УДК 519.87; 535.345.67 О. Міца¹, канд.техн.наук; І. Фекешгазі², докт.фіз.-мат.наук ¹Ужгородський національний університет ²Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ВПЛИВУ ДИСПЕРСІЇ НА СПЕКТРАЛЬНІ ХАРАКТЕРИСТИКИ ОПТИЧНИХ ФІЛЬТРІВ НА ПРИКЛАДІ МАТЕРІАЛУ CDP₂

Досліджується вплив дисперсії показника заломлення підкладинки з матеріалу CdP₂ на спектральні характеристики існуючих оптичних фільтрів та при оптимізації параметрів фільтрів. Визначено, що для відрізаючого фільтра типу S-BHB..BHB, вузькосмугового фільтра типу S-BHB..2B..BHB та широкосмугового фільтра типу S-2BH2B..2BH2B вплив дисперсії є невідчутним, а для оптичних фільтрів з оптимальним підбором параметрів відхилення може становити на деяких ділянках спектру 0.5-1%.

від теоретичних розрахунків Вступ. При переході конструювання інтерференційних фільтрів до аналізу параметрів виготовлених структур виявилось, що вони дещо відрізняються [1-3]. Це може пояснюватися не лише можливою технологічною похибкою, а й тим, що при визначенні оптимальних параметрів не враховуються такі реальні явища, як поглинання, а особливо – дисперсія показника заломлення підкладинки (дисперсія характеризує залежність показника заломлення від довжини хвилі $n = n(\lambda)$). Тому метою даної роботи було дослідити важливість даного питання на прикладі матеріалу CdP2, для якого у видимій і в ближній інфрачервоній областях прослідковується дисперсія [4]. Для цього було розв'язано дві задачі. Поперше, досліджено вплив дисперсії показника заломлення підкладинки на спектральні характеристики існуючих оптичних фільтрів. По-друге, досліджено вплив її при оптимізації параметрів оптичних шаруватих структур.

Загальна математична модель. Знаючи, що геометрична товщина шару дорівнює *d*, а показник заломлення – *n*, можемо записати характеристичну матрицю однорідної діелектричної плівки:

$$M(n,d,\lambda) = \begin{vmatrix} \cos\delta(n,d,\lambda) & -\frac{i}{p}\sin\delta(n,d,\lambda) \\ -ip\sin\delta(n,d,\lambda) & \cos\delta(n,d,\lambda) \end{vmatrix}$$
(1)

де $\delta(n,d,\lambda) = \frac{2\pi nd\cos\theta}{\lambda}.$

,

Розглянемо випадок, коли напрям поширення випромінювання співпадає з нормаллю до поверхні розділу. Тому $\theta = 0$ і, відповідно, p = n.

Знаючи характеристичну матрицю одного шару (1), можемо записати характеристичну матрицю *k*-шарової структури:

$$M(\overline{n},\overline{d},\lambda) = M_k(n_k,d_k,\lambda) \cdot M_{k-1}(n_{k-1},d_{k-1},\lambda) \cdots M_2(n_2,d_2,\lambda) \cdot M_1(n_1,d_1,\lambda),$$
(2)

де *M_j* – характеристична матриця *j*-ого шару;

 $\overline{n} = (n_1, n_2, ..., n_{k-1}, n_k)$ – вектор значень показників заломлення;

 $\overline{d} = (d_1, d_2, ..., d_{k-1}, d_k)$ – вектор значень геометричної товщини;

Звідси легко знайти коефіцієнт пропускання багатошарової структури при заданих значеннях \overline{n} , \overline{d} та λ [2]:

$$T(\overline{n},\overline{d},\lambda) = 1 - \left[\frac{n_0(M_{11}(\overline{n},\overline{d},\lambda) + n_s \cdot M_{12}(\overline{n},\overline{d},\lambda)) - (n_s \cdot M_{22}(\overline{n},\overline{d},\lambda) + M_{21}(\overline{n},\overline{d},\lambda))}{n_0(M_{11}(\overline{n},\overline{d},\lambda) + n_s \cdot M_{12}(\overline{n},\overline{d},\lambda)) + (n_s \cdot M_{22}(\overline{n},\overline{d},\lambda) + M_{21}(\overline{n},\overline{d},\lambda))} \right]^2, (3)$$

де n_0 , n_S – показники заломлення зовнішнього середовища і підкладинки відповідно, M_{11} , M_{12} , M_{21} , M_{22} – елементи характеристичної матриці M.

Цільова функція подається у вигляді [2, 5]:

$$\max_{\overline{n},\overline{d}} F(\overline{n},\overline{d}) = \left(\frac{1}{L} \sum_{i=1}^{L} T^2(\overline{n},\overline{d},\lambda_i)\right)^{1/2},$$
(4)

де L – число точок сітки спектрального інтервалу від λ_1 до λ_2 . При рівномірному його поділі з кроком $\Delta\lambda$

$$L = \frac{\lambda_2 - \lambda_1}{\Delta \lambda} + 1.$$
 (5)

При дослідженні вибирались значення $1.35 \le n_j \le 2.6$, $50 \ hm \le d_j \le 750 \ hm$ $(j = \overline{1, k})$, $\Delta \lambda = 10 \ hm$, $\lambda_1 = 600 \ hm$, $\lambda_2 = 1000 \ hm$, $n_0 = 1.0$. В якості підкладинки було вибрано матеріал CdP₂, показник заломлення якого n_S раніше вважався рівним 3.25, але за експериментальними даними його значення залежить від довжини хвилі $n_s = n_s(\lambda)$, тобто для нього має місце явище дисперсії.

Різні моделі апроксимації дисперсії. Експериментальні дані про дисперсію матеріалу CdP₂ [4] наведено в таблиці 1.

T-6	1
гаолиця	I

λ , нм	600	610	620	630	640	650	660	670	680	690	700	710	720	730
n _s	3,50	3,47	3,44	3,42	3,40	3,38	3,36	3,34	3,325	3,31	3,30	3,295	3,328	3,265
λ , нм	740	750	760	770	780	790	800	810	820	830	840	850	900	1000
n _s	3,25	3,24	3,23	3,22	3,21	3,20	3,19	3,185	3,181	3,178	3,16	3,174	3,17	3,17

Для апроксимації даних про дисперсію матеріалів зручно використовувати формули Зельмеєра $n_s(\lambda) = \sqrt{A + B/\lambda^2 + C/\lambda^4 + D\lambda^2 + E\lambda^4}$ або Гартмана $n_s(\lambda) = A + \frac{B}{(C - \lambda)^D}$ [1], де *A*, *B*, *C*, *D*, *E* – шукані величини. Значення параметрів у формулах Зельмеєра і Гартмана (при *D*=1) для експериментальних даних CdP₂ наведено в таблиці 2, а криві, за якими будемо наближати експериментальні дані, наведено на рисунку 1.

Таблиця 2

	Моде	ль Зельмее	cpa	Модель Гартмана					
A	В	С	C D E		A	В	С	D	
8,604	1165525	1165527	0	0	12,417	115466	13393	1	

Рис. 1. Дисперсія показника заломлення CdP₂ (крива 1) та її апроксимації за Зельмеєром (крива 2) та Гартнером (крива 3)

З рисунка 1 видно, що краще наближає експериментальні дані модель Зельмеєра, тому саме її будемо використовувати при дослідженні впливу дисперсії на спектральні характеристики при оптимізації широкосмугових фільтрів для матеріалу CdP₂.

Наведені параметри в таблиці 2, при підстановці їх в формули Зельмеєра або Гартмана, дозволяють визначати показник заломлення $n=n(\lambda)$ для заданого λ , який достатньо точно наближує його експериментальне значення з таблиці 1. Це показує, що немає необхідності зберігати цілі таблиці експериментальних даних, а досить знати значення параметрів формули Зельмеєра або Гартмана для отримання інформації про значення показника заломлення при заданій довжині хвилі. Це може підтвердити і те, що розрахунки, які базувались на основі експериментальних даних про дисперсію показника заломлення матеріалу CdP₂, практично не відрізнялись від розрахунків, які проводились за допомогою апроксимуючої формули Зельмеєра.

Дослідження впливу дисперсії на спектральні характеристики різних оптичних фільтрів. Вплив дисперсії показника заломлення підкладинки з матеріалу CdP₂ на спектральні характеристики відрізаючого фільтра типу S-BHB..BHB, вузькосмугового фільтра типу S-BHB..2B..BHB та широкосмугового фільтра типу S-2BH2B..2BH2B виявився дуже незначним. Особливу увагу було приділено вузькосмуговим фільтрам типу S-BHB..2B..BHB (рис. 2), так як для них важливим будь-яке відхилення довжини хвилі в точці максимуму. Як бачимо з рисунка 2, криві показника пропускання вузькосмугового фільтра співпадають практично всюди, крім несуттєвих для цього фільтра кінців.

Рис. 2. Криві показника пропускання 17-шарового вузькосмугового фільтра типу S-BHB..2B..BHB для підкладинки CdP₂ без врахування дисперсії (крива 1) та з врахуванням дисперсії (крива 2)

Дослідження впливу дисперсії показника заломлення підкладинки при оптимізації параметрів оптичних багатошарових структур задачі (1-5) розглядались на прикладі оптимізації двох оптичних фільтрів – дев'ятишарового двокомпонентного широкосмугового та чотиришарового широкосмугового фільтрів (рис. 3-4). Причому оптимізація параметрів дев'ятишарового двокомпонентного широкосмугового фільтра полягала в оптимальному підборі геометричних товщин при фіксованих значення почергових двох показників заломлення шарів $n_H = 1.45$ та $n_B = 2.1$. Оптимізація параметрів чотиришарового широкосмугового фільтра полягала в оптимальному підборі як геометричних товщин, так і показників заломлення. Для цього також потрібно знати, що реальні найбільш поширені матеріали в даному спектральному діапазоні мають такі показники заломлення: 1.35–1.37, 1.45, 1.6, 1.7, 1.8, 1.9, 1.95, 2.0, 2.05, 2.1. Також було відомо, що для оптимізації параметрів чотиришарового широкосмугового фільтра доцільно використовувати методи Розенброка та найскорішого спуску, які виявились найбільш ефективними, виходячи з критерію надійності і швидкодії [5]. Оптимальні параметри для даних фільтрів задачі (1-5) наведено в таблиці 3.

Рис. 3. Криві показника пропускання дев'ятишарового двокомпонентного широкосмугового фільтра для підкладинки CdP₂ без врахування дисперсії (крива 1) та з врахуванням дисперсії (крива 2)

Рис. 4. Криві показника пропускання чотиришарового широкосмугового фільтра для підкладинки CdP₂ без врахування дисперсії (крива 1) та з врахуванням дисперсії (крива 2)

Оптичні	Чотиришаровий				Πop'e		орий	TRAKA		เกราบารั	uuno		торий
фільтри	широкосмуговий				дев я	дев ятишаровии двокомпонентний широкосмуговии							овии
Шари	1	2	3	4	1	2	3	4	5	6	7	8	9
n_i	2,10	1,45	2,10	1,35	1,45	2,10	1,45	2,10	1,45	2,10	1,45	2,10	1,45
d_i , нм	77	207	166	134	50	50	103	213	79	52	50	247	138

Висновки. При розгляді класичних оптичних багатошарових структур, таких, як відрізаючого фільтра типу S-BHB..BHB, вузькосмугового фільтра типу S-BHB..2B..BHB та широкосмугового фільтра типу S-2BH2B..2BH2B, вплив дисперсії виявився несуттєвим. При оптимізації параметрів оптичних багатошарових структур вплив дисперсії виявився відчутним, і це, в основному, пояснюється наявністю тонких шарів, яких немає в попередніх структурах. Тому відхилення кривих показника пропускання оптичних фільтрів для підкладинки з врахуванням і без врахування дисперсії на деяких ділянках спектру досягає 0.5-1%. Це дає можливість стверджувати про необхідність врахування дисперсії при оптимізації параметрів оптичних багатошарових структур.

The influence of the refractive index dispersion of CdP_2 substrate on spectral characteristics of existing optical filters and in the process of optimization of filter parameters has been studied. It has been found that for a cut-off filter of S-BHB..BHB type, narrow-band filter of S-BHB..2B.BHB type and wide-band filter of S-2BH2B..2BH2B type the influence of dispersion is small and for optical filters with optimal selection of parameters the deviation may be 0.5 - 1% in some parts of the spectrum.

Література

- 1. Хасс Г., Франкомб М., Гофман Р. Физика тонких пленок / Пер. с англ. под ред. А.Г. Ждана і В.Б. Сандомирского. М.: Мир, 1975. Т.8. 359 с.
- 2. Furman Sh., Tikhonravov A.V. Basics of optics of multiplayer systems. Editions Frontiers, Gif-sur Yvette, 1992. 242 p.
- 3. Тихонравов А.В. Синтез слоистых сред. М.: Союзполиграфпром, 1987. 48 с.
- Fekeshgazi I., Borsh V., Koval V., Paterevich V. Byreflection and optical activity of CdP₂ // Physical status solidy, 1977. – V. 44. – K 15–19.
- 5. Міца О.В. Аналіз ефективності методів багатовимірної оптимізації при дослідженні однорідних та неоднорідних структур // Штучний інтелект. Донецьк. 2002. Вип. 4. С. 42–48.

Таблиця 3