000 R12 00 \$000	00	\$070	00	
\$00E B14 00 \$00E	00	\$07E	00	
\$00F B15 00 500 \$00F	00	\$07F	00	-

Рис. 1. Основне вікно програми AVR Simulator IDE

У верхній частині знаходяться меню, через які можна отримати доступ до основних і додаткових модулів програми (поз. 1)(рис. 1).

В рядку Program Location вказано шлях до обраної програми і її ім'я (поз. 2).

В рядку Microcontrollers, відображається тип обраного мікроконтролера (поз. 3).

У нижній частині вікна є дві панелі (поз.4 і поз.5), де відображається стан внутрішніх регістрів мікроконтролерів AVR (регістрів загального користування та регістрів вводу/виводу), та SRAM внутрішніх даних відповідно.

Також у основному вікні відображені лічильник програм, мнемоніка останньої виконуваної інструкції, мнемоніка наступної інструкції, що буде виконуватися, цикли та інструкції лічильника і тривалість імітації в режимі реального часу.

2. Послідовність роботи з програмним симулятором наступна:

- запуск програми AVR Simulator IDE;
- вибір типу мікроконтролера, для якого написана програма;

• вибір частоти кварцового генератора (впливає тільки на відображувані програмою дані про час виконання програми або команди, але не на швидкість роботи програми, що налагоджуються в AVR Simulator IDE);

• завантаження програми у вигляді НЕХ-файлу або запуск вбудованого компілятора мови асемблера і написання в ньому потрібної програми;

- вибір потрібних модулів віртуальних пристроїв;
- вибір швидкості і режиму роботи програми симулятора;
- запуск процесу симуляції роботи програми на обраному МК.

Якщо потрібно скористатися для роботи з симулятором власною програмою або внести зміни у вже розроблену, необхідно створити або завантажити для цього файл асемблера, з якого після компіляції буде створений необхідний для роботи з симулятором hex-файл.

S AVR Simulator 1	IDE - Registered Co	ny.		1.1			X S Assembler - demo asm
File Simulation Rai	te Tools Options	Help					File Edit Trais Options
Program Location							0001 ; Compiled with: AVR Simulator IDE v1.40
Microcontroller	ATmega32 (Clock Frequency	4.0 MHz				0002 ; Microcontroller model: Almega32
Last Instruction		Next Inst	ruction				0004 ;
							0005; The address of 'addr' (word) (globa
							0006 .EQU addr = 0xD
Program Counter		Simulation Stat	istics				0007 ; The address of 'data' (byte) (globa
PC 000000		Instructions:	0	Real Ti	me Dura	tion	0008 .EQU data = 0x1E
		Clock Cycles:	0	0	.00 µs		0009; Ine address of 'sda' (pit) (global)
General Purpose W	orking and I/O Begiste	ere	Internal Data	SBAM			0011 ; Begin
donoidi i diposo ii	Hey Binaru)	Value	Hev	011-411	Hev		0012 .ORG 0x000000
Address and Name	value 7654	3210	Addr. Value	e Addr.	Value		0013 CLR R15
\$000 B0			\$060 00	\$070	00		0014 LDI R16, low RAMEND
\$001 R1			\$061 00	\$071	00	=	0015 OUT SPL, R16
\$002 R2			\$062 00	\$072	00		Lin 1 Cel 0 Num et lines E3
\$003 R3	00		\$063 00	\$073	00		Turri, coro ritari or intes. 33
\$004 R4	00		\$064 00	\$074	00		0001
\$005 H5			00 2304	\$075	00		
\$007 B7			\$067 00	\$070	00		
\$008 R8			\$068 00	\$078	00		
\$009 R9			\$069 00	\$079	00		-
\$00A R10	00		\$06A 00	\$07A	00		
\$00B R11	00		\$06B 00	\$07B	00		Lin I, Col U Num of lines:
\$000 R12			\$06L 00	\$07C	00		Software UART Simulation Interface -
\$00E B14			\$06E 00	\$07D	00		Settings
\$00F R15			\$06F 00	\$07F	00	•	RX Line> PORTB, 2 TX Line> PORTB, 1
							Baud Rate> 9600 Logic Levels> Standard
e	🕉 Microcontroller V			- 33	-	=×	LIABT Transmitter Output Clear Hex
	T OFF XC	К/ТО/РВО 1 4	10 PA0/ADC0		OFF	T	
	T OFF	T1/PB1 2 3	39 PA1/ADC1		OFF	Ť	Ť.
-	T OFF OCO	AINU/PB2 3 3 /AIN1/PB3 4 3	37 PA3/ADC3		OFF	÷	T
	T OFF	\SS/PB4 5 3	BE PA4/ADC4		OFF	Ţ	T II
	TOFF	MISO/PB6 7 3	34 PA6/ADC6		OFF	Ť	T T
	TOFF	SCK/PB7 8 3	B3 PA7/ADC7		OFF	T	T
		VCC 10	GND				
		GND 11 3 XTAL2 12 2	BU AVEC 29 PCZ/TOSC	2	OFF	T I	T
		XTAL1 13 2	28 PC6/TOSC	1	OFF	Ť	T TX Line Status:
	TOFF	TXD/PD1 15 2	26 PC4/TD0		OFF	Ŧ	T UABT Receiver Input
	T OFF	INT0/PD2 16 2 INT1/PD3 17 2	25 PC3/TMS 24 PC2/TCK		OFF	Ţ	Canad Dute (Dars) Canad Dute (Uau) Canad Char
	T OFF (DC1B/PD4 18 2	23 PC1/SDA		OFF	Ť	Sena byte (Dec) Sena byte (Hex) Sena Char
-		JC1A/PD5 19 2 ICP1/PD6 20 2	22 PC0/SCL 21 PD7/0C2		OFF	Ŧ	T RX Line Status:
	Always On Ton		All Analog	Info	L Clos	92	Always Un Top

Рис. 2 Вікно симулятора з полем компілятора Assembler, апаратними виводами контролера, полем послідовного інтерфейсу

S AVR Simulator ID	E - Registered Copy		Assembler - demo.asm
File Simulation Rate	Tools Options Help		File Edit Tools Options
Program Location Microcontroller Last Instruction	ATmega32 Clock Frequency Next In:	4.0 MHz struction	0001 ; Compiled with: AVR Simulator IDE v1.40 0002 ; Microcontroller model: ATmega32 0003 ; Clock frequency: 4.0 MHz 0004 ; 0005 ; The address of 'addr' (word) (globa 0006 .EQU addr = 0XD
PC 000000 Instructions: Clock Cycles:		0 Real Time Duration 0 0.00 µs	0008 :EQU data = 0x1E 0009 : The address of 'sda' (bit) (globa) 0010 : The address of 'sda' (bit) (globa)
Address and Name	Hex Binary Value Value 7 6 5 4 3 2 1 0	Hex Hex Addr. Value Addr. Value	0012 .ORG 0x000000 0013 CLR R15 0014 LDI R16,low RAMEND
\$000 R0 \$001 R1 \$002 R2 \$003 R3 \$004 R4 \$005 R5		\$060 00 \$070 00 \$061 00 \$071 00 \$062 00 \$072 00 \$063 00 \$073 00 \$064 00 \$074 00 \$0655 00 \$075 00	0015 OUT SPL, R16
\$005 R5 \$007 R7 \$008 R8 \$009 R9 \$004 R10 \$008 R11		\$006 00 \$076 00 \$067 00 \$077 00 \$068 00 \$078 00 \$068 00 \$079 00 \$064 00 \$079 00 \$068 00 \$079 00 \$068 00 \$077 00	Lin 1, Col Num of lines: 1
\$00C R12 \$00D R13 \$00E R14 \$00F R15		\$06C 00 \$07C 00 \$06D 00 \$07D 00 \$06E 00 \$07E 00 \$06F 00 \$07F 00 ▼	Status Ine 1: Receiving Address word - 0x0000000 000 Status Ine 1: Receiving Address word - 0x0000000 000 Status Ine 1: Receiving Address to Sneeved
	SLCD Module Read Fr (3) = 1	om EEPROM 97	0 1 2 3 4 5 6 7 8 9 A B C D E F 0000 C8 C7 C6 C5 C4 C3 C2 C1 C0 BF BE BD BC BB AB 99 0010 B8 78 68 5 84 83 82 81 80 AF AE AD AC AB AA A9 0020 FF

Рис. 3 Вигляд симулятора з полем компілятора Assembler, LED- модулем, I2C EEPROM

Для цього:

1. Натиснути Options | Assembler. Відкриється вікно компілятора Assembler – UNTITLED (рис. 2);

2. У вікні Assembler натиснути опцію File. Розкриється закладка, з якої для створення нового файлу потрібно натиснути New, а для завантаження вже створеного – OPEN.

3. Після вибору і завантаження файлу (з розширенням .asm), його текст з'явиться у вікні Assembler .

4. Для компіляції створеного або завантаженого і потім зміненого файлу, натисніть Tools і у вікні, що розкриється – Assemble. В нижній половині вікна Assembler з'явиться лістинг відкомпільованого файлу і, одночасно, при відсутності помилок, буде створений одноіменний hex-файл.

3. Завдання на лабораторну роботу: ввід-вивід даних через порти AVR мікроконтролера.

1. Вивчити програмну модель AVR Simulator IDE.

2. Вивчити команди програмування та обміну даними через порти AVR мікроконтролера.

Завдання 1 та 2

1. Дослідити роботу програм з Прикладу 1 та Прикладу 2 в режимі роботи стимулятора «Normal" та вміст регістрів контролера, які використовуються при виконанні цієї програми, в покроковому режимі роботи.

2. Записати для вибраних команд асемблера коментар щодо їх призначення (див. Приклад 1).

Приклад 1

Виконати програму, що забезпечує ввід даних з чотирьох молодших розрядів порту В, зсув їх на чотири розряди вліво і вивід через чотири старші розряди цього ж порту.

Текст програми має наступний вигляд:

.CSEG ldi R16, 0x00 ldi R17, 0xFF out DDRB, R17 out PORTB, R16 ;порт В на вихід з низьким початковим рівнем

main:

Idi R20, 0x0F;завантаження в регістр числа «00001111»out PORTB, R20;вивід вмісту регістра в порт Вswap R20;обмін тетрадами регістраout PORTB, R20;вивід вмісту регістра в порт Вjmp main;організація циклу виводу в порт Вnop

Послідовність роботи з симулятором при виконанні програми

Виконати цю програму на AVR Simulator ID, для чого необхідно:

1. Запустити AVR Simulator IDE;

2. Натиснути Options | Select Microcontroller;

3. Вибрати ATmega32 і натиснути кнопку Select;

4. Натиснути Tools і у вікні, що розкриється, вибрати «Assembler». Відкриється вікно компілятора «Assembler – UNTITLED» (рис. 4, права панель);

5. Набрати текст програми Прикладу 1 у вікні «Assembler»;

6. Натиснути Tools і у вікні, що розкриється – Assemble. В нижній половині вікна Assembler з'явиться лістинг відкомпільованого файлу (рис. 4);

7. Одночасно, при відсутності помилок, буде створений файл, для якого можна вибрати ім'я та шлях для запису. Наприклад, записати його на «Робочий стіл» комп'ютера;

8. Вибрати File | Load Program і завантажити створений файл «....hex»;

9. Натиснути Tools | 8 х LED Board. Відкриється вікно з панеллю, що містить вісім світлодіодів (рис. 4, ліва панель);

Рис. 4 Вигляд інтерфейсу симулятора з робочою програмою, панеллю «8 x LED Board» та панеллю «Microcontroller Viev»

Рис. 5 Налаштування виводів порту В панелі «8 x LED Board»

10. Натиснути Tools | Microcontroller Viev. Відкриється вікно з виводами мікроконтролера (рис. 4, нижня панель);

11. У вікні «Select Pin» панелі «8 х LED Board» (рис. 5) почергово натиснути поле «PORTB» і далі «0», після чого натиснути на поле «Select», яке розташоване внизу вікна. Таким чином, вибрано порт В та його вивід 0. Це повторити для всіх ліній вибраного порту;

12. Вибрати Rate | Normal;

13. Натиснути Simulation | Start (почнеться виконання програми). Якщо при цьому курсором клацнути на одному з виводів мікросхеми (панель «Microcontroller Viev») за номером n (це відповідає появі на цьому виводі логічної «1» - світлодіод світиться), то засвітиться світлодіод на виводі мікросхеми з номером n+4;

14. Щоб зупинити виконання програми, потрібно натиснути Simulation | Stop.

Для того, щоб мати змогу контролювати вміст регістрів після виконання стимулятором кожної команди, перейти на виконання програми в кроковому режимі роботи.

Для цього:

1. В основному вікні симулятора натиснути Rate | Step By Step, а далі вибрати опцію Simulation і натиснути Start. Симулятор готовий до виконання програми в кроковому режимі;

2. Для виконання наступної команди програми потрібно натиснути на закладку STEP, яка з'явиться справа від закладки HELP вгорі основного вікна симулятора після вибору крокового режиму його роботи.

Вміст регістрів контролера, які використовуються при виконанні команд програми, знайти в області регістрів Adress and Name, яка розташована в лівій нижній частині основного вікна симулятора (виділені рожевим кольором). Всі регістри восьмирозрядні.

В процесі виконання програми по зміні кольору комірок видно, вміст яких регістрів змінюється. Забарвлення комірки відповідного розряду регістру помаранчевим кольором означає наявність "1", білим - "0".

Приклад 2

Виконати програму, що забезпечує ввід даних з чотирьох молодших розрядів порту A, зсув їх на чотири розряди вліво і вивід через чотири старші розряди цього ж порту.

Текст програми має наступний вигляд:

	.CSEG	
	ldi R16, 0x00	
	ldi R17, 0xFF	,
	out DDRA, R16	
	out PORTA, R17	порт А на вхід з підтягуючим резистором
	out DDRB, R17	
	out PORTB, R16	;порт В на вихід з низьким початковим рівнем
main:		
	in R20, PINA	;завантаження в регістр коду з ліній порту А
	swap R20	;обмін тетрадами регістра
	out PORTB, R20	;вивід вмісту регістра в порт В
	jmp main	;організація циклу виводу в порт В
	nop	

Завдання 3

1. Виконати програму (Приклад 2) в режимі «Normal». Перед виконанням програми клацнути курсором на одному чи декількох виводах з чотирьох молодших розрядів порту А мікросхеми (панель «Microcontroller Viev») за номером n=0...3 (це відповідає появі на цих виводах логічної «1» - вивід забарвиться в зелений колір). При виконанні програми, на

старших чотирьох розрядах порту В з'явиться код, що відповідає вхідному на лініях порту А. Одночасно засвітяться світлодіоди на виводах порту В мікросхеми з номерами n+4 (рис. 4);

2. Виконати програму в кроковому режимі виконання програми. Вміст тих регістрів, значення яких змінюється в процесі виконання команд програми, записати в шістнадцятковому коді в табл.1.

Таблиця 1

Регістр	РС	R16	R17	R20	R21	DDRB	PORTB	SREG	DDRA	PORT A
Команда 1										
Команда 2										
Команда п										

3. З програми Прикладу 1 вибрати десять команд і за таблицею команд асемблера для AVR мікроконтролера (табл. 1) записати коментар щодо призначення цих команд (див. Приклад 2, де наведено такий запис для однієї команди).

Приклад 2

КомандаВиконувана операція (коментар)out PORTA, R17;порт В на вихід з низьким початковим рівнем

і т.д.

Завдання 4

1. Скласти програму, яка забезпечує ввід даних з **чотирьох старших розрядів порту В**, зсув їх на чотири розряди вправо і вивід через **чотири молодші розряди цього ж порту**.

2. Виконати програму в режимі «Normal».

3. В процесі виконання програми клацнути курсором на одному з виводів чотирьох старших розрядів порту В мікросхеми (панель «Microcontroller Viev») за номером n=4...7. При цьому повинен засвітитися світлодіод на виводі мікросхеми з номером n-4 (рис. 4);

4. Виконати програму в кроковому режимі виконання програми.

5. Вміст тих регістрів, значення яких змінюється в процесі виконання команд програми, записати в шістнадцятковому коді в табл. 1.

6. З виконуваної програми вибрати десять команд і за таблицею команд асемблера для AVR-мікроконтролера (Додаток 1) записати коментар щодо призначення цих команд (див. Приклад 2, де наведено такий запис для однієї команди).

Завдання 5

1. Скласти програму, яка забезпечує ввід даних з чотирьох старших розрядів порту А, та вивід через чотири молодші розряди порту В.

2. Виконати програму в режимі «Normal».

4. В процесі виконання програми клацнути курсором на виводах чотирьох старших розрядів порту А мікросхеми (панель «Microcontroller Viev ») за номером n=4...7. (це відповідає появі на цих виводах логічної «1» - вивід забарвиться в зелений колір). При виконанні програми на молодших чотирьох розрядах порту В з'явиться код, що відповідає вхідному на лініях порту А. Одночасно засвітяться світлодіоди на виводах порту В мікросхеми з номерами n-4 (рис. 4);

3. Виконати програму в кроковому режимі виконання програми.

4. Вміст тих регістрів, значення яких змінюється в процесі виконання команд програми, записати в шістнадцятковому коді в табл. 1.

5. З виконуваної програми вибрати десять команд і за таблицею команд асемблера для AVR- мікроконтролера (Додаток 1) записати коментар щодо призначення цих команд (див. Приклад 2, де наведено такий запис для однієї команди).

4. Контрольні запитання

1. Використання AVR-мікроконтролерів.

- 2. Програмування портів мікроконтролера.
- 3. Організація циклів в роботі мікроконтролера.
- 4. Формат та використання регістрів загального призначення.

5. Призначення та позначення основних елементів програмної моделі мікроконтролера.

5. Література

1. Програмування мікроконтролерів систем автоматики: конспект лекцій для студентів базового напряму 050201 "Системна інженерія" / Укл.: А.Г. Павельчак, В.В. Самотий, Ю.В. Яцук – Львів: Львівська політехніка. – 2012. – 143 с.

2. Евстифеев А. В. Микроконтроллеры AVR семейств Tiny и Mega фирмы ATMEL, – [5е изд., стер.] / Евстифеев А. В. – М.: Издательский дом «Додэка-XXI», 2008. 560 с.

Додаток 1 Система команд мікроконтролерів AVR

Система команд AVR мікроконтролерів включає команди арифметичних і логічних операцій, команди передачі даних, команди, що керують послідовністю виконання програми і команди операцій з бітами.

Для зручності написання й аналізу програм всім операціям із системи команд крім двійкового коду зіставлені мнемокоди Ассемблера (символічні позначення операцій), що використовуються при створенні вихідного тексту програми.

Спеціальні програми-транслятори переводять потім символічні позначення в двійкові коди.

Спеціальна директива ассемблера .device забезпечує контроль відповідності команд, використовуваних у тексті програми, типу зазначеного процесора.

Під час виконання арифметичних, логічних чи операцій роботи з бітами ALU формує ознаки результату операції, тобто встановлює чи скидає біти в регістрі стану **SREG** (Status Register).

Регістр статусу - SREG - розміщений у просторі І/О за адресою \$3F (\$5F).

Біти	7	6	5	4	3	2	1	0	
\$3F (\$5F)	Ι	Т	Н	s	V	N	Z	С	REG
Читання/Запис	R/W								
Початковий стан	0	0	0	0	0	0	0	0	

Таблиця 1 - Регістр статусу - SREG

Bit 7 - I: Global Interrupt Enable - Дозвіл глобального переривання. Біт дозволу глобального переривання для дозволу переривання повинний бути встановлений у стан 1. Керування дозволом конкретного переривання виконується регістрами маски переривання GIMSK і TIMSK. Якщо біт глобального переривання очищений (у стані 0), то жодне з дозволів конкретних переривань, встановлених у регістрах GIMSK і TIMSK, не діє.

Біт I апаратно очищається після переривання і встановлюється для наступного дозволу глобального переривання командою RETI.

Bit 6 - T: Bit Copy Storage - Біт збереження копії. Команди копіювання біта BLD (Bit Load) і BST (Bit STore) використовують біт Т, як біт джерело і біт призначення при операціях з бітами. Командою BST біт регістра копіюється до біту Т, командою BLD біт Т копіюється до регістру.

Bit 5 - H: Half Carry Flag - Прапор напівпереносу. Прапор напівпереносу вказує на напівперенос у ряді арифметичних операцій.

Bit 4 - S: Sign Bit, S = N V - Біт знаку. Біт S завжди знаходиться в стані, обумовленому логічною функцію AБO (OR) між прапором негативного значення N і доповненням до двох прапора переповнення V.

Bit 3 - V: Two's Complement Overflow Flag. Доповнення до двох прапора переповнення. Доповнення до двох прапора V підтримує арифметику доповнення до двох.

Bit 2 - N: Negative Flag – Прапор негативного значення. Прапор негативного значення N вказує на негативний результат ряду арифметичних і логічних операцій.

Bit 1 - Z: Zero Flag – Прапор нульового значення. Прапор нульового значення Z вказує на нульовий результат ряду арифметичних і логічних операцій.

Bit 0 - C: Carry Flag – Прапор переносу. Ознаки результату операції можуть бути використані в програмі для виконання подальших арифметично-логічних операцій чи команд умовних переходів.

Мнемоніка	Операнди	Опис	Операція	Прапори	Цикли
ADD	Rd,Rr	Підсумовування без переносу	Rd = Rd + Rr	Z,C,N,V,H,S	1
ADC	Rd,Rr	Підсумовування з переносом	Rd = Rd + Rr + C	Z,C,N,V,H,S	1
SUB	Rd,Rr	Вирахування без переносу	Rd = Rd - Rr	Z,C,N,V,H,S	1
SUBI	Rd,K8	Вирахування константи	Rd = Rd - K8	Z,C,N,V,H,S	1
SBC	Rd,Rr	Вирахування з переносом	Rd = Rd - Rr - C	Z,C,N,V,H,S	1
SBCI	Rd,K8	Вирахування константи з переносом	Rd = Rd - K8 - C	Z,C,N,V,H,S	1
AND	Rd,Rr	Логічне И	$Rd = Rd \cdot Rr$	Z,N,V,S	1
ANDI	Rd,K8	Логічне И с константою	$Rd = Rd \cdot K8$	Z,N,V,S	1
OR	Rd,Rr	Логічне АБО	Rd = Rd V Rr	Z,N,V,S	1
ORI	Rd,K8	Логічне АБО з константою	Rd = Rd V K8	Z,N,V,S	1
EOR	Rd,Rr	Логічне що виключає АБО	Rd = Rd EOR Rr	Z,N,V,S	1
COM	Rd	Побітна Інверсія	Rd = FF - Rd	Z,C,N,V,S	1
NEG	Rd	Зміна знака (Доп. код)	Rd = \$00 - Rd	Z,C,N,V,H,S	1
SBR	Rd,K8	Установити біт (біти) у регістрі	Rd = Rd V K8	Z,C,N,V,S	1
CBR	Rd,K8	Скинути біт (біти) у регістрі	$Rd = Rd \cdot (\$FF - K8)$	Z,C,N,V,S	1
INC	Rd	Інкрементувати значення регістра	Rd = Rd + 1	Z,N,V,S	1
DEC	Rd	Декрементувати значення регістра	Rd = Rd - 1	Z,N,V,S	1
TST	Rd	Перевірка на нуль або заперечність	$Rd = Rd \cdot Rd$	Z,C,N,V,S	1
CLR	Rd	Очистити регістр	Rd = 0	Z,C,N,V,S	1
SER	Rd	Установити регістр	Rd = FF	None	1
ADIW	Rdl,K6	Скласти константу і слово	Rdh:Rdl=Rdh:Rdl+ K6	Z,C,N,V,S	2
SBIW	Rdl,K6	Вичитати константу зі слова	Rdh:Rdl=Rdh:Rdl - K 6	Z,C,N,V,S	2

Арифметичні і логічні конструкції

Інструкції розгалуження

Мнемоніка	Операнди	Опис	Операція	Прапори	Цикли
RJMP	k	Відносний перехід	PC = PC + k + 1	None	2
IJMP	Немає	Непрямий перехід на (Z)	PC = Z	None	2
EIJMP	Немає	Розширений непрямий перехід на (Z)	STACK = PC+1, PC(15:0) = Z, PC(21:16) = EIND	None	2
JMP	k	Перехід	PC = k	None	3
RCALL	k	Відносний виклик підпрограми	STACK=PC+1, PC=PC + k+ 1	None	3/4*
ICALL	Немає	Непрямий виклик (Z)	STACK = PC+1, PC = Z	None	3/4*
EICALL	Немає	Розширений непрямий виклик (Z)	STACK = PC+1, PC(15:0) = Z, PC(21:16) =EIND	None	4*
RET	Немає	Повернення з підпрограми	PC = STACK	None	4/5*
RETI	Немає	Повернення з переривання	PC = STACK	I	4/5*
CPSE	Rd,Rr	Порівняти, пропустити якщо рівні	if (Rd ==Rr) PC = PC 2 or 3	None	1/2/3
CP	Rd,Rr	Порівняти	Rd -Rr	Z,C,N,V,H,S	1
CPC	Rd,Rr	Порівняти з переносом	Rd - Rr - C	Z,C,N,V,H,S	1
CPI	Rd,K8	Порівняти з константою	Rd - K	Z,C,N,V,H,S	1
SBRC	Rr,b	Пропустити якщо біт у регістрі очищений	if(Rr(b)==0) PC = PC + 2 or 3	None	1/2/3

SBRS	Rr,b	Пропустити якщо біт у регістрі встановлений	if(Rr(b)==1) PC = PC + 2 or 3	None	1/2/3
SBIC	P,b	Пропустити якщо біт у порту очищений	if(I/O(P,b)==0) PC=PC + 2 or 3	None	1/2/3
SBIS	P,b	Пропустити якщо біт у порту встановлений	if(I/O(P,b)==1) PC=PC + 2 or 3	None	1/2/3
BRBC	s,k	Перейти якщо прапор у SREG очищений	if(SREG(s)==0) PC=PC+ k + 1	None	1/2
BRBS	s,k	Перейти якщо прапор у SREG установлений	if(SREG(s)==1) PC = PC+k+ 1	None	1/2
BREQ	k	Перейти якщо дорівнює	if(Z==1) PC = PC + k + 1	None	1/2
BRNE	k	Перейти якщо не дорівнює	if(Z==0) PC = PC + k + 1	None	1/2
BRCS	k	Перейти якщо перенос установлений	if(C==1) PC = PC + k + 1	None	1/2
BRCC	k	Перейти якщо перенос очищений	if(C==0) PC = PC + k + 1	None	1/2
BRSH	k	Перейти якщо дорівнює чи більше	if(C==0) PC = PC + k + 1	None	1/2
BRLO	k	Перейти якщо менше	if(C==1) PC = PC + k + 1	None	1/2
BRMI	k	Перейти якщо мінус	if(N==1) PC = PC + k + 1	None	1/2
BRPL	k	Перейти якщо плюс	if(N==0) PC = PC + k + 1	None	1/2
BRGE	k	Перейти якщо більше чи дорівнює (зі знаком)	if(S==0) PC = PC + k + 1	None	1/2
BRLT	k	Перейти якщо менше (зі знаком)	if(S==1) PC = PC + k + 1	None	1/2
BRHS	k	Перейти якщо прапор внутрішнього переносу встановлений	if(H==1) PC = PC + k + 1	None	1/2
BRHC	k	Перейти якщо прапор внутрішнього переносу очищений	if(H==0) PC = PC + k + 1	None	1/2
BRTS	k	Перейти якщо прапор Т встановлений	if(T==1) PC = PC + k + 1	None	1/2
BRTC	k	Перейти якщо прапор Т очищений	if(T==0) PC = PC + k + 1	None	1/2
BRVS	k	Перейти якщо прапор переповнення встановлений	if(V==1) PC = PC + k + 1	None	1/2
BRVC	k	Перейти якщо прапор переповнення очищений	if(V==0) PC = PC + k + 1	None	1/2
BRIE	k	Перейти якщо переривання дозволені	if(I==1) PC = PC + k + 1	None	1/2
BRID	k	Перейти якщо переривання заборонені	if(I==0) PC = PC + k + 1	None	1/2

Виконувати арифметико-логічні операції й операції читання безпосередньо над змістом комірок пам'яті не можна. Не можна також записати константу чи очистити вміст комірки пам'яті.

Система команд AVR дозволяє лише виконувати операції обміну даними між осередками SRAM і регістрами загального призначення.

Перевагами системи команд можна вважати різноманітні режими адресації комірок пам'яті.

Усі регістри введення/виведення можуть зчитуватися і записуватися через регістри загального призначення за допомогою команд IN, OUT.

Безпосередня установка і скидання окремих розрядів цих регістрів виконується командами SBI і CBI. Команди умовних переходів у якості своїх операндів можуть мати як біти-ознаки результату операції, так і окремі розряди регістрів введення/виведення, що побітно адресуються.

Інструкції передачі даних

Мнемоніка	Операнди	Опис	Операція	Прапори	Цикли
MOV	Rd,Rr	Скопіювати регістр	Rd = Rr	None	1
LDI	Rd,K8	Завантажити константу	Rd = K	None	1
LDS	Rd,k	Пряме завантаження	Rd = (k)	None	2*
LD	Rd,X	Непряме завантаження	Rd = (X)	None	2*
LD	Rd,X+	Непряме завантаження з пост-інкрементом	Rd=(X), X=X+1	None	2*
LD	Rd,-X	Непряме завантаження з пре-декрементом	X=X-1, Rd=(X)	None	2*
LD	Rd,Y	Непряме завантаження	Rd = (Y)	None	2*
LD	Rd,Y+	Непряме завантаження з пост-інкрементом	Rd=(Y),Y=Y+1	None	2*
LD	Rd,-Y	Непряме завантаження з пре-декрементом	Y=Y-1,Rd=(Y)	None	2*
LDD	Rd,Y+q	Непряме завантаження з заміщенням	Rd = (Y+q)	None	2*
LD	Rd,Z	Непряме завантаження	Rd = (Z)	None	2*
LD	Rd,Z+	Непряме завантаження з пост-інкрементом	Rd=(Z), Z=Z+1	None	2*
LD	Rd,-Z	Непряме завантаження з пре-декрементом	Z=Z-1, Rd = (Z)	None	2*
LDD	Rd,Z+q	Непряме завантаження з заміщенням	Rd = (Z+q)	None	2*
STS	k,Rr	Пряме збереження	(k) = Rr	None	2*
ST	X,Rr	Непряме збереження	(X) = Rr	None	2*
ST	X+,Rr	Непряме збереження з пост-інкрементом	(X)=Rr, X=X+1	None	2*
ST	-X,Rr	Непряме збереження з пре-декрементом	X=X-1, (X)=Rr	None	2*
ST	Y,Rr	Непряме збереження	$(\mathbf{Y}) = \mathbf{R}\mathbf{r}$	None	2*
ST	Y+,Rr	Непряме збереження з пост-інкрементом	(Y)=Rr, Y=Y+1	None	2
ST	-Y,Rr	Непряме збереження з пре-декрементом	Y=Y-1, (Y)=Rr	None	2
ST	Y+q,Rr	Непряме збереження з заміщенням	(Y+q) = Rr	None	2
ST	Z,Rr	Непряме збереження	(Z) = Rr	None	2
ST	Z+,Rr	Непряме збереження з пост-інкрементом	(Z)= Rr, Z=Z+1	None	2
ST	-Z,Rr	Непряме збереження з пре-декрементом	Z=Z-1, (Z) = Rr	None	2
ST	Z+q,Rr	Непряме збереження з заміщенням	(Z+q) = Rr	None	2
LPM	Нет	Завантаження з програмної пам'яті	R0 = (Z)	None	3
LPM	Rd,Z	Завантаження з програмної пам'яті	$Rd = (\underline{Z})$	None	3
LPM	Rd,Z+	Завантаження з програмної пам'яті з пост- інкрементом	Rd=(Z), Z=Z+1	None	3
SPM	Нет	Збереження в програмній пам'яті	$(\underline{Z}) = R1:R0$	None	
IN	Rd,P	Читання порту	Rd = P	None	1
OUT	P,Rr	Запис у порт	P = Rr	None	1
PUSH	Rr	Занесення регістра в стек	STACK = Rr	None	2
POP	Rd	Витяг регістра зі стека	Rd = STACK	None	2

Інструкції роботи з бітами

Мнемоніка	Операнди	Опис	Операція	Прапори	Цикли
LSL	Rd	Логічний зсув вліво	Rd(n+1)=Rd(n),Rd(0)=0,C=Rd(7)	Z,C,N,V,H,S	1
LSR	Rd	Логічне зрушення вправо	Rd(n)=Rd(n+1), Rd(7)=0, C=Rd(0)	Z,C,N,V,S	1
ROL	Rd	Циклічне зрушення вліво через С	Rd(0)=C, Rd(n+1)=Rd(n), C=Rd(7)	Z,C,N,V,H,S	1
ROR	Rd	Циклічне зрушення вправо через С	Rd(7)=C, Rd(n)=Rd(n+1), C=Rd(0)	Z,C,N,V,S	1
ASR	Rd	Арифметичне зрушення вправо	Rd(n)=Rd(n+1), n=0,,6	Z,C,N,V,S	1
SWAP	Rd	Перестановка тетрад	Rd(30)=Rd(74),Rd(74)=Rd(30)	None	1
BSET	s	Установка прапора	SREG(s) = 1	SREG(s)	1
BCLR	s	Очищення прапора	SREG(s) = 0	SREG(s)	1
SBI	P,b	Установити біт у порту	I/O(P,b) = 1	None	2
CBI	P,b	Очистити біт у порту	I/O(P,b) = 0	None	2
BST	Rr,b	Зберегти біт з регістра в Т	T = Rr(b)	Т	1
BLD	Rd,b	Завантажити біт з Т у регістр	Rd(b) = T	None	1
SEC	Hi	Установити прапор переносу	C =1	С	1
CLC	Hi	Очистити прапор переносу	C = 0	с	1
SEN	Hi	Установити прапор негативного числа	N = 1	N	1
CLN	Hi	Очистити прапор негативного числа	N = 0	N	1
SEZ	Hi	Встановити прапор нуля	Z = 1	Z	1
CLZ	Hi	Очистити прапор нуля	Z = 0	Z	1
SEI	Hi	Встановити прапор переривань	I = 1	I	1
CLI	Hi	Очистити прапор переривань	I = 0	I	1
SES	Hi	Установити прапор числа зі знаком	S = 1	s	1
CLN	Hi	Очистити прапор числа зі знаком	S = 0	s	1
SEV	Hi	Установити прапор переповнення	V = 1	v	1
CLV	Hi	Очистити прапор переповнення	V = 0	v	1
SET	Hi	Установити прапор Т	T = 1	Т	1
CLT	Hi	Очистити прапор Т	T = 0	Т	1
SEH	Hi	Установити прапор внутрішнього переносу	H = 1	н	1
CLH	Hi	Очистити прапор внутрішнього переносу	H = 0	Н	1
NOP	Hi	Немає операції	Hi	None	1
SLEEP	Hi	Спати (зменшити енергоспоживання)	Дивитися опис інструкції	None	1
WDR	Hi	Скидання сторожового таймера	Дивитися опис інструкції	None	1

Асемблер не розрізняє регістр символів. Операнди можуть бути таких видів:

- Rd: результуючий і вихідний регістр;
- Rr: вихідний регістр;

- b: константа (3 біти), може бути константний вираз;

- s: константа (3 біти), може бути константний вираз;
- Р: константа (5-6 біт), може бути константний вираз;
- К6: константа (6 біт), може бути константний вираз;
- K8: константа (8 біт), може бути константний вираз;
- к: константа, може бути константний вираз;
- q: константа (6 біт), може бути константний вираз;
- Rdl: R24, R26, R28, R30 для інструкцій ADIW і SBIW;
- Х, Ү, Z: регістри непрямої адресації (X=R27:R26, Y=R29:R28, Z=R31:R30).