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PART 1. DIRECT CURRENT CIRCUITS 
 

Sources and consumers 

Electrical circuit is the multitude of devices designed for transforming, 

distribution and conversion of electrical energy, while the processes which are taking 

places in these devices can be described by the concepts of current, voltage and 

electromotive force (e.m.f.).  

The simplest electrical circuit contains three main elements: electrical source 

(active element), consumer (passive element) and the wires. Besides, the circuit can 

have also additional elements: measuring devices, switches, fuses, contactors, etc.  

Electrical power is transformed into heating, 

mechanical energy, etc. at the consumers. The measure of this 

transformation is resistance R (fig. 1.1). You can see the 

directions of the electrical values at fig. 1.1.  

Ohm’s law for this element is as follow RIV   or 

GVI  , where R  - is resistance, RG /1  - is conductivity. 

The power on resistive element is 22
GVRIP  . 

Heating, mechanical energy, etc. is transformed into electrical power at the 

electrical sources. The measure of this transformation is electromotive force (e.m.f.) 

E (fig. 1.2). You can see the directions of the electrical values at fig. 1.2.  

The ideal electrical source (without losses) is characterized only by E. The 

power on the electrical source is EIP  . 

The real electrical source has losses and is characterized by E and 0
R  (internal 

resistance), which reflects the losses. The simplest electrical circuit is shown at 

fig. 1.3. For this circuit: 

)RR/(EI 
0 , then IREV

0
 , RIV  , ERIIR 

0 . 

We can represent real electrical circuit by two substitution schemes: serial 

(fig. 1.4) and parallel (fig. 1.6). The external volt-ampere characteristic (fig. 1.5) V(І) 

is the main characteristic of the source. Its analytical expression is IREV
0

 . At 

fig. 1.5 solid line indicates the characteristic of real source, dashed line - the 

characteristic of ideal source. Boundary points of this characteristic correspond to the 

E 

V 

a 
b 

a  b 

Fig. 1.2 Fig. 1.3 

I R0  

E V R  

Fig. 1.4 

I R0  

E V 

Fig. 1.5 

V 
E 

I 

a 

a > b 

Fig. 1.1 

R 
b 

 
V 
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source boundary modes – open circuit (idle) mode (without loading), when 0I , 

OC
VEV   and short circuit mode, when 0V , SC

II  . The external characteristic 

of ideal source EV   is represented by dashed line at fig. 1.5.  

Parallel substitution scheme (fig. 1.6) consists of ideal current source J  and 

internal conductivity 0
G , which characterizes the losses. The external characteristic 

of real source (fig. 1.7) is described by the equation UGJI
0

 . The external 

characteristic of ideal source JI   is represented by dashed line at fig. 1.7. 

Serial and parallel schemes are equivalent, it means you can transform one into 

another using such formulas: 

JGE
0

 , 00
/1 GR  , 0

/ REJ  , 00
/1 RG  . 

The efficiency factor of the source characterizes the efficiency of energy 

transforming from the source to consumer:  

E

V

EI

VI

P

P

E

R  ,  EV  , 

where R
P  - is a consumer power, E

P  - is a source power.  

We can also write down the efficiency factor using the elements parameters: 

R/RRR

R

IRRI

RI

PP

P

R

R

00

2

0

2

2

1

1











 , 

where P  - are power losses. 

There are three main electrical circuit modes: nominal, operating and 

boundary.  

The nominal mode is the best mode for the working device, the device nominal 

parameters are shown in its technical passport ( NOM
I , NOM

V , NOM
P ). 

Operating mode is a mode, where the deviation from the nominal parameters is 

not big.  

Boundary modes are: open circuit or idle (non-working) and a short circuit 

(emergency) modes. For the open circuit (o.c.) mode R= , then using the scheme at 

fig.1.3, we can write down: 

0
00








R

E

RR

E
I , EIREV 

0 , 1 . 

For short circuit mode (s.c.) R=0, then using the scheme at fig.1.3, we can 

write down: 

RIV  , V=0, SC
IREI 

0
/ , 0 . 

The methods of open circuit and short circuit experiments can be used for 

defining the parameters of the source ( 0
, RE ): SCOC

IEREV /,
0
 . The experiment 

Fig. 1.7 

I 
J 

V 

Fig. 1.6 

J 

J V G0 

I 
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of s.c. mode is provided at low voltage.  

Electrical source operating modes: 

- voltage generator, when the voltage at the clamps of the source practically 

does not depend on the current, thus EV  , and this mode is close to o.c. In this 

mode RIIR 
0  (fig.1.4), that’s why the condition of it is RR 

0  and 1 . This 

is the main operating mode of electrical engineering devices.  

- current generator, when the current at the clamps of the source practically 

does not depend on the voltage, thus JI  , and this mode is close to to s.c. In this 

mode GUUG 
0  (fig.1.6), that’s why the condition of it is GG 

0  ( RR 
0 ).  

-balanced mode – the maximum power 
2

IRP   is transferred from the source 

to the consumer at this mode? )RR/(EI 
0 , and 

2

0

2
)RR/(REP   at this mode. 

The condition of this mode comes out from the expression 0/ dRdP , that 

means RR 
0  and 5.0 . This mode is used in electronics.  

 

Connections of elements 

There are two types of elements connections in electrical circuits, they are 

simple and complex. The major difference between those two types is that we know 

the directions of currents before we calculate the circuit with simple connection and 

don’t know the directions of currents at the circuits with complex connections, that’s 

why we choose them arbitrarily. 

There are three types of simple connection: serial, parallel and mixed. 

When the elements are connected in serial (fig.1.8), the same current I  is 

flowing through them. The total resistance of serial connection is n
RR  .  

The input voltage (fig.1.8) 

IRVVVV
NNN

 ...
1 . 

The power of this circuit  

NNN
PIRIIRVIP 

2
, 

where VIP   – the power of the source, N
P  – the 

power of the consumers.  

When the elements are connected in parallel 

(fig. 1.9), the same voltage V  is applied to them. 

The total conductivity of parallel connection is n
GG  .  

The total current of the circuit (fig.1.9):  

VGIIII
NNN

 ...
1 .  

The power of this circuit:  

NNN
PVGVVGVIP 

2
.  

For two elements connected in parallel:  

21

12

21

21

11

RR

RR

RR
GGG


 , 

R1 

VN 

V 

RN 

V1 

Fig. 1.8 

I 

I 

R V 

Fig. 1.9  

GN 

I1 I 

G1 

IN 

V 

I 

G V 
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21

21
1

RR

RR

G
R


 . 

 The circuit with two elements connected in serial (fig.1.10) can be used as 

voltage divider.  

21
RR

V
I


 ,  

21

1

11
RR

R
VIRV


 ,  

21

2

22
RR

R
VIRV


 . 

 The circuit with two parallel connected elements (fig.1.11) can be used as 

current divider.  

21

21

RR

RR
IV


 , 

21

2

11
/

RR

R
IRVI


 , 

21

1

22
/

RR

R
IRVI


 . 

 We can replace the mixed (serial-parallel) connection (fig. 1.12) by one 

equivalent (total) resistance R :  

)RR/(RRR
323223

 ,  231
RRR  .  

We can also replace the mixed (parallel-serial) connection (fig. 1.13) by one 

equivalent (total) resistance R :  

3223
RRR  ,  

231231
RR/RRR   

The complex connections are DELTA (fig. 1.14) and WYE (fig. 1.15).  

We can know real directions of the currents only after calculation. We can also 

transform DELTA into WYE using such expressions:  

R1 

Fig. 1.10 

V R2 

V1 

V2 

I 

Fig. 1.11  

R2 

I1 

I 

R1 

I2 

V 

Fig. 1.14 

Rca Rab 

c 
Rbc 

a 

b 

o 

c 

Ra 

Rb Ra

b 

a 

b 

Fig. 1.15  

R23 R1 

Fig. 1.12 

R3 

R2 

R1 R 

Fig. 1.13 

R2 

R1 

R3 R23 

R1 

R 
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cabcab

caab

a
RRR

RR
R


 , 

cabcab

bcab

b
RRR

RR
R


 , 

cabcab

bcca

c
RRR

RR
R


 .  

We use the simplification method to calculate the circuits with one source. To 

use this method we must:  

 simplify the circuit to one equivalent resistance;  

 calculate the total current by using Ohm’s law;  

 revert back the circuit and calculate the branch currents and voltages across 

the elements;  

 verify the calculation by using the power balance equation.  

 
The calculation of electrical circuits with several sources 

We can use several methods, which are based on Kirchhoff’s laws. 

Current law (Kirchhoff’s first law) states that the sum of the currents entering 

the node is equal to the sum of the currents leaving the node 0
n
 I (the algebraic 

sum of the currents in the node is equal to zero). 

Voltage law (Kirchhoff’s second law) states that the algebraic sum of all 

voltages across passive elements around a loop is equal the algebraic sum of electro-

motive forces around the same loop nnn
EIR  .  

Branch of the circuit is the part of the circuit with the same current, it may be 

consisted from one or several elements connected in serial. 

Node is the place where three or more branches are connected. 

Loop is any closed path around the circuit. 
 

Kirchhoff’s laws method 

Let`s suppose the circuit has p  branches and q  nodes. There’ll be p  

unknown currents. We must solve the system of p  equations to find them.  

First, you have to choose the directions of branch currents arbitrarily and mark 

them at the scheme, then mark the nodes and the loops. After this, it is necessary to 

write down 1q  nodes equations according to Current lawand 1 qp  loop 

equations according to the Kirchhoff’s second law. 

After the system of equations is solved, some currents may have sign “-“, it 

means that the real directions of that current is opposite to the one we have chosen at 

the beginning.  

Let`s write down the system of equations for the scheme at fig.1.16. There are 

5 branches 5p  and 3 nodes 3q  here.  

The equations according to current law( 21q ) for the nodes 1 and 2:  

I5 
I1 

E5 E1 

Fig. 1.16 

R3 

I2 

R5 

L1 

R1 

R2 L3 R4 L2 

I3 

I4 

1 2 

3 
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453

321

2“ “

1“ “

III

III




  (1) 

The equations according to voltage law ( 31 qp ) for the loops 1
L , 2

L , 3
L  

(we choose the directions along the loops clockwise, if the directions of our bypass 

and the voltage or e.m.f. are the same, we denominate it with “+“, if opposite with 

“-“). 

555443

4433222

122111

“L “

0“L “

“L “

EIRIR

IRIRIR

EIRIR







  (2) 

So, the equation system according this method will be:  

55544

443322

12211

543

321

0

0

0

EIRIR

IRIRIR

EIRIR

III

III











 (3) 

After solving this system we get the unknown branch currents. 

We apply the equation of power balance to verify our calculations: the total 

power of the sources should be equal to the total power of the consumers ER
PP  . 

The total power of the sources 5511
IEIEIEP

nnE
 . The total power of the 

consumers 
2 2 2 2 2 2

1 1 2 2 3 3 4 4 5 5R n n
P R I R I R I R I R I R I       . 

 

Loop currents method 

This method has less equations than previous and is based on the voltage law. 

Let’s suppose that we have three loop currents 321
,,

LLL
III  at circuit (fig. 1.17), the 

directions of these currents we choose arbitrarily. Then we can write down branch 

current by using loop currents: 11 L
II  ,  212 LL

III  , 23 L
II  , 35 L

II  , 

324 LL
III  . 

We have to substitute these expressions in the equations of voltage law: 

555443

4433222

122111

“L “

0“L “

“L “

EIRIR

IRIRIR

EIRIR







 

Fig. 1.18 

I3 

I1 I2 I4 I5 

I5 
I1 

E5 E1 

Fig. 1.17 

R3 

I2 

R5 

IL1 

R1 

R2 IL3 R4 IL2 

I3 

I4 

1 2 

3 
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We get the following:  















535424

34243212

122121

)(

0)(

)(

EIRRIR

IRIRRRIR

EIRIRR

LL

LLL

LL

             (4) 

Let’s mark:  

2111
RRR  , 43222

RRRR  , 5433
RRR   - it’ll be individual resistances of the 

loops, which are equal to the sum of all the resistances of the loop;  

22112
RRR  , 0

3113
 RR , 43223

RRR   - mutual resistances of the loops, the 

resistances of the branches which are mutual for the respective loops;  

11
EE

L
 , 0

2


L
E , 53

EE
L

  - loops e.m.f., is equal to the algebraic sum of the 

electromotive forces of the loops.  

Using these markings, system (4) looks like (5), that can be used for any circuit 

with three independent loops:  















3333232131

2323222121

1313212111

LLLL

LLLL

LLLL

EIRIRIR

EIRIRIR

EIRIRIR

.                  (5) 

 

Nodal potential method 

This method has less equations than previous one and is based on current law. 

Let’s analyze the circuit on fig.1.19. There are two independent nodes b,a . Try to 

suppose that the potential of the basic (dependent) node is equal to zero, so the 

potentials of other nodes are marked at the scheme as ,
a b

   (fig. 1.19).  

We can also write down the branch currents using node potentials:  

111
IRE

a
 , ,G)E(

R

)E(
I

a

a

11

1

1

1






  

22
IR

a
 , 

2

2

2
G

R
I

a

a 


 ,  44
IR

b
 , 

4

4

4
G

R
I

b

b 


 , 

33
IR

ba
 , 

3

3

3
G)(

R

)(
I

ba

ba 





 , 

555
IRE

b
 , 

55

5

5

5
G)E(

R

)E(
I

b

b 





 . 

Let’s substitute these expressions into the equations for the nodes b,a  

b a 

c I5 
I1 

E5 E1 

Fig. 1.19 

R3 R5 R1 

R2 R4 

I2 

I3 

I4 

φa 

φb 
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0

0

543

321





III

III
, 

we get 









555433

113321

EG)GGG(G

EGG)GGG(

ba

ba




.   (6) 

Let’s mark:  

 32111
GGGG  , 54322

GGGG   - the individual conductivities of the 

nodes, it’s the sum of the branch conductivities which coming in the node; 

 32112
GGG   - the mutual conductivities of the nodes, the conductivity of the 

branch, which connects respective nodes; 

 11
EGJ

a
 , 55

EGJ
b
  - the algebraic sum of the currents of current sources, 

which are flowing in the respective nodes. If the current J  of the source flows in the 

node, we mark it by the sign “+“, when it flows out – with sign “-“. 

Using these markings, system (6) looks like (7), that can be used for any circuit 

with two independent nodes:  









bba

aba

JGG

JGG





2212

1211
.  (7) 

 

Two nodes method 

This method is used for calculating the circuits with only two nodes and 

several parallel branches. The example of such circuit is on fig.1.20. This method is 

also based on the Current law and is partly the method of nodal potentials. First of all, 

we calculate the inter-node voltage 

nnn
GEGV  / , where nG - conductivity of n 

branch, nE - e.m.f.of n branch. For the circuit on 

fig. 1.20  it’ll be  

1 1 2 2

1 2 3

ab

G E G E
V

G G G




 
. 

Then we calculate the branch currents 

using such expressions: 

33
IRV

ab
 , 

3

3

3
GV

R

V
I

ab

ab  , 

111
IREV

ab
 , ,)(

)(
11

1

1

1
GVE

R

VE
I

ab

ab 


  

222
IREV

ab
 , 

22

2

2

2
)(

)(
GVE

R

VE
I

ab

ab 


 . 

 

The superposition method 

We can use this method when the e.m.f. of one source is changed. The method 

based on the superposition principle, means that every e.m.f. acts in the circuit 

Fig. 1.20  

I1 

R1 

E1 

R3 

R2 

I2 

E2 

Vab 

I3 

a 

b 
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independently. So, the calculation of one circuit (fig. 1.20) with two sources, for 

example, can be reduced to the calculation of two circuits with one source (fig. 1.21, 

1.22).  

According to this method, we must calculate two partial circuits with partial 

currents. We have only e.m.f. 1
E  in the first partial circuit (fig. 1.21).  

The total resistance of this circuit: 2 3

1

2 3

R R
R R

R R
  


.  

The partial branches currents: 1 1
/I E R  , 3

2 1

2 3

R
I I

R R
 


, 2

3 1

2 3

R
I I

R R
 


. 

We have only e.m.f. 2
E  in the second partial circuit (fig. 1.22).  

The total resistance of this circuit: 1 3

2

1 3

R R
R R

R R


  


. 

The partial branches currents: 2 2
/I E R  , 3

1 2

2 3

R
I I

R R
 


, 1

3 2

1 3

R
I I

R R
 


. 

Then we have the real branch currents as an algebraic sum of the respective 

partial currents (fig. 1.20):  

111
III  , 222

III  , 333
III  . 

 

Equivalent generator method 

The method is used when it is necessary to calculate the current of only one 

branch of the circuit (for example it is varying resistor or non-linear element in this 

branch). We select the branch with unknown current (e.g. 3
I ) from the circuit on 

fig. 1.20 and the rest of the circuit is replaced by the equivalent generator (fig. 1.23) 

with parameters 
eqv

E  - equivalent e.m.f., which is equal to the open circuit voltage on 

the clamps of an open branch ab and 
eqv

R – equivalent resistance, which is equal to the 

input resistance of the circuit in respect to the open branch ab. The problem is to 

Fig. 1.21  

I1 

R1 

E1 

R3 

R2 

I2 I3 

 
Fig. 1.22  

I1 

R1 

R3 

R2 

I2 

E2 

I3 

b 

a I3 

V3 R3 Eеqv 

Rеqv 

Fig. 1.23 Fig. 1.24  

R1 

E1 

R2 

E2 

I 

a 

I 

 
b 

Voc 
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calculate the parameters of equivalent generator 
eqv

E  and 
eqv

R . For the circuit at 

fig. 1.20 1 3

1 3

екв

R R
R

R R



. Then we can calculate 

eqv
E  using fig. 1.24 

IREEV
eqvOC 11

 , where 1 2

1 3

E E
I

R R





. 

According to the fig. 1.23 we calculate unknown current )/(
23

RREI
eqveqv
 . 

 

Direct currents non-linear circuits 

Non-linear circuits consist of one or more 

non-linear elements. We call an element non-linear 

when its resistance is not constant and depends on 

voltage, current, temperature, light, etc. The volt-

ampere characteristic (VAC) )(IV  is the main 

characteristic of non-linear element and it’s non-

linear (fig. 1.25).  

 There are non-controlled and controlled 

non-linear elements. Non-controlled elements 

have two clamps (lamps, diods), controlled 

elements have three or more clamps (transistors, 

thyristors). VAC of non-linear elements may be symmetrical or non-symmetrical. If 

the resistance of the element doesn’t depend on the direction of the current and the 

polarity of voltage then the characteristic is symmetrical. We can present VAC by 

graphs, tables or formulas )(IV . 

Non-linear circuits can be calculated by analytical or graph methods. If we use 

graph method we define the voltage and current of the circuit using VACs of the 

elements. We can use Ohm’s and Kirchhoff’s laws as well. Analytical methods (two 

nodes method and equivalent generator method) can be used when the VAC is 

presented by a formula. 

Non-linear element is characterized by static and dynamic resistance. We can 

calculate them for every point of VAC (at fig.1.25 for work point – w.p.):  

0 0
/ ,

S
R V I  / /

ä
R V I dV dI tg     , 

 – the angle between axe X and tangent to working point (w.p.). 0
S

R  , 0
ä

R   

when VAC rise and 0
ä

R   when VAC drops. 

I 

 

V0 

Fig. 1.25 

 

V 

I 

I0 

V 

α 

w.p. 
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PART 2. ALTERNATING CURRENT (AC) 
 

Instantaneous value of AC is a value at every time moment, so it depends on 

the time: )tsin(I)t(i
Im

  . Instantaneous value of alternating voltage is 

)sin()(
Vm

tVtv    (fig. 2.1).  

AC is characterized by such 

parameters: m
I  - amplitude, maximum value 

during the period, period T , cyclic frequency 

T/f 1  (quantity of periods per second) 

(Hz), angular frequency f 2  (rad/s), 

phase )t(
I

  , initial phase I
  (phase 

shift from zero). 

Phase shift angle is: IV    

(fig. 2.1). 

Average current value per half of period is:  





 0

sin
1

dttII
mAV

, /2 mAV II 
m

I637.0 . 

Effectiv e value of AC )(ti  (RMS – root-mean-square) 

is equal to such a value of DC I , which generates the 

same amount of energy per period 2T , as AC )(ti . 

Amount of energy per period of AC: 

TRIdtRiQ
m

T

2

0

2
 

. 
T

dtRi
0

2  

Amount of energy per half a period of DC: TRIQ
2


 . 


 QQ , so TRIdtRiQ

T

2

0

2
 

 and RMS value will be 

equal: 
T

dtRi
T

I
0

21
. 

TRIQTRIQ
m

22


 , thus AC effective value is 2/
m

II  m
I707.0 . 

AC can be represented by the time diagram (fig. 2.1), vector (fig. 2.2) and 

complex number.  

When AC )sin( Im tIi    is represented by vector, the length of this vector is 

proportional to the amplitude m
I , and angle between this vector and axis X is 

I
t   . The positive rotation direction will be counterclockwise. In that case, the 

vectors of current and voltage will be rotating with the same angular frequency   

counterclockwise. It is convenient to fix them at the time moment 0t  (fig. 2.2), in 

  

 

 t 

 I 

Im, t>0 

Fig. 2.2 

Im, t=0 

 

  

1 

j 

 t 

I  

Ime j(t+I) 

Fig. 2.3 

Ime jI
 

φ 

ψV 

Vm Im 

ψI 
t 

i 

Т 

v 

Fig. 2.1 
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that case the angle I
   (initial phase).  

Vector diagram consists of several vectors of currents and voltages, which 

represent real sinusoidal currents and voltages starting from the same point. It’s better 

to build a vector diagram for the effective values of the currents and voltages 

2/mII  , 2/mVV  . One of the vectors is chosen as a basic one, it is the vector of 

current when the connection is in serial one and the vector of voltage when the 

connection is in parallel. 

The AC can also be designated by the complex number 
( )

( ) sin( )
j t i j i j t j t

mm I m m
i t I t I e I e e I e

      
     (it’s an exponential form of complex 

number). AC on the complex surface is shown on fig. 2.3, where “ 1 ” is a real axis 

and “ j ” is an imaginary axis. 
j i

m m
I I e


  is then called an amplitude complex, 

ij

m eII


)2/(  is accordingly an effective complex that corresponds to the 

instantaneous current (at the moment 0t ) and doesn’t depend on the time (fig. 2.3). 

Amplitude complex doesn’t contain the frequency but it is not so important because 

circuit’s voltage and current have the same frequency.  

 
Complex numbers 

 Complex number c  has two presentation forms: 

algebraic jbac   (where a  is a real part and b is an 

imaginary part) and exponential 
j

cec   (where c  is a module 

and   is an argument) (fig. 2.3a). One form can be converted 

into another by using the following expressions: 
22

bac  , 

)/( abarctg , cosca  , sincb  , j  is a symbol for the 

imaginary part (also known as rotating operator – see below 

why). Thus jbaecc
j




. It’s more convenient to use the algebraic form when 

adding complex numbers jbabbjaajbajba  )()()()( 21212211
, and 

exponential form for multiplication and division of the complex numbers: 

 jjjj
ececcecec 

 )(

2121

2121 , 






jj

j

j

ece
c

c

ec

ec


 )(

2

1

2

1 21

2

1

. The number 

j
ecjbac


  is called a complex conjugate to number 
j

ecjbac  . 

 

Consumers at AC circuit 

Expressions for instantaneous current and voltage are correspondingly: 

)sin(
Im

tIi   , sin( )
m U

v V t   . 

The voltage for the resistive element (fig.2.4) (active resistance) is  

sin( ) sin( )
m v m i

v V t Ri RI t         

according to Ohm`s law, where m m
V RI , 

V RI , phase expression v i
   and phase shift 

angle makes 0
v i

     . Resistance of this element is R  (Ω) and conductance is 

c 

1 a 

b 

0 

j 

α 

Fig. 2.3a 

c 

Fig. 2.4 

R 

v 

i I V 

Fig. 2.5 
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thus RG /1  (Sm). Vector diagram for this element is shown on fig. 2.5. Active 

power of resistive element is accordingly 
2 2

P R I GV  (W).  

Inductance L (H) is correspondingly the main parameter for the ideal inductive 

element (fig. 2.6). The differential form of Ohm`s law is thus applied accordingly:  

 )sin()sin(
im

L

VmL
tI

dt

d
L

dt

di
LtVv   

)2/sin()cos(  
imim

tLItLI , 

where m m
V LI , L

V X I , reactance LX
L

 (Ω), 

susceptance LB
L

/1  (Sm), phase expression 

/ 2
v i

    , phase shift angle makes 

/ 2
v i

      , it means voltage leads current. In 

case of DC: 0 , 0
L

X , 
L

B . Vector diagram 

for this element is shown on fig. 2.7. Reactive power for L  element makes 
2 2

L L L
Q X I B V  (VAr). 

Capacitance C  is the main parameter for the ideal capacitive element (fig. 2.8). 

Integral form of Ohm`s law is applied in this case:  

  )cos(
1

)sin(
11

)sin(
imimVmC

tI
C

tI
C

dti
C

tVv 


  

 

)2/sin(
1

)cos(
1








imim

tI
C

tI
C

,  

where 1
m m

V I
C

 , C
V X I , reactance )/(1 CX C   (Ω), susceptance 

CB
C

  (Sm) , phase expression / 2
v i

    , phase shift angle makes 

2/ 
iv , it means voltage lags current. In case of DC: 

0 , 
C

X , 0
C

B . Vector diagram for this element is shown 

on fig. 2.9. Reactive power for this element makes thus 
2 2

C C C
Q X I B V   (VAr).  

The complex designation for current, voltage, derivative and integral functions 

are accordingly:  
ij

m eIIIi


 2/ , Vj

m eVVVv


 2/ , 

jdtd / ,  /)/(1 jjdt  . 

Complex form of Ohm`s law equation for R-element is thus:  

 Riv IRV  , iV jj
eRIVe


 , 

0,Re)/(/
)(




 jjjj iViV eIVeIeVR . 

Complex form of Ohm law equation for L-element is accordingly:  

 dtLdiv /  ILjV  , iV jj
eLIjeV


 , 

complex reactance is  


 j

L

jjj
eXeIVeIVeLj iViV 

 )(
)/(/ , 


90 , 

Fig. 2.6 

v 

L i 

 I 

V 

Fig. 2.7 

Fig. 2.8 

 

 

v 

i C 

 

V 

Fig. 2.9 

I 
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complex susceptance is LjeB
j

L


/


. Multiplication by j  means 

counterclockwise rotation for 


90 . That’s why j  is called a rotation operator. 

Complex form of Ohm`s law equation for C-element is accordingly:  

Cidtv /    ICjV )/1(  , iV jj
eICjeV


 )/1( , 

complex reactance is  
iV jj

eIeVCj


 /)/1(  
 )(

)/( iVj
eIV


 

j

C eX , 


90 , 

complex susceptance is CjeB
j

C





. Multiplication by j  means clockwise 

rotation for 


90 .  

Serial connection of consumers at AC circuit 

Electrical status equations for the circuit (fig. 2.10) for voltage instantaneous 

values and voltage vectors are accordingly:  

vvvv
CLR
 , VVVV CLR  . 

Vector diagram is shown on fig 2.11. The calculated 

triangles for voltages, resistances and powers (fig. 2.12) 

are obtained from this diagram. Out of those triangles:  
22

)(
CLR

VVVV  , RCL
VVVarctg /)(  , 

aR
VVV  cos , rCL

VVVV  sin ,  

-these are active and reactive constituents of the applied 

voltage V . Therefore circuit impedance makes:  
22

)(
CL

XXRZ  , )/)(( RXXarctg
CL

 , 

cosZR  , sinZXXX
CL
  - 

these are resistance and reactance of the circuit. 

Total power makes thus: 
22

)(
CL

QQPS  (VA), PQQarctg
CL

/)(  , 

 coscos VISP  ,  sinsin VISQQQ
CL

  

- these are active and reactive powers of the circuit. 

 Circuit complex form electrical status equation is:  

VICjILjIR  )/( . 

Complex impedance makes thus: )()/(
CL

XXjRCjLjRZ   .  

Expression for Ohm`s law is accordingly:  

 IVZ / 
 )( IV

I

V

j

j

j

e
I

V

eI

Ve 





jXRjZZZe
j

 
sincos . 

R 

L 
 

C 

Fig. 2.10 

VC VL 

VR V 

V 

φ 

VC 

VL 

V

R 

I 

Fig. 2.11 

Fig. 2.12 
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V 
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L
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 
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Parallel connection of consumers at AC circuit 

Circuit electrical status equations (fig. 2.13) for current instantaneous values 

and current vectors are accordingly:  

iiii
CLR
 , IIII LCR  . 

Vector diagram is shown on fig. 2.14. The calculated triangles of currents and 

conductivities are obtained from this diagram (fig. 2.15). From those triangles we get 

subsequently:  
22

)(
LCR

IIII  , )/)((
RLC

IIIarctg  , 

aR
III  cos , rLC

IIII  sin  - these are active 

and reactive constituents of the current.  

Circuit admittance makes: 
22

)(
LC

BBGY  ,  GBBarctg
LC

/)(   , 

cosYG  , sinYBBB
LC
  

 - these are conductance and susceptance of the circuit.  

Electrical status equation for the circuit in complex 

form is accordingly: IVLjVCjVG  )/( . 

Complex admittance makes: 

)()/(
LC

BBjGLjCjGY   .  

Expression for Ohm`s law is 

thus:  VIY / 
 )( VI

I

V

j

j

j

e
V

I

eV

Ie 





jBGjYYYe
j


 

sincos . 

Total complex power makes accordingly:  


 IVS 
  jjjj

SeVIeIeVe iVIV )(  

jQPsinjScosS   , 

where real part of complex number cosSP   – is an active power, imaginary part of 

complex number sinSQ   – is a reactive power. 

To check the calculation of the circuit you may use power balance equations: 

the active power of the source must be equal to the active powers of the consumers: 

 consps
PP , 

cosVIP
ps
 , 

22

22

2

11
...

nncons
IRIRIRP   , 

the reactive power of the source must be equal to the reactive powers of the 

consumers:  consps
QQ , 

sinVIQ
ps
 , 

22

22

2

11
...

nncons
IXIXIXQ   , 

where n
I  – is an effective value of the branch n -th current, n

R – resistance of the n -th 

branch, CnLnn
XXX   – reactance of the n -th branch. 

IL 

L C R 

IR I 

V 

IC 

Fig. 2.13 

I 

 IR 

IL 

IC 

V 

Fig. 2.14 

G 
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B
C
-B

L
 

 

 
IR 
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 I
C

 -
I L

 

 

Fig. 2.15 
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The transformation formulas must be used to calculate the alternating current 

circuits. The admittance is inversely to impedance:  

jBG
XR

X
j

XR

R

XR

jXR

jXRZ
Y 















222222

11
. 

So, the following formulas must be used to transform serial connection into 

parallel (fig. 2.16): 

,
)(

22
XR

R
G


  

)(
22

XR

X
B


 . 

It is obtained from the calculation triangles of resistances (Fig. 2.17a) and 

conductivities (Fig. 2.17b): 

Y

G

Z

R
cos , 

Y

B

Z

X
sin , 

Thus the following formulas must be used to transform parallel connection into 

serial (fig. 2.18): 

222
BG

G

Y

G

Y

ZG
R


  , 

222
BG

B

Y

B

Y

ZB
X


 . 

 

The real coil can be represented by serial and parallel substitution schemes 

(fig. 2.16). The elements of this scheme: L  - is an ideal inductance 

)/(1, LBLX   , R (G ) – represents power losses. The coil quality can be 

estimated by Q - factor:  

tgRXPQd
L

 // . 

The real capacitor can be represented by serial and parallel substitution 

schemes (fig. 2.18). The elements of this scheme: C  - is an ideal capacitance 

)/(1, CXCB    R (G ) – represents power losses.  

The capacitor quality can be estimated by loss tangent:  

 


90,//
C

XRQPtg . 

Power factor determines the efficiency of using electrical energy: 

Fig. 2.16 

R X 
а G 

B 

b 

Fig. 2.18 

B 

G а 

R X 

b 

R 

Z 

 

X
=

X
L
 -

 X
C
 

 

Fig.2.17a 

G 

Y 

B
=

B
C
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L
 

 

Fig.2.17b 
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22
//cos QPPSP  , 

P - is an active useful power, Q - reactive, non-useful power (for electromagnetic 

field creation).  

In ideal case power factor depends on the loading character 
22

//cos XRRZR  . 

1cos   must be provided to avoid the work of electrical devices at idle mode. Most 

of the devices consume the active-inductive power ( P  and L
Q ). Capacitors C  must 

be connected in parallel to such devices to enhance cos , thus CL
QQ  . Reactive 

power, which is non-useful power 0 QQQ
CL , so 1cos   is maximum. 

 

Voltage resonance 

Voltage resonance take place at the circuit with serial connection of L, C 

elements (fig. 2.10). CL
VV   at resonance mode, so the condition of voltage 

resonance is CL
XX  , it means 

)/(1
00
CL   ,   

Thus 1
2

0
LC  and, resonance frequency  

LC/1
0
 . 

Resonance can be reached by changing C , L  or 0
 .  

)/(1
00
CL   , CL /  is called wave resistance. 

At resonance mode   

0
CL

XXX , RXRZ 
22

, 

0 QQQ
CL , PQPS 

22
, 0 . 

Total current RVZVI //   is at maximum, what is an indication of the voltage 

resonance. Frequency characteristics of the circuit LX
L

 )( , )/(1)( CX
C

  , 

)()()( 
CL

XXX   are shown at fig. 2.19. When 0
  , 0X , 0 , reactance 

has inductive character. When 0
   0X , 0  reactance has capacitive 

character. 

Fig. 2.19 

 

XL 

XC 

X 

0 

c 

 

X 

 

ω0 

I  
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At fig. 2.20 resonance curve )(I  and at fig. 2.21 vector diagram for resonance 

mode are shown. 

Phase-frequency characteristic 
R

CL
arctg

)/(1
)(





  is shown at fig. 2.22 

and the resonance curves of voltages )(
R

V , )(
L

V , )(
C

V  at fig. 2.23 accordingly. 

Voltage resonance should be avoided, because the voltage across the elements 

may several times exceed the nominal value. 

 

Current resonance 

Current resonance takes place at the circuit with parallel connection of L, C 

elements (fig. 2.24). CL
II   at resonance mode, so the condition of voltage 

resonance for real circuit is CL
BB  , that means 

)/(1))(/(
0

2

0

2

0
CLRL   . 

For ideal circuit ( 0R ) the condition is )/(1
00
CL   .   

Thus 1
2

0
LC , resonance frequency LC/1

0
 .  

The resonance can be reached by changing C , L  or 0 .  

At resonance mode  

0
LС

BBB , GBGY 
22

, 

0 QQQ
CL , PQPS 

22
, 0 . 

0 

Fig. 2.22 
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Total current VGVYI   is at minimum, what is the indication of the current 

resonance. 

Frequency characteristics of the ideal (R=0) circuit )/(1)( LB
L

  , 

CB
C

 )( , )()()( 
LC

BBB   are shown at fig. 2.25. Susceptance has an 

inductive character when 0
  , 0B , 0 . Susceptance has a capacitive 

character, when 0
  0B , 0 . 

Vector diagram for resonance mode is shown at fig. 2.26. Resonance curves 

)(I , VBI
LL

)( , VBI
CC

)(  and phase-frequency characteristic )(  are shown 

at fig. 2.27 and 2.28. 

Voltage resonance on one hand should be avoided, because the current across 

the elements may several times exceed the nominal current, but on the other hand the 

resonance can be applied for rising power factor and as the working mode of some 

electronic devices. 

Fig. 2.27 
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PART 3. THREE-PHASE CIRCUITS 
 

Three-phase electro-motive-force circuit system is the set of three sinusoidal 

e.m.f. with the same frequency   and out of 

phase with each other by 3/2  (


120 ). Phase is 

the part of the circuit with the same current. The 

amplitudes of e.m.f. are marked accordingly:  

CmBmAm
EEE ,, , if they are equal, such system is 

called balanced.  

The instantaneous values of e.m.f. 

(fig. 3.1) are:  

tEe
AmA

sin , )120sin(


 tEe
BmB

 , )120sin(


 tEe
CmC

 . 

Phase sequence is the time order in which the e.m.f. pass through their 

respective maximum values (or through zero value). Phase sequence ABC is called 

positive (fig. 3.1), the reverse phase sequence ACB be called negative.  

The following requirements are met for three-phase balanced electro-motive 

force system:  

phCBA
EEEE  . 

The following expressions are true having disregarded losses at power sources:  

AA
VE  ,  BB

VE  ,  CC
VE  , 

where A
V , B

V , C
V  – are source phase voltages (between the lines and neutral point N 

(fig. 3.3). These voltages in complex form are presented as:  
0j

AA eVV  ,  
120j

ВВ eVV


 , 
120j

СC eVV  . 

Linear voltages (between lines, which connect the 

sources and the consumers) (fig. 3.4) in complex form are:  
30j

AВBAAВ eVVVV  ,  
90j

ВСCBВС eVVVV


  
150j

CAACCA eVVVV  . 

Linear voltage is equal to the difference between 

corresponding phase voltages and lead the phase of the first one for 


30 (fig. 3.2). 

Vector diagram (fig. 3.2) illustrates relationship between phase and linear voltages. 

Three-phase circuit consists of three-phase electro-motive force system, three-

phase loads and connection wires.  

The most common types of connection the three-phase sources and consumers 

are WYE (Y ) (fig. 3.3) and DELTA ( ) (fig. 3.7). 

At WYE connection the ends of source phases windings (fig. 3.3) are 

connected in common neutral point N , and the beginnings of phases CB,A,  are 

connected to the linear wires. The ends of consumer phase windings (fig. 3.3) are 

connected in common neutral point n , and the beginnings of phases c,b,a  are 

connected to the linear wires.  

Vc VBC 

VB 

VAB 

+1 

+jV 

VAI 

Fig. 3.2  

VCA

Fig. 3.1 

e eA eB eC 

t 
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The source phase voltages are called the voltages between phase and neutral 

points CBA
VVV ,, , for consumer cba

VVV ,, . The source linear voltages are called the 

voltages between phase points (fig. 3.4) CABCAB
VVV ,, , for consumer cabcab

VVV ,, . The 

directions of these voltages are shown at fig. 3.4. The effective values of phase and 

linear voltages are related according to the expression 
phL

VV 3 . 

For WYE connection (fig. 3.4) phase currents (flowing through the phase) 
ph

I  

( cba
I,I,I ), are equal to the linear currents (flowing through the lines connecting the 

source and the consumer) L
I  ( CBA

I,I,I ), 
Lph

II  . The directions of these currents are 

shown at fig. 3.4. Balanced load is one in which the phase impedances are equal in 

magnitude and in phase: 

phcba ZZZZ  . 

In this case:  

Aa
VV  ,  Bb

VV  ,  Cc
VV  . 

aaA ZVI / ,  bbB ZVI / ,  ccC ZVI / . 

The effective values of the currents are also equal: 
LphCBA

IIIII  . 

Vb 
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If the load is unbalanced ( cba ZZZ  ) the voltage between the neutral points 

of source and consumer appears – nNV  (fig. 3.3). This voltage is called the bias 

neutral and can be calculated by using the method of two nodes:  

Cba

cCbBaA

nN

YYY

YVYVYV
V




 , 

where aaaa VIZY //1  ,  bbbb VIZY //1  ,  cccc VIZY //1  . 

In that case the consumer phase voltages are calculated according to the 
following expressions:  

nNAa VVV  ,  nNBb VVV  ,  nNCc VVV  , 

Phase currents complexes are:  

aaa ZVI / , bbb ZVI / , ccc ZVI / . 

There is also a neutral wire at three-phase four-wires circuits, which connects 

neutral points of source N  and consumer n (fig. 3.5). In this case 0nNV .  

The following is true according to the Kirchhoff`s first law for node n :  

NCBA IIII  . 

When the load is balanced (
cba ZZZ  ): 0 CBA III , 0

N
I , 0nNV .  

The vector diagram of currents for unbalanced load is shown in fig.3.6.  
At DELTA connection the end of one source (consumer) winding is connected 

to the beginning to the second source (consumer) winding (fig. 3.7). For this 

connection the following is true: 
Lph

VV  , LCABCAB
VVVV  . 

The phase (linear) complex voltages can be represented:  
0j

ABAB eVV  ,  
120j

ВCВC eVV


 ,  
120j

СAСA eVV  . 

The consumer linear (phase) voltages are equal to the source linear voltages:  

Fig. 3.6 
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ABab VV  ,   BCbc VV  ,   CAca VV  . 

If the phase load is active ( 0 ), the vectors of 

phase currents cabcab
III ,,  have the same directions as the 

vectors of corresponding phase voltages CABCAB
VVV ,, . 

If the phase load is an active-inductive one 
( 0 ), the phase current lags behind the corresponding 

phase voltage by an angle of )/(
phph

RXarctg .  

If the phase load is an active-capacitive one 
( 0 ), the phase current leads the corresponding phase 

voltage by an angle of )/(
phph

RXarctg . 

The load is balanced when phcabcab ZZZZ   and unbalanced when 

cabcab ZZZ  . 

The following is true for the nodes c,b,a  (fig. 3.7) according to the first 

Kirchhoff law: 

0 abcaA III ,   0 bcabB III ,  0 cabcC III , 

Then:  

caabA III  ,  abbcB III  ,  bccaC III  . 

The linear current is equal to the difference between corresponding phase 

currents and lags the first one for 


30 (fig. 3.8). Vector diagram (fig. 3.8) illustrates 
relationship between phase and linear currents. 

The effective values of the phase and the linear currents are connected by 

expression: 
phL

II 3 . 

Complex phase currents can be defined according to Ohm’s law: 

ababab ZVI / , bcbcbc ZVI / , cacaca ZVI / . 

For balanced load: CBA
III  , cabcab

III  .  

Complex total power of three-phase unbalanced circuit is: 

jQPIVIVIVS CCBBAA 


.  

Active power of three-phase unbalanced circuit is:  

CBACCCBBBAAA
PPPIVIVIVP   coscoscos .  

Reactive power of three-phase unbalanced circuit is:  

CBACCCBBBAAA
QQQIVIVIVQ   sinsinsin .  

These formulas can be used for WYE or DELTA connections.  

Active P , reactive Q  and total S  powers of the consumer can be calculated 

by using phase or linear voltages for balanced load:  

LLLphphphphcba
IVIVPPPPP  cos3cos33  , 

LLLphphphphcba
IVIVQQQQQ  sin3sin33  , 

phphph
ZR /cos  ,  

phphph
ZX /sin  ,. 

phphphcba
IVSSSSS 33  ,  22

QPS  . 

The same formulas can be used for WYE and DELTA connection. 
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PART 4. THE NON-SINUSOIDAL CURRENT CIRCUITS  

Non-sinusoidal voltages or currents are the ones which are changed with the 

time according to periodical non-sinusoidal law. The cause of non-sine currents 

(voltages) is the source of non- sinusoidal voltage or the non-linear element of the 

circuit. 

Such circuits may be represented by the Fourier series as the sum of sinusoidal 

functions in order to get calculated:  

 )sin(...)2sin()sin(
22110 VkmkVmVm

tkVtVtVVv   

)sin(
1

0 





k

Vkmk
tkVV  , 

where V0 is the steady component; )sin(
111 Vm

tVv   is the first (basic) harmonic 

component, (  - the frequency of first harmonic), )sin(
Vkmkk

tkVv    - k  

harmonic component (called also as harmonic), mk
V  - amplitude,   - fundamental 

frequency, k  - frequency of k harmonic, Vk
  - initial phase of k  harmonic. The 

harmonics with the frequencies 2, 3,…k  times larger than  , are called higher 

harmonics.  

 We can represent the value )sin()sin(
kmkVkmk

tkAtkV    by the sum of 

two constituents: 

tkCtkBtkA
mkmkkmk

 cossin)sin(  , 

where kmkmk
AB cos , kmkmk

AC sin , 22

mkmkmk
CBA  , )/(

mkmkk
BCarctg . 

 So, the Fourier series we can write down ( )( tfv  ): 











11

0
cossin)(

k
mk

k
mk

tkCtkBAtf  . 

 If the function is symmetrical across the X axis )()(   tftf  then 

Fourier series have only odd harmonics: 

 ....)5sin()3sin()sin()(
553311

 tAtAtAtf
mmm  

...5cos5sin3cos3sincossin
553311

 tCtBtCtBtCtB
mmmmmm

  

 If the function is symmetrical across the origin )()( tftf    then Fourier 

series have only sin constituents: 

...3sin2sinsin)(
321

 tBtBtBtf
mmm

  

v 

Fig. 4.2 
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 If the function is symmetrical across Y axis )()( tftf    then Fourier 

series have only steady component and cos constituents: 

...3cos2coscos)(
3210

 tCtCtCAtf
mmm

  

Fourier series has only steady component and cos constituents: 

...3cos2coscos)(
3210

 tCtCtCAtf
mmm

  

For example, the square shape of voltage (fig.4.1) can be represented in such a 

way (fig. 4.2): 

),5sin
5

1
3sin

3

1
(sin

4
max ttt

V
v 


  

Non-sinusoidal current )sin(
1

0 





k

Ikmk
tkIIi  (i.e. the sum of the 

sinusoidal currents) is present in the circuit with non-sinusoidal voltage 

)sin(
1

0 





k

Vkmk
tkVVv   (the sum of the sine voltages). The calculation of the 

circuit is based on the principle of superposition. The steady component of the 

current 0
I

 can be calculated by using the methods of DC circuits’ calculation and 

harmonic of current k
i  by using the methods of AC circuits’ calculation.  

As known reactance of the coil for k-harmonic is equal LLk
kXLkX    and 

susceptance kBLkB
LLk

/)/(1   . Reactance of the coil for DC (as effect of the 

steady voltage component 0
V ) is 00)0(  LX

L . The susceptance of the capacitor 

for k-harmonic is CCk
kBCkB    and reactance is kXCkX

CCk
/)/(1   . 

Reactance of the capacitor for DC (as effect of the steady voltage component 0
V ) is 

 )0/(1)0( CX
C , 0

0
I . The resistance of the circuit doesn’t actually depend on 

the frequency and is the same for every harmonic.  

The non-sinusoidal circuit calculation order is:  

– the source voltage is expressed by Fourier series as an infinite sum of 

harmonic (sinusoidal) components (functions); 

– the circuit for every harmonic component is calculated separately using DC 

and AC circuits’ calculation methods. Also it should be taken into consideration that 

the reactances depend on the frequency;  

– according to the superposition principle, the current instantaneous value is 

equal to the sum of currents instantaneous values of all harmonics, that’s why the 

calculation results are considered at each particular moment. The effective values of 

voltage and current are equal correspondingly:  
22

1

2

0
...

k
VVVV  , 22

1

2

0
...

k
IIII  ,  

where kk
IV ,  are harmonic voltages and currents effective values. 

The average value of non-sinusoidal function ),(
000

IVA  for the period:  



28 

 


T

AV
dta

T
AA

0

0

1
, 

The effective value of non-sinusoidal function - A (V, I) is the mean-square 

value for the period T :  


T

dta
T

A
0

21 22

0

2
...

k

n

ok
k

AAA  


. 

Shape factor is equal to the relation of function effective value to its average 

value: AVsh
AAK / . ( 11.1/2  

sh
K  for sinusoidal curve).  

Amplitude factor is equal to the relation of function amplitude value to its 

effective value: ААK
ma

/ . ( 41.12 
a

К  for sinusoidal curve).  

Distortion factor is equal the relation of first harmonic effective value to the 

function effective value:  

AAK
d

/
1

  ( 1
d

К  for sinusoidal curve). 

Harmonic factor is equal the relation of high harmonics effective values to the 

first harmonic effective value: 
1

/ AAK
gg

 , where 





2

222

2
...

k
kkg

AAAA  is the 

mean-square value of high harmonics effective values ( 0
g

К  for sinusoidal curve).  

Active power of non- sinusoidal current is equal to the sum of harmonics 

active powers: 



n

ok
kk

IVP
kk

PPPPP 
010

.. , where 000
IVP   is the power 

of steady voltage component, kkkk
IVP cos  is the active power of k  harmonic, 

IkVkk
   - phase shift angle between k  harmonic component of voltage and 

current. Reactive power of non- sinusoidal current is equal to the sum of harmonics 

reactive powers: kkkk
QIVQ  sin .  

Total power of non- sinusoidal current is: 
22

QPS  . 
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PART 5. TRANSIENT PROCESSES 
 

The transient processes occur when devices and circuits change their working 

regime. Transient processes may have negative effect in electrical engineering, but 

they can be useful in electronics.  

The transient processes start at turning on/off the sources, changing the 

configuration of the scheme, circuit parameters, changing the current/voltage 

amplitude, phase, frequency or shape. Still the transient processes are typically 

caused by commutation (turning on/off the circuit).  

The transient process is the process of transition from one energetic state of the 

circuit into another. This process cannot proceed stepwise, because the stock of 

energy can´t change abruptly. That’s because the elements' values upon which the 

energy storage depends (L,C) don't allow to change current and voltage stepwise 

( L
i , C

v ). Two main laws of transient processes come out from this point. 

The first law states that the current through inductance just after the 

commutation )0( 
L

i  is equal to the current through inductance just before the 

commutation )0( 
L

i : )(i)(i)(i
LLL

000   . 

The second law states that the voltage at capacity just after the commutation 

)0( 
C

v  is equal to the voltage at capacity just before the commutation )0( 
C

v : 

)0()0()0(
CCC

vvv  .  

Initial conditions (voltage or current values at the commutation moment 0t ) 

are defined by these laws. The steady-state mode before the commutation is at 0t . 

The steady-state mode after the commutation is after the transient process is over. 

The transient process duration depends on the elements parameters. It is 

estimated as 65 
tr

t  , where   is the time constant. It is time during which 

voltage or current changes e=2.7 times of its initial value.  

The transient process can be described by linear differential equation, which is 

formed with the help of Kirchhoff’s laws. Commutation laws should be used to solve 

this equation.  

The partial solution of inhomogeneous differential equation is the steady-state 

component SS
i  or SS

v . The general solution of homogeneous differential equation is 

the transient component T
i  or T

u , which dies out with time. The solution of linear 

differential equation is current (voltage), which is equal to the sum of transient and 

V 
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i 
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steady-state components SST
іiti )(  ( SST

vvtv )( ). Therefore, to calculate transient 

process means to find the current or voltage changing rule.  

 Let's analyse the transient process when RL link is connected to DC source 

(fig. 5.1). According the differential equation to the Voltage lawfor after 

commutation steady-state mode is: VRidtLdi / . Its solution is SST
іiti )( . The 

partial solution SS
і  of inhomogeneous differential equation VRidtLdi

SSSS
/  is 

equal to the current value when transient process is over RVі
SS

/  (because 0
L

X  

for DC). 

T
i  is the general solution of homogeneous differential equation 

0/ 
TT

RidtLdi . The characteristic equation corresponding to this differential one 

is 0 RpL  with its root LRp  . The time constant is RLp //1  . Since the 

characteristic equation has one real root, the transient component is 
pt

T
eAi  . 

Constant of integration can be found from initial conditions: 

RVAiii
SST

/)0()0()0(  . According to the first commutation law 

0)0()0(  ii , so RVA / , 
tLR

T
eRVi

)/(
/


 . 

The solution of differential equation is (fig.5.2): 

)1(///
)/()/( tLRtLR

SST
eRVRVeRViii


 . 

The voltage on resistive element is (fig.5.3): 

).1()1)(/(
)/()/( tLRtLR

R eVeRVRRiv


  

The voltage on inductive element is (fig.5.3):  

.)()()1(
)/()/()/( tLRtLRtLR

L
Vee

L

R

R

V
Le

R

V

dt

d
L

dt

di
Lv











  

Let's analyse the transient process when RL link is disconnected from DC 

source and shortened (fig. 5.4). The differential equation according to the Voltage 

lawfor after commutation steady-state mode is: 0/  RidtLdi . Its solution is 

SST
іiti )( . The partial solution SS

і  of inhomogeneous differential equation 

0/ 
SSSS

RidtLdi  is equal to the current value when transient process is over 0
SS

і  

 T
i is the general solution of homogeneous differential equation 

0/ 
TT

RidtLdi . The characteristic equation corresponding to this differential one 

is 0 RpL  with its root LRp  . The time constant is RLp //1  . Since the 

characteristic equation has one real root, the transient component is 
pt

T
eAi  . 

Constant of integration can be found from initial conditions: Aiii
SST

 )0()0()0( . 

According to the first commutation law RVii /)0()0(  , so RVA / , 
tLR

T
eRVi

)/(
/


 . 

 The solution of differential equation is (fig. 5.6): 
tLR

T
eRVii

)/(
/


 . 
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The voltage on resistive element is (fig. 5.5): 
tLRtLR

R
VeeRVRRiv

)/()/(
)/(


 . 

The voltage on inductive element is (fig. 5.5): 

tLRtLRtLR

L
Vee

L

R

R

V
Le

R

V

dt

d
L

dt

di
Lv

)/()/()/(
)()(











 . 

Let's analyse the transient process when RC link is connected to DC source 

(fig. 5.7). The differential equation according to the Voltage lawfor after 

commutation steady-state mode is VvRi
C
 , )/( dtdvCi

C
 , then 

VvdtdvRC
CC
)/( . Its solution is CSSCTC

uvv  . The partial solution CSS
v  of 

inhomogeneous differential equation VvdtdvRC
CC
)/(  equals to the voltage 

value on C when the transient process is over. The circuit current equals zero in this 

case, because the input voltage is applied directly to capacitance Vv
CSS

 . 

CT
v  is the general solution of homogeneous differential equation 

0)/( 
CC

vdtdvRC . The characteristic equation corresponding to this differential 

one is 01RCp  with its root )/(1 RCp  . The time constant is RCp  /1 . 

Since the characteristic equation has one real root, the transient component is 
pt

CT
eAv  . Constant of integration can be found from initial conditions: 

VAvvv
CSSCTC

 )0()0()0( . According to the first commutation law 

0)0()0( 
CC

vv , so VA  , 
RCt

CT
Vev

/
 . 

 The solution of differential equation is (fig. 5.8): 

)1()1()(
/// tRCtRCt

C
eVeVVeVtv


 . 

The current is (fig. 5.9): 
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  RCtRCtRCt

C
eRVeRCCVVeV

dt

d
CdtdvCi

///
)/())(/()/(


 . 

The voltage on resistive element is (fig. 5.9): 

.))(/(
// RCtRCt

R
VeeRVRRiv


  

Let's analyse the transient process when RC link is disconnected from DC 

source and shortened (fig. 5.10). The differential equation according to the Voltage 

lawfor after commutation steady-state mode is: 0)/( 
CC

vdtdvRC . Its solution is 

CSSCTC
vvv  . The partial solution CSS

v equals zero, because this equation is 

homogeneous.  

CT
v  is the general solution of homogeneous differential equation 

0)/( 
CC

vdtdvRC . The characteristic equation corresponding to this differential 

one is 01RCp  with its root )/(1 RCp  . The time constant is RCp  /1 . 

Since the characteristic equation has one real root, the transient component is 
pt

CT
eAv  . Constant of integration can be found from initial conditions: 

Avvv
CSSCTC

 )0()0()0( . According to the first commutation law 

Vvv
CC

 )0()0(  (the circuit current is equal to zero in this case, because the input 

voltage is applied directly to the capacitance), 
RCt

CT
Vev

/
 . 

The solution of differential equation is (fig. 5.11): 
RCt

CT
Vetvtv

/
)()(


 . 

The current is (fig. 5.12): 

  RCtRCtRCt

C
eRVeRCCVVe

dt

d
CdtdvCi

///
)/())(/()/(


 . 

The voltage on resistive element is (fig. 5.12): 

.))(/(
// RCtRCt

R
VeeRVRRiv


  
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PART 6. MAGNETIC CIRCUITS 
 

The electromagnetic device consists of electric and magnetic circuits. 

The electric circuit consists of winding with a current that excites the magnetic 

field with the tension H . The magnetic circuit in electrical devices is the way in 

which magnetic field lines are closed. The magnetic circuit has a desired 

configuration and is characterized by induction of the magnetic field B. Magnetic 

circuit is a combination of magnetic and non-magnetic areas, which close the 

magnetic flux. 

The magnetic field in devices with constant magneto-motive force (m.m.f.) is 

created by a permanent magnet or a DC powered electromagnet. 

Magnetic circuits don’t have air gaps in electrical converters like transformers, 

magnetic amplifiers, etc. However, air gap is required for electromechanical power 

converters like relays, contactors, solenoids, starter, electric cars, some measuring 

devices, etc. 

The magnetic field is represented by magnetic field lines, which look like 

concentric circles. The direction of the lines is determined by the rule of the right 

screw. 

 

 

According to the law of electromagnetic induction, a moving in a magnetic 

field conductor induces electromotive force lBE  , where l  is the length of the 

conductor; v - speed of its movement and B  - the magnetic field induction. The 

direction of the electromotive force is determined by the right hand rule (fig. 6.1). 

By the electromagnetic force law (Ampere's law), the force acting on the 

current-carrying conductor, which moves in a magnetic field, makes IlBF  , where 

l  is the conductor length. The direction of the electromagnetic force is determined by 

the left-hand rule (fig. 6.2). Induced in the conductor electromotive force E is 

directed to suppress the current I .  

Magnetic induction B (T) describes the intensity of the magnetic field and the 

magnetic flux Ф (Wb) is an integral characteristic of the magnetic field. The magnetic 

field is considered to be uniform if the magnetic induction at all points of the field is 

the same ( constB  ). Magnetic flux of uniform magnetic field passing through the 

surface S, placed perpendicular to the lines of magnetic induction is Ф ВS . 

Fig. 6.2 
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Total current law in integral form is: cosH d l H d l I    , which 

means that the circulation of magnetic field tension vector H along the closed path l is 

equal to the algebraic sum of currents encircled with this path. The magnetic circuit is 

homogeneous if the magnetic induction is the same along the magnetic circuit. Total 

current law for homogeneous and heterogeneous (with air gap) magnetic circuits is: 

IwlH  ,  IwHlH   , where H is the magnetic field tension in the magnetic 

circuit with length l; 
H - the magnetic field tension in the air gap  ; w  - the number 

of winding turns and FIw  - a magneto-motive force. The coil linkage is 

wФLI  . 

Magnetic permeability   describes the properties of the conducting medium, 

which shows how many times the medium increases the magnetic field of the coil. 

Diamagnetics and paramagnetics belong to nonmagnetic materials, where 1
r
  and 

ferromagnetics belong to magnetic materials, where 1
r
 . Magnetic induction B is 

connected with magnetic field tension H  by the following equation: HB
r0

 , 

where relative magnetic permeability μr, vacuum magnetic permeability μ0=4π˖10-7. 

So, the magnetic resistance is )S/(lR
r0m

 . 

Magnetic flux will be much larger in a coil with the ferromagnetic core than in 

a coil without it, as the flux is created not only by the current but also by the 

ferromagnetic substance of magnetic circuit. 

The magnetic characteristics )(HB  for magnetic ( 1 ) and nonmagnetic 

( 1 ) materials are shown in fig. 6.3. Given that the magnetic flux is proportional to 

the magnetic induction Ф В , and the current proportional to the magnetic field 

tension HI  , a dependence )I(Ф - or so called weber-ampere characteristic can be 

obtained (fig. 6.4). As can be seen from it, an additional core of magnetic 

(ferromagnetic) material is required to reduce the current needed to generate a given 

magnetic flux of the coil. 

The coil electromagnetic circuit is shown in fig. 6.5. Applied to the coil voltage 

v initiates current i, which results in a magnetic flux. Magnetic flux Ф is the vector 

sum of the main magnetic flux 
o

Ф , which is closed 

through the core, and the magnetic flux of dissipation 

ФD, which closes in the air around the coils 

Do ФФФ  . Dissipation magnetic flux is not involved 

in energy transmission (in transformers). The core 

permeability ( 1 ) is much higher than air 
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permeability ( 1 ), that means 
Do ФФ  , but the magnetic fluxes can shift the 

phase. 

The basic magnetization curve (curve 1 in big dashed line on fig. 6.6) passes 

through the center of coordinate grid. When the coil is powered by alternating voltage 

the magnetic flux changes in time and core is cyclically re-magnetized. After several 

AC periods a closed symmetrical across the origin hysteresis loop is set (curve 2 in 

solid lines fig.6.6), which is called the static hysteresis loop. A residual induction in 

the core 
r

B  is stored at 0H . 
C

HH   at 0B  and it is called a coercive (holding) 

force. 

The magnetic losses in the core 
МP  consist of magnetic hysteresis losses 

HP  

and eddy current losses 
EP : 

EHМ PPP  . Hysteresis losses are the losses due to 

the cyclical magnetization of the core and they are proportional to the area embraced 

by static hysteresis loop. These are determined by the formula: 2

mHH BfP  , 

where 
H are specific power losses for hysteresis;  - magnetic circuit mass; f - 

current frequency; 
m

B  - magnetic induction amplitude. To reduce the magnetic 

hysteresis losses the magnetic circuits are made of soft magnetic (ferromagnetic) 

materials, which have a narrow hysteresis loop. 

Eddy currents occur in solid metal parts as a result of the magnetic field.  

Eddy currents losses occur when the coil is fed with AC, which demagnetize 

the magnetic circuit. Eddy currents losses are proportional to the difference between 

the areas of dynamic (curve 3 in small dash line) and static (curve 2 in solid line) 

hysteresis loops. They are determined by the formula: 
22

mEE BfP  , 

where 
E are specific power losses for eddy currents;  - magnetic circuit mass; f - 

current frequency; 
m

B  - magnetic induction amplitude. To reduce eddy currents 

losses the magnetic cores are collected from thin electrical steel plates (or tape) with 

a thickness of 0.2 - 0.5 mm, which are isolated from each other by dielectric layers. 

Fig. 6.7 shows a series-parallel equivalent circuit of the coil with core, where 
2

E
P R I   are electrical losses in the coil winding; 

DD LX  - coil reactance caused 

by dissipation; 
DL  - inductance, equivalent to the dissipation magnetic flux 

DФ ; 
0

G - 

the conductance, equivalent to core magnetic losses 
2

0M
P G E  ; 

0
B  - susceptance, 

equivalent to the main magnetic flux 0
Ф .  
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Fig. 6.8 shows a serial equivalent circuit of the coil, 

where IjXIREV
00

 . 

Electromotive forces induced by the main magnetic 

flux are:  

/e w dФ dt  ,   / 2 4.44
m m

E w Ф fw Ф  .  

Electromotive forces induced by the dissipation 

magnetic flux are: dtdiLe DD / ,  . IXILjE DDD   . 

The equation of electric state of the coil is written by the second Kirchhoff ‘s law  

in complex form: IXjIREV D . 

Current-voltage characteristic V(I) (fig. 6.9) of the coil is derived from weber-

voltage characteristic )I(Ф . By zooming magnetic flux Ф E U   curve V(I) is 

obtained, which coincides with the curve )I(Ф . 

Working point (wp) for the coil is chosen at the bent-point of current-voltage 

characteristic. When chosen below that point the magnetic circuit is irrationally 

used – it is increased in size. When chosen above that point, the electrical losses are 

increased due to the increased current. 

Neglecting the relatively small resistances R , 
DX  

(fig. 6.7), the following can be taken approximately EV   

and if ФE  , so U E Ф  . When the voltage is 

sinusoidal, electromotive force and magnetic flux are also 

sinusoidal. It follows from weber-current non-linear 

characteristic )I(Ф  that the coil current is non-sinusoidal 

at sinusoidal magnetic flux. When analyzing non-

sinusoidal current the first and third harmonics are taken 

into consideration: tItIi
mm 3311

sinsin   . 

To simplify the analysis of the coil with non-

sinusoidal current it is substituted by the equivalent sinusoidal current 

)tsin(Ii
m

   with amplitude 2

3

2

1 mmm
III   and frequency 

1
  . Magnetic 

flux lags behind the phase of current at an angle   (angle of the magnetic delay or 

magnetic losses) due to hysteresis effects. 

The vector diagram of the coil (fig. 6.10) corresponds to the electrical state 

equation IXjIREV
D

 . The current at vector diagram is represented by active 

Ia  and reactive Ir  components according to the equivalent scheme (fig. 6.7). 
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If the magnetic circuit has the air gap 

(magnetic circuit is non-homogenous) the 

magnetic resistance increases significantly. 

Therefore, it leads to a reduction of magnetic flux 

according to the full current law. However, this 

does not happen, because the magnetic flux is 

constant at constant voltage. The amplitude of the 

magnetic flux in electromagnetic devices does not 

depend on the size of the air gap, but the current effective value in the coil depends 

on it. Thus, the coil starting current for the core with an air gap is much greater than 

nominal current. 

The dependence of coil inductance and current from size of air gap is shown at 

fig. 6.11. Air gap   can change its value by changing resistances at AC circuits. The 

air gap is unavoidable in brake solenoids, relays, contactors, etc. 

The variable inductance coil (by change of the air gap) is used to adjust the AC 

at welding machines and electric ovens. Electromagnetic system of variable 

inductance coil includes a rod (stationary part) on which a coil is placed (inductor), 

armature (moving part) and a yoke for connection the rod and the armature in a 

closed magnetic system. Electromagnets are used in cranes, drive brakes, clutches, 

electrical switching equipment, measuring devices, machines, relays, etc. The air gap 

is undesirable in some cases (like transformers, AC engines), since it leads to the 

current increase, the winding dimensions, reactive power consumption and 

electromagnetic devices cos  reduction. 
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PART 7. TRANSFORMER 
 

Transformer is a static electromagnetic device that has two (or more) windings 

inductively connected to each other and is designed to convert primary parameters 

AC into secondary ones. A three-phase transformer is shown on fig. 7.1а and a 

single-phase transformer is shown on fig. 7.1b. Transformers are used in automatic 

devices and electrically powered household appliances. There are as well special 

transformers for converting, welding, measuring and so-called peak transformers. 

The transformer’s core (fig. 7.2) determines its design. Laminated core is made 

of insulated electrical steel sheets. Core types like U-and-I (aka core-type) (a), E-and-

I (aka shell-type) (b) or toroidal (c) are used in low-power transformers. 

Transformer winding is made of insulated copper (aluminum) wire of round or 

rectangular cross-section. The winding is wound on the frame, which is slid on one of 

the rods. The principle of the transformer is based on the law of electromagnetic 

induction. Electromagnetic single-phase transformer circuit is shown on fig. 7.3, and 

it’s schematic diagram on fig. 7.3b. The primary winding w1 converts electrical 

energy into magnetic one, whereas the secondary winding w2 converts the magnetic 

energy into the electrical one. Magnetic core strengthens the link between the 

windings. The current i1 generates an alternating magnetic flux Φ1, which closes itself 

on the core and dissipation magnetic flux Φ1d, which closes itself in the air around the 

primary winding w1.. Magnetic flux Φ1 induces an electromotive force of self-

induction in the transformer primary winding and a mutual electromotive force in the 

secondary winding. If the secondary winding is connected to the load, the current will 

flow. The current і2 generates an alternating magnetic flux Φ2, which closes itself on 

the core and dissipation magnetic flux Φ2d, which closes itself in the air around the 

secondary winding w2. 

Transformer electromotive forces e1 and e2 create the resulting magnetic flux in 

the core.  

1 1
/e w dФ dt  ,    1 1

/ 2
m

E w Ф ,  

2 2
/e w dФ dt  ,   

2 2
/ 2

m
E w Ф ,  

а b 

Fig. 7.1 

Fig. 7.2 
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where ff 44.42/22/   ; f – is an AC frequency, 
m

 – is the resulting flux 

amplitude, 
1

w  - number of primary winding turns, 
2

w  - number of secondary winding 

turns.. Induced electromotive force phase lags behind the magnetic flux phase by an 

angle of 2/ . The e.m.f. effective values are as follows: 

m
Фfw.E

11
444 ,   

m
Фfw.E

22
444 . 

If 
21

ww   the transformer is a down transformer and its transformation ratio is 

1//
212112
 EEwwk  . If 

21
ww   the transformer is an up transformer and its 

transformation ratio is 1//
121221
 EEwwk  (i.e. higher than one). 

Transformer electromagnetic substitutional scheme (fig. 7.4) represents an 

idealized real transformer, which includes active 
1

R  
2

R  (winding) resistances and 

(dissipation) reactances 
1

X ,
2

X . 

The transformer electrical state equations are (fig. 7.4):  

 
2222222

1111111

VEI)XjR(EV

VEI)XjR(EV








,  

where 
1V , 

2V  – are accordingly voltage drops across the primary and secondary 

windings of the transformer. Since 
11 )05,002,0( VV  , it can be considered V1≈ Е1. 

Thus, 
mФfwEV 1111 44.4 . When constV 1

, the magnetic flux is practically 

independent of the transformer load. 

Electrical state equations corresponds to the scheme on fig. 7.5, where 
1

E  is a 

receiver of electrical energy (primary winding) and 
2

E  is an electric energy source 

(secondary winding). 

 

The magnetomotive force of primary winding in idle mode is 
1 10

w I Hl . It 

induces the magnetic flux Ф SH . And magnetic flux of loaded transformer is 

created by an e.m.f. of primary and secondary windings 
1 1 2 2

w I w I Hl  . Taking into 

consideration that Ф const  and H const , transformer magnetic state equation 

makes:                                      
1 10

w I =
1 1 2 2

w I w I .  
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Therefore, the expression for current in the primary winding of the transformer 

makes:                          
122011

w/wIII  =
'

III 2011  ,  

where  k/Iw/wII
'

21222 
'

I
2
 - is a specific secondary winding current. 

Since numbers of turns 
1 2

w w , then 
1 2

E E . To simplify the analysis of the 

transformer, the secondary winding number of turns is reduced to the number of turns 

in the primary winding. 

The real secondary winding w2 is replaced by brought-in values 1

'

2
ww  , 

12

'

2
wkww  . Specific electromotive force makes then 

122
EkEE   and specific 

voltage makes 
122

VkVV   accordingly. Specific resistance is defined from the 

condition 2

222

2

2
IRRI   as 2

2

2
RkR   and specific reactance is defined from the 

condition )/()/(
22

'

2

'

2
RXarctgRXarctg   as 

2

2

2
XkX

'
 . The brought-in 

secondary winding elements is applied in fig.7.6. 

T-shaped substitutional scheme is shown on fig. 7.7, where 

1 10 100 0
E R I jX I  . The scheme elements bear some physical meaning, as such 

0
R  - 

are magnetic losses 
М

P  and Х0 – is the main magnetic flux. 

Idle mode scheme )I(
'

0
2
  shown on fig.7.8 is obtained from the scheme 7.7 

by neglecting resistances 
1

R  and 
1

X , that are considerably less than 
0

R  and 
0

X . The 

quality of core steel defines the idle current. Resistance 
0

R  and impedance 

10100
/ IUZ   determine the idle losses: 

2

1000
IRP  . The transformation ratio makes: 

.V/VE/Ew/wk
20102121

  

The following expressions determines magnetic induction and magnetic flux: 

mФfwEV 11110 44.4 , 
m m

Ф B S . 

Transformer magnetic losses are constant and independent from load. Any 

power consumption in idle mode goes over into transformer magnetic core losses 

М
P  and electrical losses in the primary winding 

E
P

1
 : 

10 EM
PPP  . Electrical 
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losses in the transformer primary winding are 2

1011
IRP

E
 . They can be neglected 

because idle state current is smaller than the nominal 
101 II N   (

NII 110 )1.004.0(  ). 

Thus, 
1E М

P P   . Consequently, the power consumed by the transformer in the 

idle mode is almost equal to the magnetic losses 
М

PP 
0

. 

The short circuit transformer mode is a wrecking one at nominal voltage 
N1

V , 

since current makes then 
NSC II 11 )2510(  . Therefore, short circuit mode calculations 

are done out at nominal current 
NSC II 11  and considerably less voltage. 

Short circuit transformer mode scheme ( 0V
2
 ) is shown on fig. 7.9. It is 

obtained from the circuit on fig. 7.7 by neglecting 
0

R , 
0

X , which are much less than 

'
2

R , '

2
X  and '

1
R , '

1
X . The following elements are used in resulting short circuit 

scheme (fig. 7.9b): 
SCRRR 

'

21
, а 

SCXXX 
'

21
. Voltage, current, 

SCR  and 

impedance 
NSCSC IVZ 11 /  can be defined, when having short circuit losses 

2

1NSCSC IRP  .  

The consumed by transformer power goes over into electrical losses in the 

windings and magnetic losses in the core. However, short circuit voltage is much less 

than the nominal 
N1SC1

V)1.005.0(V  , so the magnetic flux is also much less than at 

nominal mode. Magnetic losses are proportional to the square of the magnetic 

induction and are insignificant. Allowing that 
EМ

PP   , the consumed by 

transformer power in the short circuit mode goes over into electrical losses in the 

windings 
ESC

PP  . These are variable and depend on transformer’s load. 

External characteristics of the transformer (fig. 7.10) is a depending of the 

voltage from the current at variable load. Active load (curve 1) is at 1cos
2
  

( 0
2
 ).  The active-inductive load (curve 2) is at 1cos

2
  ( 0

2
 ). And active-

capacitive load (curve 3) is at 1cos
2
  ( 0

2
 ).  

Transformer power diagram is shown on 

fig. 7.11, where input power makes 
1111

cosIVP  , 

1E
P  are electrical losses in the primary winding; 

cosEIP
ЕМ
 - is an electromagnetic power; 

M
P  are 

magnetic losses in the core; 
2E

P  are electrical losses 

in the secondary winding and 
2222

cosIVP   is an 

output power. 

Fig. 7.9 b а 
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Transformer total power makes 
221121

IVIVSS  , so kI/IV/V
1221
 . 

The transformer efficiency factor makes: 


1

2

P

P
 

 PP

P


2

2

SC

2

022

22

PPcosS

cosS






, 

Where 
SCPPP

2

0   are the total losses; 
0

P  are magnetic losses (idle); 
SCP  are short 

circuit electrical losses; 
SCE PP

2  are electrical losses, 
NII 22 /  is the transformer 

load factor. 

The dependence of the efficiency factor from the transformer load )(   is 

shown on fig. 7.12. Maximum efficiency factor is at equal electric and magnetic 

losses, that corresponds to the optimum load. )%( 9570   is typical for modern 

transformers. 
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PART 8. DIRECT CURRENT MACHINES 
 

DC machines can be used either as a generator or as a motor. And they are 
reversible. Motors are used to drive machine tools, rolling mills, lifting and transport 
machines, excavators and others. The main advantage of these motors is a wide range 
of power - from fractions of Watt to several thousand kilowatts, good start and 
control properties (the ability of smooth frequency regulation over a wide range) 
However, DC motors are more expensive and less reliable comparing to contactless 
AC motors. This is because of a collector-brush unit. Special equipment - DC 
generator or rectifier (when powered by AC) – is needed to feed these motors.  

The structure of the DC machine is shown in figure 8.1. Stationary part of it 
called stator, movable - rotor. 

Stator consists of steel bed 8, through which main magnetic flux closes and 
main stator poles 6. Stator is an inductor, because it contains the main poles for 
excitation of the main magnetic field. Pole consists of a core 6 and a coil 7 (excitation 
winding).  

Rotor is an armature, to which the load is connected. On the shaft of the rotor 1 
is a laminated core 5 with a winding and a collector-brush unit 3. Armature winding 
consists of individual sections 1 (figure 8.2). Each section is placed into the grooves 
of the armature magnetic circuit and sections are connected with collector lamellas 
(fig. 8.2). The number of sections is equal to the number of collector plates. Armature 
winding can be of two types: loop (fig. 8.2a) and wave (fig. 8.2b). Loop winding is 
used in high power machines and wave one is used in machines of medium and low 
power. 

Fig. 8.1. DC motor construction: 

1– shaft; 2– front shild; 3– collector; 4– brushes; 5– core with coil; 6–core; 

7– coil; 8– steel bad; 9– back shield; 10– fan; 11– lugs; 12– bearings 
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Next element of DC motor is the brush-collector unit that acts as a mechanical 

DC to AC adapter to feed armature winding. The main elements of the brush-

collector unit 3 (fig. 8.1) are made of copper lamellas.  

The principle of generator is the following. The excitation winding current 

creates a magnetic field, which is constant in time and in 

space. E.m.f. (field induction action) is induced in the 

rotating rotor winding under the influence of this magnetic 

field, the direction of e.m.f. is determined by the right hand 

rule. If the armature winding is connected via brushes to the 

outer circle, there appears AC IA. However, at the outer 

circuit the current direction does not change, because the 

collector serves as a mechanical current rectifier. When the 

armature rotates by 180 deg., e.m.f. at the wires changes its 

direction and there it also changes the collector plates under the brushes at the same 

time. As a result, the polarity of the brushes and the direction of current in the outer 

circuit does not change. Armature winding is made of many connected in series 

sections to get e.m.f. nearly constant in its external-circuit. 

Idling characteristic of DC generator (fig. 8.3) - is a dependence of armature 

winding e.m.f. from excitation current without load and at a constant frequency of 

armature rotation. The presence of hysteresis phenomena in magnetic circuit provides 

a parallel excitement due to self-excitation of the generator. When generator rotor 

rotates, there is a small electromotive force in the winding, which leads to small 

excitation current and small magnetic flux, respectively. 

When this flux has the same direction as the flux of residual 

induction, the resulting flux increases, therefore the armature 

electromotive force and excitation current increase (curve 1, 

fig. 8.3) as well. Electromotive force increases to the value 

1.25 Enom with increasing excitation current, 

following the saturation of magnetic circuit. 

As the excitation current decreases, the 

electromotive force also decreases to the value 0.05 Enom, (curve 2, 

fig. 8.3). The external generator characteristics (fig. 8.4) is a 

dependence between voltage at the clamps of the armature winding 

and current )(
A

IV  at a constant rotation frequency and excitation 

current (for generators with independent excitation) or constant rotation frequency 

and constant resistance of excitation winding (for generators with parallel excitation). 

Curve 1 is for independent excitation, 2 is for parallel excitation, 3 is for serial 

Fig. 8.5 
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excitation and 4 is for mixed excitation. Adjusting generator characteristic is a 

dependence between the excitation current and armature current )І(I
AE

 at constant 

voltage at generator (V=const) and constant rotation frequency (n=const). The 

generator adjusting characteristics for independent and parallel excitation is shown on 

figure 8.5 (curve 1), for mixed agreed excitation winding (curve 2) and for mixed 

counter excitation winding (curve 3). 

The generator electrical state equation is: 
AAA

IREV  , where V- is a power 

voltage, RA – is an armature winding resistance. Output current is 
EA

III  , where 

IA – is an armature current, IE – is an excitation current. 

The principle of the DC motor based on power performance of electromagnetic 

field. Connecting the motor to the DC voltage will result in currents in the windings 

of the inductor and the armature. The interaction of the armature current with the 

magnetic field (of inductor) results in growth of electromagnetic torque 
AМ

ФIcM   , 

what makes the rotor rotation (here 
М
c  - is a coefficient that  depends of winding 

construction and poles number; Ф - magnetic flux of one pair of main poles ; 
A

I - 

armature current. Induced electromotive force in the armature winding during its 

rotation is directed opposite to the current: nФcE
EA

 , where 
Е
c - is a structural 

coefficient, n – is a rotor rotation frequency. 

 The influence of the armature magnetic field (fig. 8.6b) on the main magnetic 

field (fig. 8.6a) is called an armature reaction. It distorts the main magnetic field 

(fig. 8.6c) because slope of magnetic field physical neutral (line q-q’ at fig. 8.6c) is 

shifted in the opposite direction of rotor rotation at some angle relatively to its 

geometrical neutral. Physical neutral is an imaginary line that runs through the points 

of magnetic circuit, where magnetic induction is zero. Because the armature reaction 

worsens the commutation process, an arcing occurs between the collector and the 

brushes. Commutation is a process of switching armature winding sections when 

rotor rotates. 

 To improve the commutation between the main poles the additional poles are 

added. The winding of additional poles connects in series to the armature winding 

and is wound in a way that the magnetic flux generated by it, opposes the magnetic 

flux of the armature winding, thus it compensates the armature reaction. Brushes 

position is also shifted from geometrical to physical neutral to improve the 

commutation. The physical neutral position depends on motor loads and shifts against 

the direction of rotor rotation. 

Fig. 8.6  

а b c 
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By way of excitation winding connection - the motors are split in independent 

excitation ones and self-excitation ones (parallel, serial and mixed). The machines 

with independent excitation (fig. 8.7a) feed their excitation winding with a single DC 

source. The machines with parallel excitation (fig. 8.7b) have the excitation winding 

connected in parallel to the armature winding. The machines with serial excitation 

(fig. 8.7c) have the excitation winding connected in serial to the armature winding. 

The machines of mixed excitation (fig. 8.7d) have two excitation windings connected 

both in serial and in parallel to the armature winding. 

The motor electrical state equation is: 
AAA

IREV  , where V - is a feeding 

voltage, RA – is an armature winding resistance. Input current makes
EA

III  , 

where IA – is an armature current, IE – is an excitation current. Therefore:  

AЕAAA
R/)ФncV(R/)EV(I  . 

When starting the motor, rotation frequency is 0n , hence EA=0. Because the 

armature winding resistance is small, the starting current is large: 
AAST

RVI / . 

To limit the starting current the rheostat is connected in armature circuit, the 

resistance of which 
ST

R  is step by step reduced to zero. The value of armature starting 

current with the starting rheostat is determined as: )/(
STAAST

RRVI  . 

Starting rheostat resistance is calculated so that the armature current does not exceed 

the permissible value of 
AnomAST

II )5.2...0.2( . 

Direct switching to the electric network, using the starting rheostat in the 

armature circuit or reduced supply voltage, can start DC motors. When starting the 

motor directly there are significant starting currents that could break down the motor 

and reduce the network voltage. So motors mainly are started with starting rheostats. 

If we substitute the equation 
AAA

IRVE   into the expression of armature 

e.m.f. nФcE
EA

 , we’ll have the expression of motor frequency characteristic:  

AEAA
ФcIRVn /)(  . 

It follows that without load motor frequency is: 

)/(
0

ФcVnn
E

 , 
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where 
0
n – is an idling frequency.  

The rotation frequency can be adjusted by connecting a circuit of the additional 

resistance 
R

R  to armature winding. These are characteristics for different values of 

resistance 
R

R  on fig. 8.8. The advantages of this regulation method is its simplicity, 

the possibility of smooth adjustment and wide range of frequency adjustment 

(
nom

nn 0 ). Disadvantages are major losses and the inability to adjust the 

frequency above nominal. 

We can also adjust rotation frequency with changing magnetic flux by 

connecting the rheostat 
E

R  to the excitation circuit. There are characteristics for 

different values of magnetic flux shown on fig.8.9. The advantages of this adjustment 

method is its simplicity and efficiency. Disadvantage are the inability to adjust the 

frequency above nominal and narrow adjustment range of frequencies. 

We can adjust the rotation frequency by changing input voltage V in electric 

drives. There are characteristics for different values of voltage shown on fig. 8.10. 

The advantage of this method is the wide range of frequency adjustment. 

Disadvantage is the need for a separate adjustable energy source. 

Mechanical characteristic of the motor is the dependence between the rotation 

frequency and torque )M(n  at constV   and constI
E
 . The expression for 

frequency characteristics is: 
AEAAAEAEAA

ФcIRФcVФcIRVn ///)(  . 

Taking into account the expression for torque as 
AМ

ФIcM  , the armature 

current is defined as )/( ФcMI
МA

  and the equation of mechanical characteristic is 

the following:              nnФccMRФcVn
EМAE


0

2
)/(/ , 

where - 
0

n  is a motor rotation frequency in idling mode, n - is a rotation frequency 

change caused by the change of motor load. Mechanical characteristic without 

additional resistance at armature circuit is called natural one, and with the additional 

resistance at armature circuit is called an artificial one. Artificial characteristic slopes 

rapidly. Type of motor mechanical characteristic depends on the type of excitation. 

Motors with independent and parallel excitation have rigid characteristics – rotation 

frequency does not depend from the motor torque (fig. 8.11). They are used to drive 

machine tools, etc. Motors with serial and mixed excitation have soft characteristic - 

rotation frequency depends from the motor torque (fig. 8.12). These motors are used 

in electric transport because they have large torque, which is proportional to the 

square of the current, what is important in difficult starting conditions. The rotation 

frequency increases rapidly at idling mode, what can cause the motor collapse. The 

Fig. 8.11 
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work of the motor with torque less than 
NOM

M25.0  is unacceptable. 

The energy balance of the DC motor illustrating its energy diagram is shown 

on fig. 8.13. Motor electric power makes VIP 
1

. Electromagnetic power is 

AAЕМ
IEP  . Mechanical power is - MP 2 . Total losses in the motor make:  

ADDМЕCHМEA
PPPPPP  ,  

where 2

EEE
IRP   - are excitation winding losses; 2

AAA
IRP  - are armature 

winding losses; - 
МP   - are magnetic losses; 

MECH
P - are mechanical losses; 

ADD
P - 

are collector-brush losses. Efficiency factor is defined as the ratio of useful power to 

the power consumed by the motor: )/(/
2212

PPPPP  . 

Properties of motor as part of the circuit are estimated by working 

characteristics ,)(
2

PI
A

 )P( 2 , (fig. 8.14). Properties of motor as the electric drive 

element are estimated by working characteristics )P(n 2 , )P(M 2 , (fig.8.15).  
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PART 9. ALTERNATIVE CURRENT (INDUCTION) MOTORS 
 

AC induction machines can operate either as generators or as motors. 

However, when used as generators the characteristics of the machines are not good 

enough, so they are used mostly as motors. For induction motors, the rotor rotation 

frequency depends on the load at a constant circuit frequency. 

Single-phase induction motors are used in automatic control systems, electric 

hand tools, low-power machines and various household appliances and machines 

(refrigerators, washing and sewing machines, fans), where there is no need to adjust 

the frequency. The use of single-phase power supply for these motors (means two 

wires instead of three or four in three-phase power supply) provides economic 

benefits and ease of use. 

Three-phase induction motors are more popular, because they have better 

characteristics comparing to single-phase ones.  

Induction motors are widely used because of simpler construction, lower cost, 

higher operational reliability and less maintenance. This goes alongside with a 

simpler design and higher reliability.  

The drawbacks include greater sensitivity to voltage changes (motor moment is 

proportional to the square of the applied voltage). 

The starting moment is small at low voltages that the 

motor may not start at all. Another drawback of 

induction motors is significant consumption of 

reactive power, which reduces the network power 

factor. 

Structural elements of induction motors ensure reliability, rigidity, strength, 

rotor rotation and cooling. Motor electromagnetic system provides mutual energy 

conversion, it is a heterogeneous branched symmetrical magnetic circuit, which 

consists of magnetic circuits of stator and rotor and their windings. 

  
t 

Fig. 9.1  

B 
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Magnetic circuit increases magnetic connection between stator and rotor 
windings. The magnetic core consists of thin insulated electrical steel lists. There are 

grooves at the inner surface of the stator, where the winding is placed. The windings 
are made of copper (aluminum) wire around round or rectangular inserts covered 
with insulating materials. 

The condition for creating a rotating magnetic field by the fixed stator winding 
is spatial symmetry of the phase windings and temporal symmetry of phase currents 
in the windings. Stator phase windings are placed in the grooves and shifted relative 
to each other in space at the angle of 120 degrees. The symmetrical three-phase 
currents flow through these windings, causing a rotating in space t   (fig.9.1) 

and constant in time 
m

BB 2/3  magnetic field. The phase windings ends connect to 

the terminal box 4, which makes it possible to connect them WYE or DELTA. 

Magnetic field synchronous frequency is pfn /60
1
 , where f - the 

frequency of the power network, p - the number of pole pairs. 

The induction motors are designed either with a short circuit rotor or with a 
phase rotor (with slip rings for winding connection to the outside circuit). 

Three-phase induction motor with a short circuit rotor winding is shown at 
fig. 9.2. Stator consists of frame 11, core 10 and a three-phase winding. There are ribs 
on the stator surface to increase the cooling effect. The core 10 is placed on the stator 
frame, it consists of 0,5 mm thick steel lists insulated from each other by oil varnish 
and packed together. This design enables to significantly reduce eddy currents in the 
core. 

Fig. 9.2 
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The rotor shaft is positioned in bearings 2 and 6, located in the bearing nests 3 

and 7. Motor is cooled by a fan 5, which is covered with a casing 8.  

Rotor consists of a shaft 1 and core 9 with a short circuit winding. Short circuit 

winding is made of copper wire (fig. 9.3) rods, embedded in isolation without 

grooves and close-circuited with the rings on the ends. An aluminum coil is made by 

filling in the grooves of a molten aluminum alloy. Short circuit rings 2 and ventilation 

scoops 3 (fig. 9.3b) are cast the same way. Phase rotor winding is made the same 

way. It is also a three-phase one (for a three-phase motor) - three coils are placed in 

the space and their endings connect to the three contact rings placed on the shaft. 

Rings are isolated from each other and from the shaft of the rotor. The additional 

rheostats are connected to the windings by brushes. The rheostat is used to improve 

the motor start-off (increased starting moment) or to adjust the rotor rotation 

frequency. 

The principle of the motor is based on the induction law and power results 

from the magnetic field. Rotating magnetic field of the stator winding, while crossing 

rotor winding wires, induces electromotive force, causing currents in the short 

circuited rotor winding. The interaction of the rotor winding currents and the rotating 

magnetic field create electromagnetic force that rotates the rotor in the direction of 

the rotating magnetic field. The phases sequence determines the direction of the 

rotating magnetic field. 

A characteristic feature of the induction motor is lag of the rotor rotation 

frequency from the stator magnetic field rotation frequency. 

Slipping s  connects rotor mechanical frequency 
2

n  with the frequency of the 

rotating magnetic field of the stator 
1
n : 

121
n/)nn(s  . 

Thus the rotor rotation frequency is )s(nn  1
12

.  

The expression of rotor rotation frequency for multipolar motor can be written 

as:                                     psfsnn /)1(60)1(
112

 . 

The rotation frequency can be controlled by changing the frequency of network 

current f  by special converters. This method is the most common, because it allows 

smooth rotation frequency adjusting. Besides, the converters are cheap.  

The second method is to change the sliding s  by rheostats, which are 

connected with every phase winding of phase rotor (for motors with phase rotor).  

The third way is by changing the number of pole pairs p . 

Fig. 9.3 
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Rotating magnetic field induces the electromotive forces in the phase windings 

of the stator ФwE
111

  and the rotor ФwE
222

  whose frequencies are (for short 

circuit rotor): 

60/n2
11

  , (
1

f ),  
112

s60/n2s   , (
12

fsf  ). 

The electrical state equations of the stator and rotor phases are: 

111111 IXjIREV  ,  0222222  IXjIREV . 

Motor phase substitutional scheme is shown at fig. 9.4, phase reduced 

substitutional scheme is shown at fig. 9.5, where ssRR
EQV

/)1(
2

  is the equivalent 

of mechanical load. 

Rotor winding electromotive force Е2 can be expressed as fixed rotor winding 

electromotive force constE
F


2
: 

F
sEФwsФwE

221222
  ,  where ФwE

21F2
 . 

Rotor winding reactance X2 can be expressed as fixed rotor winding reactance 

constX
F


2
 

FsXLsLX 221222   ,  where 
21F2

LX  . 

F22

F2

F22

F2

2
jXs/R

E

jsXR

sE
I





 . 

For motor idle mode 0s , 
12

nn  , 
EQV

R  and for motor short circuit mode 

1s , 0
2
n , 0

EQV
R  . 

Motor electromagnetic moment is:  

)///(2 ssssMM
CRCRMAX

 ,   
22

cosIФcM  , 

where 
CR

s  is a critical slip, the moment is maximum for this slip.  

Motor frequency characteristic )s(n
2

 at sliding interval 10  s  is shown at 

fig. 9.6, according to motor operation mode. 

Motor moment characteristic )s(M  at sliding interval 1s0   is shown at 

fig. 9.7. The characteristic is unstable at sliding interval 1 ss
КР

. 

n2 

Fig. 9.6 
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Motor mechanical characteristic )M(n
2

 is the main characteristic of the 

motor, it is shown in fig. 9.8 and determines its operational capabilities. Mechanical 

characteristic is based on the frequency )s(n
2

 and moment )s(M  characteristics. 

The value of nominal moment МNOM  characterizes motor for slip ranging 

within 
CR

ss 0 . Motor overload capacity is = MMAX / MNOM. Starting properties 

are evaluated as starting moment repetition factor 
NOMST

ММ /  and starting current 

repetition factor 75/ 
NOMST

II . 

Motor energy balance is illustrated in its energy diagram (fig. 9.9), where 

11
cos3 IVP   - electric power, М/MnP

ЕМ 11
602    - electromagnetic 

power, М/MnP
222

602   - motor mechanical power. 

The conversion of electrical energy into mechanical energy are balanced with 

losses: 
MECHМЕ PPPP  , where 

21 ЕЕE
PPP    are electrical losses in the 

windings,  
21 МММ

PPP   - magnetic losses in the core and 
МЕCHP - mechanical 

losses. 

The motor efficiency factor is determined by the formula: 

12
P/P  for 850.    or   

1
1 P/P   for 850. . 

 

Motor properties as the electrical circuit part are estimated according to the 

working characteristics (fig.9.10), the dependencies of current 
1

I , efficiency factor   

and power factor cos on mechanical power 
2

P . 

Power factor of induction motors is less than 1, because the motor uses reactive 

power (which is necessary to create a magnetic field) together with active power, so  

)QP(/Pcos
22

22
 . 

It is important that motor always work with loading close to nominal, for its 

highest power factor. 

Motor properties as the electric drive part are estimated according to the 

working characteristics (fig. 9.11) and dependencies )( 22 Pn , )( 2PM . 
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PART 10. SYNCHRONOUS MACHINES 
 

Synchronous AC machine is the one, which rotor rotates with the same 

frequency as the rotating magnetic field of the stator. Synchronous machines are 

widely used as generators, motors and synchronous compensators. 

However, the most important role of synchronous machine is a three-phase 

synchronous generator. In modern power stations, regardless of their type and power, 

the source of electric current is exclusively a three-phase synchronous generator. In 

thermal power plants generators are driven with steam or gas turbines. These 

generators are called turbo generators. Their speed makes rpm3000  and rpm1500 , 

their generated power makes up to 800-1000 MW. Water turbines drive 

hydrogenerators. Their speed is between 50 to 600 rpm and their generated power 

makes - 200-600 MW. 

Synchronous motors operate with power ranging from 10 kW to couple of 

thousands of kW. They are used mainly in drives that do not need to regulate the 

frequency of rotation, such as powerful pumps, fans, compressors, ball and rod mills, 

rolling mills, steel mills, as well as powerful units converting AC to DC. Advantages 

of synchronous motors make them more welcome at large powers comparing to the 

asynchronous ones. Therefore, asynchronous motors are widly spread in industry. 

Synchronous micromotors with power ranging from tenth of watts to hundreds of 

watts are used in automation, tools making and computer technologies. They also are 

used in electrical appliances and control systems. These comprise inductor/ reactive/ 

hysteresis/ stepping motors and motors with permanent magnets. Synchronous 

compensator - is a synchronous motor working in idle mode that serves to improve 

the power factor of the network. 

Synchronous machines have the following advantages: high efficiency and 

power factors, motor has the rigid mechanical characteristic, generator e.m.f. is 

independent from the load. However, they have complex structure, - motors require 

two voltage sources (three-phase AC and DC). Besides, synchronous motor’s starting 

is more complicated than the induction motor one. 

Electromagnetic system of synchronous machine is a branched symmetrical 

magnetic circuit. The main parts of it are an unmovable stator with a three-phase 

winding and a moving rotor with an excitation winding, powered by direct current. 

Stator has non-poles and rotor can have both designs with clear poles (fig. 10.1) and 

with non salient ones. Radial gap of machine with clear poles is uneven and it is even 

for the non-poles machine. For the clear poles rotor each pole is made as a separate 

unit, which consists of a core 1, pole tip 2 and pole coil 3.  

All poles are mounted on the rim 4, which is a yoke of magnetic system, which 

closes its magnetic fluxes. 

In the synchronous motor, as well as in the asynchronous one, the current that 

flows in the three-phase stator winding creates a rotating magnetic field. Excitation 

DC 
EІ  flows in the rotor’s winding and it is fed by DC power - opposite to the 

induction motors, where the current that flows in the rotor winding is induced by 

rotating magnetic field of the stator. Rotation speed of synchronous motors is 
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constant and equal to the frequency of the rotating magnetic field of the stator. The 

interaction of stator rotating magnetic field and the rotor current creates the rotating 

moment (due to the magnetic field force). Synchronous motors are made only with 

clear poles. 

The rotor of the generator acts as an inductor, it is a system of magnets, which 

windings are powered by direct current through slip rings. Pole coils are fixed by 

means of pole pieces to the rotor. They are fed by DC power. The low-speed 

synchronous generator rotor (speed under 300 rpm) is performed with clear poles, 

and high-speed generators rotor (speed 3000 and 1500 prm) is performed with non-

poles. 

The rotor excitation DC creates constant in time magnetic field. Rotor’s 

rotating creates a variable in space magnetic field, which induces in three phase stator 

winding a variable electromotive force (due to the induction magnetic field). If the 

load is connected to the stator winding, the armature current 
AI  will be flowing 

through it because the stator acts as an armature. 

In synchronous machines of low power the principle of excitation by 

permanent magnets is used. They are placed on the rotor. This excitation method does 

not need the excitation winding and contact rings. As a result, the machine 

construction is simpler. 

Since the generator is designed to generate sinusoidal electromotive force, the 

magnetic flux (magnetic induction) in the air gap between the stator and rotor should 

Fig. 10.1. Synchronous generator 

1– slip rings; 2 – brush-holder; 3 – rotor pole winding; 4 – pole tip; 

 5 – stator core; 6 – ventilator; 7– shaft 
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also change in sinusoidal way. Clear poles machines achieve this with uneven radial 

gap, providing a form of pole tip (like a mushroom head). The nonsalient rotor 

machines achieve this effect with uneven distribution of the excitation (rotor) 

winding. 

Synchronous machines, as well as DC machines, have an armature reaction 

effect, when the armature (stator) rotating magnetic field affects the basic magnetic 

field of the inductor (rotor winding). The resulting magnetic flux creates the 

combined effect of the magnetic fluxes of armature and inductor windings. Armature 

reaction in synchronous machines, unlike DC machines, depends from the load. At 

generator’s active load armature winding magnetic flux is behind the main magnetic 

flux at an angle 0
90 . This effect is called a transverse armature reaction. At the 

active-inductive load, the armature winding magnetic flux is opposite to the main 

magnetic flux, so the resulting magnetic field weakens. At the active-capacitive load, 

the armature and main magnetic fluxes have the same direction, so the resulting 

magnetic field increases. 

The frequency of the induced in armature winding 

electromotive force depends on the number of pairs of poles 

and rotor speed: p/fn 60
0
 . 

The magnitude of generator-induced electromotive 

force is: 
mw111

ФkwE  , 

where 
1
w - is a number of coils in the armature (stator) 

winding, 
wk - winding ratio, Ф - the magnetic flux amplitude 

of inductor (rotor) poles. 

One of the important characteristics of synchronous 

generator is a characteristic of idling (magnetic 

characteristic) – that is the dependence of electromotive 

force in the armature winding 
AE  from excitation current 

EІ  

at a constant speed of rotation, without load. Generator idle 

characteristics (fig. 10.2) is similar to the spread of 

branches. This is due to the influence of hysteresis phenomena of machine magnetic 

system. With increasing hysteresis losses in magnetic circuit, 

the spread of branches becomes wider. 

As seen from the idling characteristic, electromotive force 

increases almost linearly with increasing generator excitation 

current. The slope characteristic is determined by the value of 

the air gap, (the bigger gap the bigger slope). With further 

growth of excitation current generator magnetic system 

saturates. The generator external characteristic is a dependence 

of voltage at the stator winding clamps from the load current (armature current) )( AIV  

at constant excitation current and speed. Figure 10.3 shows the synchronous 

generator external characteristics at different nature of the load. The current growth at 

the active load (curve 2) is accompanied by a voltage dropping because of growing 

voltage drop in the stator winding. The current growth at inductive load (curve 1), is 

accompanied by the voltage dropping because of the demagnetizer effect of armature 

EA 
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reaction. The current growth at capacitive load (curve 3) is accompanied by voltage 

growth due to the magnetizer effect of armature magnetic field. 

Generator adjusting characteristic is a dependence of excitation current from 

armature current )( AE IІ  at a constant rotation frequency and constant output voltage. 

It shows how the excitation current changes in response to the load (armature) current 

attempts to maintain the constant voltage at generator clamps. Figure 10.4 shows the 

adjusting characteristics corresponding to different kind of load. The increasing 

armature current at active load (curve 2) needs to have reduced excitation current to 

maintain constant voltage at the clamps. The increasing armature current at inductive 

load (curve 1) needs to have reduced excitation current as well. The increasing 

armature current at capacitive load (curve 3) needs on the contrary to have an 

increased excitation current. 

Synchronous machines are not reversible as DC machines. That means the 

same machine cannot work both as a generator and a motor. This is because the 

motor does not have its own starting moment (unlike induction motor). The currents 

of three-phase stator winding, which is powered by a three-phase voltage source 

creates a rotating magnetic field. Winding that is located on the rotor is powered by a 

DC voltage and DC runs through it. Power performance of the stator rotating 

magnetic field creates the motor rotation moment on the rotor winding wires and thus 

rotor, "involved in synchronism", begins to rotate with the frequency 
2

n  equal to the 

frequency of the stator rotating magnetic field 
1

n . They are called synchronous 

motors because the rotor speed and rotating magnetic field speed are the same 

012
nnn  . This is a necessary condition of the motor working. However, the motor 

does not have it`s own starting moment. It is not run simply by connecting to the 

network. 

Consequently, additional motor is needed to start synchronous motor. This start 

is called a synchronous one. Alternative start is an asynchronous one. Additional 

short circuit winding is put into the rotor grooves (as at induction motor). It turns on 

when motor starts, so the motor runs as an induction, and after start (after the motor is 

"involved in synchronism") the relay turns off this winding, turning on the excitation 

winding for the motor to run as a synchronous one. So, synchronous motors, unlike 

generators, have additional starting winding. To start high power synchronous motors 

lower voltage is applied to limit starting currents. 

Synchronous generator energy conversion is illustrated in diagram at fig. 10.5. 

Generator total power losses consist of the sum of electrical 
Е

P , magnetic 
М

P  and 

mechanical МECHP  losses МECHМЕ PPPP  . Electrical losses are the losses in 

the stator 2

111
3 IRP

Е
  and rotor 2

222
IRP

Е
  winding, where 

21
R,R  are stator and 

P1 
PЕМ P2 

PМЕC 
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rotor phase winding resistances, 
21

I,I  - stator and rotor phase currents. General 

electrical losses are 
21 ЕЕЕ

PPP   . Generator magnetic losses are losses in the 

cores of the stator 
1ММ

PP   . 

The generator efficiency factor is the ratio of power, which generator gives to 

the network 
2

P , to mechanical power 
1

P , which it uses: )/(/
2212

PPPPP  . 

Electromagnetic power transmitted from the rotor 

to the stator is МP
ЕМ
 , 

where M - is an electromagnetic moment and   - a 
rotation frequency. 
 The power losses in the armature winding 
comparing to an active capacity are minor, so the 
machine active power is assumed to be equal to 

electromagnetic power: cos3VIPPЕМ  . Thus the moment is  /cos3VIM  . 

The generator and motor energy diagrams are 

similar, but the motor consumes electrical power 
1

P  and 

produce mechanical power 
2

P .  

Electromotive forces induced in the stator 
winding by armature magnetic flux and dissipation 

magnetic flux are accordingly: 
AAA XIjE  , 

DAD XIjE  , where 
AX - is an armature reactance, 

D
X  - a dissipation reactance. Then the total reactance is 

DA ХХХ  . 

Simplified substitutional scheme of synchronous machine is shown at fig.10.6. 
Its phase equation according to the second Kirchhoff”s law is the following 

(neglecting the armature active losses): VZIEEE ADA  . 

Thus, the equation of a synchronous generator is  AIjXEV  . 

Vector of generator electromotive force E  is ahead 

of voltage vector V  at the generator clamps at an angle  . 
This angle increases with the load current, and it is called 

a synchronous machine load angle. If E >V , synchronous 

machine operates in generator mode at 0 . If E <V , it 
operates in the motor mode at 0 . And if 0  the 
machine works in an idle mode. 

The magnetic field of the armature rotates 
synchronously with the rotor, but the axis of the armature 
and inductor magnetic fields is shifted by an angle  . The 
moment on the generator shaft changes according to sinusoidal law (fig.10.7): 

 sinmaxMM , where 
maxM  - is a maximum moment. The dependence )(M   is the 

machine angle characteristic. Synchronous machine functions in the motor mode at 
0M , when   0  and in the generator mode at 0M , when 0  . 

 Generator steady mode corresponds to load angle of 02   /  and motor 
steady mode corresponds to load angle 20 /  . 

Mechanical characteristic of synchronous motor )(Mn  is rigid, the rotation 

speed does not depend on the moment and it is not regulated. That’s why the 
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synchronous motors are not so popular.  
If motor moment  /cos3VIM   is not changed, it keeps steady active power 

constVIP  cos  and the active component of consumption current 
a

I . However, if 

the excitation current 
EI  changes (for the constant power motor feed current), it 

changes actually its reactive component 
rI  (consumption reactive power Q  and 

power factor cos ). Thus, power factor can be changed with the excitation current. 

The dependence of the reactive component of the feed current of motor from the 
excitation current )( EA II  at constant active power is called a V-like motor 

characteristics (fig. 10.8). 
The graph shows that the minimum stator currents will be when 1cos  for 

excitation current 
0

I . The machine at this mode does not give to the network and does 

not consume from the network any reactive power. The area located to the left of the 
current 

0
I  corresponds to the currents with the phase lagging behind the voltage 

(inductive character of the load), and is called an underexcited operation mode. The 
area located to the right of the current 

0
I  corresponds to the currents which phases are 

ahead of voltage (capacitive character of the load), and is called an overexcited 
operation mode. Synchronous motors can create an active-inductive load as well as 
an active-capacitive load depending on the excitation current value. Besides, their 

cos   can also be equal to 1. Synchronous motors that work at idle overexcited mode 

0II E   are called synchronous compensators. They are connected as capacitor banks 

in parallel to the consumers with big reactive power (induction motors, transformers). 
Synchronous compensators give to the network capacitive reactive power 

C
Q  that 

compensate reactive inductive power of the consumers 
L

Q , resulting in higher cos . 

The following conclusions can be made when comparing synchronous motors 
with induction motors: 

- their stator structures are the same, 
- their rotor structures are different: induction motors are manufactured with 

short circuit or phase rotor, while synchronous motors are made exclusively as 
explicit-pole ones. Besides, an additional DC source is to be used to feed their 
excitation winding, 

- mechanical characteristic of induction motor is soft (depending on load) as 
well as their speed regulation, whereas the synchronous motor mechanical 
characteristic is rigid (independent of load), so its speed can not be regulated, 

- asynchronous starting of synchronous motors is more complicated than the 
starting of induction motors (due to short circuited rotor), i.e. additional starting 
winding), but starting characteristics of induction motors with phase rotor are better 
than starting characteristics of synchronous motors, 

- the maximum moment of synchronous motor is proportional to the voltage 
and the maximum moment of induction motor is proportional to the square of the 
voltage, so induction motors are more sensitive to voltage changes (that fact 
decreases their starting moment), 

- induction motors create only active-inductive load, that’s why their cos  is 

not big, whereas synchronous motors can create both active-inductive and active-
capacitive loads depending on the excitement current value. Their cos  can also 

reach 1. 
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Attachment 

№ Greek letters  

1 Α α alfa  

2 Β β beta 

3 Γ γ gamma 

4 Δ δ delta 

5 Ε ε epsilon 

6 Ζ ζ dzeta 

7 Η η eta 

8 Θ θ, teta 

9 Ι ι jota 

10 Κ κ kapa 

11 Λ λ lambda 

12 Μ μ miu 

13 Ν ν niu 

14 Ξ ξ ksi 

15 Ο ο micron 

16 Π π pi 

17 Ρ ρ ro 

18 Σ σ,ς sigma 

19 Τ τ tau 

20 Υ υ ipsilon 

21 Φ φ fi 

22 Χ χ hi 

23 Ψ ψ psi 

24 Ω ω omega 
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Physical values designation and units  

Value Designation Dimension 

Resistance R, Ω Om 

Reactance X, Ω Om 

Impedance Z, Ω Om 

Conductance G, Sm Simens 

Susceptance В, Sm Simens 

Admittance Y, Sm Simens 

Capacity С, F Farada 

Inductance L, H Henry 

Inductance mutual М, H Henry 

Electromotive force Е, V Volt 

Potential φ, V  Volt 

Voltage V, V Volt 

Current I, А Amper 

Active power Р, W Watt 

Reactive power Q, VAr Volt-Amper reactive  

Total power S, VA Volt-Amper 

Magnetomotive force F, А Amper 

Magnetic induction В, T Tesla 

Magnetic field tension Н, А/m Amper per meter  

Magnetic stream Ф, Wb Weber 

Linkage , Wb Weber 

Magnetic permeability 

(absolute)  
а,, Гн/м Henry per meter  

Magnetic permeability 

(relative) 
  

Magnetic constant 0, Гн/м 4-7 

Frequency f, Hz Herz 

Angular frequency , rad/s radian per second  

Length 1, m meter 

Hight, depth h, m meter 

Layer , d, m meter 

Arial S, m2 square meter 

Magnetic resistance Rm  

Number of turns w  

Force F, N Newton 

Work (energy) W, J  Joule 

Charge Q, C Coulomb 
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