/\ BicHuk TepHONiIbCHKOI0 HALIOHAJIBLHOIO TEXHIYHOT0 YHIBEPCHTETY
Scientific Journal of the Ternopil National Technical University
m@ 2018, N2 2 (90)
ISSN 2522-4433. Web: visnyk.tntu.edu.ua

UDC 539.3

SPLINE COLLOCATION METHOD FOR FREE VIBRATION
ANALYSIS OF LAMINATED SHALLOW SHELLS

Oleg Pavlenko

Ternopil Ivan Pul'uj National Technical University, Ternopil, Ukraine

Summary. The presented study deals with free vibration of cross-ply symmetrically laminated composite
doubly-curved panels with constant thickness. Based on the first-order shear deformation theory (FSDT) the
equations of motion are derived by applying the Hamilton’s principle. Spline function approximation technique,
which includes B-splines of the third order, is used to reduce two-dimensional system of coupled differential
equations in terms of displacement and rotational functions to one-dimensional. A generalized eigenvalue problem
is obtained by applying a point collocation method with suitable boundary conditions. The vector-matrix form of
the governing equations with different boundary conditions, from which values of a frequency parameter is
obtained, is presented. These systems of ordinary differential equations are solved using the Godunov's discrete
orthogonalization method. The effects of curvature ratio and thickness-to-length ratio on the fundamental natural
frequencies of composite doubly-curved panels with all sides simply supported are investigated. In order to verify
the accuracy of the employed method the frequency parameters are evaluated in comparison with the previous
paper available in the literature. Good agreement with other available data demonstrates the capability and
reliability of the spline collocation method and the adopted composite doubly-curved shell model used.
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Statement of the problem. Laminated shells are widely applied in many branches of
modern engineering, construction, ship, plane and rocket engineering in particular. Such
systems being under operation are subjected to different dynamic loads, which can cause
dangerous vibrations of both the elements and the whole structure. To design the shell structure
for effective enduring of static and dynamic loads, it is necessary to determine the conditions
of its strength and reliability. To analyze the strength and bearing capacity of laminated shells
it is necessary to know the factors of the stress-strain state, as well as the rate of their change in
time. Hence there arises a need to develop optimal and accurate enough approaches to the
mathematic, geometric and computer modeling of the dynamics problems of laminated shells
with subsequent solving them by precise and effective methods.

Analysis of the available investigation results. The developments, analysis and
classification of many available theories of laminated plates and shells are presented in the
review [1]. The articles [2, 3] deal with the putting in order the latest achievements of the
dynamic behavior of laminated composites. The papers by G.M. Hryhorenko and his colleagues
[4, 6] are devoted to many important problems of analysis of the laminated plates and shells of
different geometry in classical and refined statements by the variation, numerical and
numerical-analytical methods. A great number of static and dynamic problems of laminated
composite shells and plates are solved in monographs [7 — 9]. P.K. Mallick [7] has studied the
dynamic characteristics of composite plates and shells. M.S. Qatu [8] described the dynamic
behavior of the laminated plates and shallow shells. J.N. Reddy [9] has focused on the analysis
of both real examples and the general mechanics of plates and shells.

The objective of the paper is to investigate the effect of geometric and mechanical
characteristics on the natural frequencies of the laminated shallow shells, taking advantage of
the spline collocation method to obtain the system of ordinary differential equations and use
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the discrete orthogonalization technique for its solution as well as to specify the expediency of
this approach for the solution of certain dynamics problems.

Statement of the task. In order to investigate the free vibrations of cross-ply
symmetrically laminated doubly-curved shallow shells with constant thickness, made of
specially orthotropic material, the first-order shear deformation theory (FSDT) is engaged. For
the specially orthotropic material, according to [4 — 6, 9], itis considered, that the main elasticity
directions of each layer coincide with the coordinate lines, and the main assumptions of the
elasticity theory of the homogeneous orthotropic body are true for every layer of the shell:
within each layer the continuity hypothesis, which ignores the atomistic structure, is expected
to be true; the conditions of the ideal layer bonds, related to the lack of separation and mutual
skidding on the contact surface, are assumed; the material of every layer is considered to be
orthotropic, linear-elastic and being subject to the generalized Hooke’s law.

For the reinforced layer it is expected, that the bond between matrix and the fibres is
ideal; the fibres are parallel and uniformly distributed; the matrix has neither pores nor cracks
and is under non-stressed initial state; the applied loads are either parallel or perpendicular to
the fibres direction.

From now on we choose the mid-surface of the shell as a coordinate plane and assume
deformations to be small. For the layer package the Mindline-type theory is considered to be
true, according to which, two following hypothesis are introduced. The straight line hypothesis
(kinematic) — normal to the shell mid-surface rectilinear element before deformation keeps its
length and remains straight but not necessarily normal to the shell mid-surface after
deformation. The static hypothesis: normal stresses on the planes parallel to the mid-surface are
negligible in comparison with the ones on the planes perpendicular to it.

Besides, the inertia forces caused by the displacement of the mid-surface element and
rotation of the normal elements are taken into account. The temperature and piezo-electric
effects are absent. Also, the coefficient of the elastic basis is of the Vinckler type K =0.

There are different approaches for panels and shallow shells classification depending on
the relation between their minimum geometric size and thickness. In our paper let us assume

[8] a,;,,/h>50 — embrane, 20<a,, /h<50m — thin, 10<a_. /h <20 — moderately thick,
a,,,/h <10 —thick.

General equations of the shell theory must be used while analyzing deep shallow shells.
But, in the case of sufficient shallowness R, /a,., =2, the following additional assumptions

max —

make the initial system of equations easier, without the decrease in accuracy.

The shell is projected on the plane as the rectangle with sides a and b. Thus, instead of
the curvilinear coordinate system the Cartesian one is used, its geometry being similar to that
of the plate (the Lame’ parameters A=B =1)

The curvature changes caused by the tangential displacement components u and v are
small, in comparison with changes caused by the normal component w. Also, the transverse
shear forces are much smaller then the term R (6N, /di): u,/R, <<1, Q, <<R(éN, /i),

(1+2/R;)~1, where u, is u or v, Q is Q,or Q, N, is N,, N, or N, and R, is R, or R,.

The term (6i) indicates derivative with respect to either x or y.

The real distribution of transverse shear strains is non-linear through the laminate
thickness, it follows that transverse shear stresses vary through the laminate thickness.
Moreover, the introduced kinematic hypothesis does not provide the condition of vanishing of
transverse shear stresses on the top and bottom of a general laminate composed of monoclinic
layers. That is why there arises a need to introduce the shear correction coefficient K, which

is found from the condition of sequence of two assumptions introduced independently from
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Spline collocation method for free vibration analysis of laminated shallow shells

each other as to the nature of the displacements and transverse stresses distribution along the
shell thickness. In this paper the shear correction factor is assumed to be K =5/6.

The introduced hypotheses make it possible to analyze the two-dimensional problem of
its mid-surface vibration instead of the three-dimensional dynamics problem of the shell as the
spatial body, and the assumptions as to the geometry make it possible to present the
characteristics in the orthogonal coordinate system.

Let us present free vibration relations for the analyzed shells. According to the FSDT,
kinematic and deformation factors of the three-dimensional theory of elasticity are connected
to the corresponding factors of the employed one as follows:

u,(x,y,z,t)=u(x, y,t)+zy,, e (x vy, zt)=e(x,y,t)+zr.(x,y,t),
uy(x, y,z,t)=v(x, y,t)+ Zy,, ey(x,y,z,t)zgy(x,y,t)+ Z)(y(X, y,t),

u,(x, y,z,t)=w(x,y,t) ey (X, ¥, 2,t)~ 6 (X, y, 1)+ 227, (X, ¥, 1), )
_ ou, _ 8& exz(xv Y, th)z }/X(X, y’t)1

oz, YT o e, (X, y,2,t)~ 7, (x y.t)

¥

The strain-displacement relations take the form

ou ov ou ov ow
e, =—+kw, £, =—+k,w, Ey ="+, 7 =¥, +——Kku,
OX oy oy ox OX @)
oy 2 oy, 2 oy, oV, ow
= L — K, w, =—-k,w, 2y, = Lp—, =y, +—-—k,v.
Zx ax 1 Zy ay 2 Zy 8y GX ]/y Wy ay 2

In the expressions (1), (2) u(x, y,t), v(x,y,t) — tangential and w(x, y,t) — normal
displacement of a point on the mid-surface; ¢,, ¢,, ¢,, —mid-surface normal strains; y,, x,,

2y,, —bending strains; y,, , — total rotations of a transverse normal about the y —and x —
axes, respectively; y,, 7, — transverse shear strains; k, =1/R,, k, =1/R - curvatures; R,
R, — radii of curvature in the x and y directions, respectively. Note, that for the spherical
shallow shells the curvatures k, =k, =1/R, and for the parabolic ones — k, =0, k, =1/R.

Using Hamilton’s principle yields the following equations of motion:

ON, ON,, o’u |y, oM, OM o°u Oy,
x ayy =l thar i ” ayy “Q=hgE e
ON,  oN, ov. Oy, M, M, o oy
IR L IO L PO @
a 2
g§+lﬁ—me«Wy=%@¥.
OoX oy ot

It is necessary to account for the vanishing of the moments about the normal to the shell
element in the formulation, otherwise, it will lead to inconsistency associated with rigid body
rotations. That said, an additional relation must be introduced

N, —k,M, — N, +kM,, =0. 4)
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In the equations (3) and (4) force and moment resultants in the cross-section x = const
N,, N, Q. M,, M, have dimensions of force and moment per unit of the arch length

x = const, respectively, and are considered to be statically equal to the stresses acting in the
normal cross-section of the shell perpendicular to the direction y. The resultants have the

following interpretation: N, —normal force, N, —in-plane shear force, Q, —transverse shear
force, M, — bending moment, M~ — twisting moment. Force and moment resultants in the
cross-section y=const N, N, Q, M, M areof similar nature.

The inertia moments 1, 1, |, of the normal element rotation about the axes X and vy,
taking into account the laminated structure of the shell, are expressed as follows:

Ij:i]pizjdz (j=012). (%)

=1z,

In (5) M — number of layers, p' = p'(x,y,z) —density, z=z,,(x,y), z=z,(x,y) -

the boundary surfaces equation. In our case we have

ph’
I, =ph, I.=0, I, = ) 6
0 =P 1 2= "5 (6)

The constitutive equations that relate the force and moment resultants to the strains of
the laminate are given by

Nx = Cllgx + C128y’ I\Iy = Clz‘gx + C228y’ Qx = KCSSyx’
ny = C6ngy + 2k2 D66ny’ Nyx = C66“;xy + 2k1D66)(xy’ Qy = KC447/y (7)
Mx= 11/1/X+D12/1/y’ I\/Iy= 1ZZX+D22;(y’ Mxszyx=2D66ny'

In the expressions (7) the coefficients are called C,,, extensional stiffness, D, bending
stiffness, K, bending-extensional coupling stiffness [6, 9] and interpreted as follows. C,, and
C,, — stiffness of stretching-compression along the coordinate lines y =constand x = const.
C,, Cu, Cs, Cg —shear stiffness in the tangential to the mid-surface plane. C,, and C, —

accompanying stiffness of stretching-compression and shear, specifying the effect of elongation
along the coordinate lines y =constand x =const on the shear in the tangential to the mid-

surface plane. K,; and K,, — stiffness of tension and bending mutual effect along the lines
y =constand x =const. K,, and K,, —accompanying stiffness of the mutual effect of bending
on shear and elongation on torsion. K, — stiffness of torsion and shear mutual effect. D,, and
D,, — stiffness of bending about the axes tangential to the coordinate lines x =constand
y =const. D,; and D,, —accompanying stiffness of bending and torsion, specifying the effect
of bending about the axes tangential to the lines x =const and y = conston torsion. Dy, —

torsion stiffness.
Laminate stiffness depends on the mechanical parameters and the thickness of layers:
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Spline collocation method for free vibration analysis of laminated shallow shells

Con = J;_nimdz, Ko =i J'_n‘mzdz, D, =§: ]lﬁnimzzdz. (8)

=1z,

Stiffness parameters of the i-th layer B! must be transformed from the material
coordinate system to the laminate coordinates as follows:

|

. =B/ cos’ 0+ Z(Bli2 + 2By, )sin2 Ocos’ 6 + B,,sin* 9,
5, = (B!, + B, — 4B/, )sin? 0cos? 6 + Bl,(sin* 0 + 00540),
, =B sin*g+ 2(81‘2 + ZBgG)SinZ Ocos’ 6 + B}, cos* 6,
. = (B!, - B!, — 2Bl )sin Ocos® @ + (B!, - B, + 2B, )sin® O cos O
= (Blil - B, - ZBge)sin%?cose + (Bli2 - B, + ZBéﬁ)sin dcos’ 6,
. =(B], +Bl, — 2B}, — 2B, Jsin® @ cos’ @ + Bl (sin* 0 + cos* )
, =B,,cos’0+Blsin’0, By =Blcos’0+B,sin’6

B, = (B, - B, )cosesin 9,

w| W o

(9)

o
N —

o
o -

o
N~

where 6 — the angle between the layer coordinates and the global coordinate. The coefficients
B! are known in terms of the engineering constants of the i-th layer:

i E! . wE, . E
B, = 1_viy - i
—VVy 1-v,v,

B, =G! Bi, =G| By, =G, .

yz? Xz 1

(10)

In formulas (10) E!, E‘y — moduli of elasticity of the i-th layer alone x — and y -axes,

respectively; vly, v‘yX —major and minor Poisson’s ratios of the i-th layer, respectively, defined
as the ratio of transverse strain in the direction of the second index to the axial strain in the
direction of the first index; G,,, G,,, G,, —shear moduli of the i-th layer in the plane parallel

to the coordinate surface z =const, y =const, x =const, respectively.

Stiffness coefficients of the equations (7) due to (8 — 10) for 0/90/90/0 and 0/90/0
lamination schemes, respectively, become

h(E, +E, ) o _ ED

C,=C, = , =X C., =G, h,
11 22 2(1_ nyvyx i 12 1 _ nyvyx 66 Xy
c,-c. -, +6,) D h*(7E, +E, ) 5 v, Eh’
a0 =L =0, +06,,) 1= ) 12 = )
2 ! 9601 - ViV yx ) 12(1— ViV yx )
h*(E, + 7E, ) G h° (11)

D = I} D = ’
2 06ll-v,v,) 4
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c. - h(2E, + E ), c. _ vEh c. - h(E, +2E ),
m 1-v,v, 31— vxyvyxi

Cy = g(ze +2G,) Cy-= %(2@ +G,) Cgx=G.h, D= Giyzhg : (12)
h®(26E, +E,) v, EN h*(E, + 26E,)

D D D
ne 324‘1 vxyvyxi 2o 12‘1 nyvyxi 2 324‘1 vxyvyxi

In order to solve real problems it is necessary to introduce the boundary conditions for
the equations (2) — (6). In accordance with the FSDT, it is necessary to have five conditions on
the edges of the mid-surface in terms of primary variables (displacements and rotations) or
secondary variables (forces and moments resultants). For the simply supported sides x =0,

X =a we have

ou oy, 3
&=0, v=w=0, " =0, y/y—O. (13)

Similar conditions can be obtained on the sides y=0, y=b by changing x — vy,
u—v, v, >y, in(13).
As it is known, the initial conditions are not provided directly, but it is assumed, that all

points of the elastic body vibrate with the similar frequency so, that the investigated process is
specified by the set of harmonic components, which looks like this:

(U(X, y,t) V(X, Y, ) W(X,y,t) WX(X, y,t) lr//y(xi y,t)) ( ) ot

t
_ (14)
Fioy)=L0y) Vy) Wixy) w(xy) ¥,y
Note, that the components of the vector F(x,y) specify the form corresponding to the

frequency of free vibrations w. Let us make the equations, frequency parameters and boundary
conditions nondimensionlalozed by the following means:

x=aX, y=bY, @=wa’/p/Eh’. (15)

The equations of motion (3) can be expressed in terms of U(X,Y), V(X,Y), W(X,Y),

¥, (X,Y), ¥, (X,Y) by substituting the force and moment resultants from (7) and taking into

account formulas (6), (14) and (15). Received system of coupled partial differential equations
with constant coefficients does not contain derivatives of the variable functions with respect to
Y above the second order. Thus, B-splines of the third order can be used along Y direction [5]
in order to reduce partial differential equations to the ordinary ones. According to the above,
the solutions are presented as follows:

zuu (”1| Y zvu (”2. W(X,Y)ZZWi(X)(pSi(Y),

i= i=0

X ZV/XI ¢4I Y ’ ZWYI ¢)5| (16)
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Spline collocation method for free vibration analysis of laminated shallow shells

where u;(X), v;(X), w;(X), wy(X), wy (X)—the sought functions of the variable X; ¢, (Y )

(j =1,_5) — linear combinations of B-splines of the third order on the uniform lattice A:
0=Y, <Y, <...<Y, =1, which satisfy the boundary conditions on the sides Y =0 and Y =1.
The functions ¢, (Y ) are presented as follows:

i=14 ]=235
(PJO(Y): B:«?(Y)’ (Pjo(Y)— 4B31(Y)+B§(Y),
PulV)=BA()-JBINTBAYE  [o,(r)=B.A(Y)-2B(Y)+ BV
_ . (17)
¢’ji(Y)=le(Y)' i=2,N-2; (0,.(Y)=53|(Y), 1=2,N-2;
PpaY)= BV )=BI(Y)+ BIE(WE [y a(Y)=BI(Y)- 2B (V) + BI(Y)
(2N (Y): BsN (Y)' (2N (Y): BsN (Y)_483N+1(Y)

In the formulas (17) B; (i =-1N +1) — the basis splines of the third order given by

0, —o<Y <Y,_,,
(t)’ Y., <Y<Y,
si(y)- L ~30°+3¢° +3q+1, Y <Y<Y, [q:i p:i_2i+1}
6 [30° -6q” +4, Yi <Y <Y, Yoa=Yy | (18)
(1_Q)3 Yia SY <Y,
0, Y., <Y <o

The equations are required to be satisfied in the collocation points &, k =0,N
(N =2s+1), which are chosen on the uniform lattice A: 0=Y, <Y, <...<Y, =1 so, that
Su =Yy +t1/N’ Sa1i1 = Yoy +t2/N’ Sa11Sa1 € [YZI’Y2I+1] (I = ﬁ) The points L and t, are the
roots of Legendre polynomial of the second order t,, =1/2++/3/6. Thus, in every interval
[Y,.Y,.,] there are two collocation nodes, and on the neighboring intervals [Y,, ,,Y,] and

[Y,,.1, Y., ]there are none.

The governing system of the linear ordinary differential equations with constant
coefficients is presented in the following vector-matrix form:

— = AR. (19)

Inthe system (19) R=R(X)=[0 @ v V W W ¥, ¥, # w,] —vector-
column of size 10(N +1), the elements of which look like this:

u(X)=G(X) v(X)=%(X). w(X)=w(X). wi(X)=pqa(X) w(X)=w(X}  (20)
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U, v, Wy Yxo Yvo

a00)=| T v00=| | weo=| L w00V meo=|
Uy Vy Wy VN Y (20)
l—IO \70 \TVO l/7X0 1/7Y0

T0)=| T F T00=| T @)= T 0= =]
l—IN \7N WN l/‘-;)(N l/7YN

In the formulas (19) A= A(X &, a)) — the quadratic matrix of size 10, non-zero elements

of which are presented as follows:

AJ.2=A34:A56:A78:A9,10:E'

Ay = (ailE + aizq)I()lq)lz )’ A, = aisq)I()lq)21' Ayx = a14®1’01q>30, Ay = aisq)I()lq)421
Ao =30 Dy, A, =8,0,0,, Ay=8,E+a,0,0,, Ag=a,0,0,,
Ay =P ®,, Ag=D,0(a,,Py+a,D,,) A, =a,0u®,, A, =a,0,0,,
Ap =a,E+a,0,D,,, Ay=a,D0,P,, A,=a,D,D,, A, =2a,0,P,,

Ay = 3,00y, Ay =8,E+3,0,0,, Ayp=2a,D,P., Ag,=a,D,0,,
Ags =a,@y @y, Ay =a,00®@,, Ao = a5, E +a, Dy ®s,

(21)

In the expressions (21) E — identity matrix of size N +1; the quadratic matrix
@, (&)=[p(&)] i,k=0,N, j=15, a=0,2) looks like this:

¢Eg)(§o) (PE?)@O) (/7§z)(§o)
% @(2) . o)
0, (0)=lpie ]| 8 e eile)] @2)
¢§g)(§N) (023)(5\.) (025)(9%)

The coefficients a; in (21) are of such values:

a’o’l, Ces C,, +Cyg a
__ e, g —_eie o & (copicok)
W= W=t A c AT (Cuik, +Ciok,)
Dgs kl Cp +Cg a’ 2 2 C
= =— poa, = ———>=, =—(KC_ ki —w®°l,) a,,=——2,
Qs = Qg C., 21 C.. 22 C. ( 44%2 0) 23 C.. o
a D,k
Ay = __(D12k12k2 + Dzzkz3 + Clel + szkz + KC44k2)’ Ay = 22
Ces Ces
a’k D..k a
A, = Ce: (a)2|2 _ KC44 )’ ay, = %; a,; = a(cnkl + C12k2)+ akl,
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Spline collocation method for free vibration analysis of laminated shallow shells

2

a a
8y = F(Clzkl +Cpk, + KC ik, )v 33 = F(Cllkl2 +2C Kk, + C22k22 B a)zlo),

55 55
C aC a’KCyk
8y :_C_M' 8y =48, g :_C—M; a41:_%’
55 55 11
2
a a D
a :D_(kZZDlz"' KC55)+ ak!, ag :_(Kcss_wzlz)’ B :_D_GB’ 23)
11 11 11
Dy, + Des a’KC,.k, a 2 2
Qs =——2—%; a, =——"T22 3, :—(Dlzk1 +D22k2 +KC44),
Dy, Des Des
D,+D a’ D
353:_%’ 354:_(KC44_602|2)’ a5 = — .
66 66 66

For all sides simply supported we have the following boundary conditions:

B,R(0)=0, B,R(1)=0,

[E=Y

oOo®, O 00O O0OO0O O O
oo @, OO 00O O O

B,=|O O O O ®, O OO O O] (24)
OO0 O OO O0O0O®, O O
OO0 O 00O O0O0OO0 &, O

50

where O — zero matrix of size N +1; @, —nonconfluent quadratic matrix of size N +1. The

problem (19), (24) is solved by the stable numerical method of the discrete orthogonalization
[10] combined with the step-by-step search method.
Let us analyze the shallow shells with the following mechanical characteristics:

a=b=1 E/E, =25 G, /E, =G,/E, =05 G,/E =02 v, =025  (25)
a=b=1 E,/E, =15 G,/E, =G,/E, =05 G,/E, =05 v, =025 (26)

Table 1 presents lower nondimensionalized natural frequencies @ of the simply
supported cylindrical shallow shells with the material properties of the lamina given in (25).
Shell thickness, radii of curvature and lamination scheme are also reported in Table 1. The
results are obtained using the proposed spline-collocation technique (N +1=18) and the

discrete orthogonalization method (100 orthogonalization points). Comparing our
nondimensionalized natural frequencies with the 19-term Navier type solutions (expands the
displacement field into double Fourier series) done by Reddy in [9], we can see less than 1 %
deviation in values.

Table 2 presents lower nondimensionalized natural frequencies @ of the simply
supported spherical shallow shells with the material properties of the lamina reported in (25).
Shell thickness, radii of curvature and lamination scheme are also reported in Table 2. The
results are obtained using the proposed spline-collocation technique (N +1=18) and the

discrete orthogonalization method (100 orthogonalization points) and compared to 19-term
Navier type solutions (expands the displacement field into double Fourier series) done by
Reddy in [9].
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Table 1

Nondimensionalized natural frequencies of the cylindrical shallow shell

Lamination scheme [a/h| Method R/a
S) 10 20 50 100

10 Fourier | 12.207 | 12.173 | 12.166 | 12.163 12.163
0/90/0 Propo_sed 12.3046 | 12.2706 | 12.2627 | 12.2612 | 12.2609
100 Fourier | 20.332 | 16.625 | 15.556 | 15.244 15.198
Proposed| 20.4944 | 16.7568 | 15.6901 | 15.3671 | 15.3201
10 Fourier | 12.267 | 12.236 | 12.230 | 12.228 12.227
0/90/90/0 Propo_sed 12.3649 | 12.3321 | 12.3277 | 12.3254 | 12.3252
100 Fourier | 20.361 | 16.634 | 15.559 | 15.245 15.199
Proposed| 20.5238 | 16.7687 | 15.6843 | 15.3657 | 15.3192

Table 2

Nondimensionalized natural frequencies of the spherical shallow shell
Lamination scheme | a/h | Method R/a

2 3 4 5 10
10 Fourier | 13.382 | 12.731 | 12.487 | 12.372 | 12.215
0/90/0 Propo_sed 13.4897 | 12.8339 | 12.5861 | 12.4740 | 12.3145
100 Fourier | 68.075 | 47.265 | 36.971 | 30.993 | 20.347
Proposed | 68.6189 | 47.6382 | 37.2633 | 31.2444 | 20.5139
10 Fourier | 13.447 | 12.795 | 12552 | 12.437 | 12.280
0/90/90/0 Propo_sed 13.5545 | 12.8972 | 12.6519 | 12.5351 | 12.3756
100 Fourier | 68.294 | 47.415 | 37.082 | 31.079 | 20.380
Proposed | 68.8370 | 47.8101 | 37.3754 | 31.3249 | 20.5473

Table 3

Nondimensionalized natural frequencies of the shallow shell with lamination scheme 0/90/90/0

Shell type a/h Formulation and method 5 Réa 0
FSDT and Fourier 11.3342 | 11.0316 | 10.9867
10 CLT and Fourier 12.5784 | 12.3270 | 12.2897
Cylindrical FSDT and propo_sed 11.4261 | 11.1189 | 11.0678
FSDT and Fourier 35.1759 | 18.0992 | 13.9561
100 CLT and Fourier 35.1838 | 18.1107 | 13.9703
CLT and proposed 35.4554 | 18.2470 | 14.0664
FSDT and Fourier 12.5718 | 11.2522 | 11.0428
10 CLT and Fourier 13.6975 | 12.5236 | 12.3397
Spherical FSDT and propo_sed 12.6736 | 11.3435 | 11.2368
FSDT and Fourier 66.5695 | 29.3005 | 18.1175
100 CLT and Fourier 66.5774 | 29.3090 | 18.1290
FSDT and proposed 67.1021 | 29.5382 | 18.2663

Table 3 presents lower nondimensionalized natural frequencies @ of the simply
supported shallow shells with the lamination scheme 0/90/90/0 and technical characteristics
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given in (26). Shell thickness, radii of curvature and shell type are also reported in Table 3. The
results are obtained from the present theory using the proposed spline-collocation technique
(N +1=18) and the discrete orthogonalization method (100 orthogonalization points) and

compared to 19-term Navier type solutions (expands the displacement field into double Fourier
series) done by Qatu in [8] who considered both classical laminate theory (CLT) and the first-
order shear deformation theory (FSDT).

Conclusions. In this paper first-order shear deformation theory was implemented for
the free vibrations analysis of specially orthotropic symmetrically laminated cross-ply doubly-
curved shallow shells with constant thickness. The effect of the mechanical and geometric
properties on the lower natural frequencies was analyzed. The comparative tables of results,
obtained from both classical and refined formulations, using double Fourier series (19 terms),
and the proposed method, were presented. Deviation between the values gained by means of
the proposed technique and analytically, is not more than 1 %, which supports the possibility
of using such an approach for the solution of the stated problems. It is shown, that when the
thickness increases, the frequency of free vibrations of the spherical shells increases more
sufficiently than for the cylindrical ones. Moreover, the frequency tends to decrease, when the
radius of curvature increases, here the spherical shell is responding to it more sufficiently. The
minimum difference between the vibration frequencies of thick cylindrical and spherical shells
is observed, which tends to decrease greatly with the radius of curvature increase. When the
shell stiffness decreases, the frequency of its natural vibration decreases too, the effect of
thickness reduces as well, but the effect of the curvature becomes greater. For the thin shells
the number of layers almost does not affect the frequencies, especially when the radius of
curvature increases. It is clearly seen, that the classical laminate theory overestimates the
vibration frequencies of thick cylindrical shells more than of the thick spherical shells,
especially when the radius of curvature is smaller, but for the thin shells the results are almost
identical to those, obtained from the refined formulation. Generally speaking, the frequencies
of the spherical shells respond more effectively to the change of the mechanical and geometric
properties, than for the cylindrical ones. The developed approach and the collected results make
it possible to determine the expediency and high effectiveness of the spline-collocation and
discrete orthogonalization methods for solving the problems of free vibrations of laminated
shallow shells. Obtained solutions can be used as a guideline for further analysis of dynamic
characteristics of such shells.
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VJIK 539.3

METO/ CIIJIAUH-KOJIOKAIII JIJI1 BUBHAUYEHHSA BIJIBHUX
KOJIMBAHD TOJIOTUX HTAPYBATHUX OBOJIOHOK

QOuer IlaBieHko

Teprnoninbcokuu HayionanrbHuu mexHivHuu yHigepcumem imeni leana Ilynios,
Tepnoninw, Yrpaina

Pestome. V pamxax meopii Minonina 00cniodiceno iibHi KOIUBAHHS NEPEXPECHO-UAPOBUX 0B0ONYKIUX
nono2ux 00OJOHOK NOCMIUHOI MOBWUHU 3 NPAMOKYMHUM NIAAHOM. Beascaemwvcs, wo wapu eucomosneni 3
OPMOMPONHO20 MAMepPIany i po3miwjeHi CUMEMPUYHO BIOHOCHO CepeOUHHOI NOBEPXHI, a 20]108HI HANPAMKU
NPYACHOCIE KOJICHO20 wapy CHienadaioms 3 KOOpOUHamuumu aiHismu. [onoeny yeaey npudiieno wapHipHo
3AKPINIeHUM RO KOHMYPY eNinmuyHuUM ma napadoiiyHum noio2um 000I0HKAM 3i 32A0aHUMU GIACTHUBOCMAMU ©
cxemoro posmywysannsi wapie 0/90/0 i 0/90/90/0. Busedeny 08osumipny cucmemy Ou@epeHyianpHux pieHsHb
BIOHOCHO NepemiujeHs [ Kymie nosopony 36e0eH0 00 0OHOBUMIPHOT 3a0ayi HA 8IACHI 3HAYEHHS MemOoOOM CHAAUH-
anpokcumayii po3e ’s3Kie y 00HOMY 3 KOOPOUHAMHUX HANPAMKIG i3 BUKOPUCMAHHAM OA3UCHUX CNIAUHIE MPembo20
nopsoky. OcmanHio po36’s13aH0 CMIUKUM YUCETbHUM MemoOOM OUCKDEMHOL OpmMOo2OHANi3ayii ¥ NOEOHAHHI 3
MemoooM NOKPOK08020 Nowyky. Po3e’sazyeanvHy cucmemy pieHAHb 3 BIONOBIOHUMU 2SPAHUYHUMU YMOBAMU
npeoCcmasieHo y 8eKMOPHO-MAMPUYHIT PopMmi. V nopisHsIbHUX MAOIUYSAX HABEOEHO HUNCUI 4aCOMU BLIbHUX
KONUBAHL 3A3HAYEHUX OOOJIOHOK i3 PI3HUMU 2eOMEeMPUYHUMU U MEXAHIYHUMU NApaMempamu, OMpUMAaHi
3anponoHo8anum memooom. OCmaHHI 3iCMAGIEHO 3 pe3yibmamami, NPeoCcmasieHuMu 6 pobomax [HUIUX
asmopis. 3a pezyribmamamu po3e sA3anHs 3a0ay 0aH020 KIACY MONICHA O0CTIOUMU 3ATIeHCHOCTI BLIbHUX KOIUBAHD
nepexpecHO-uaposux noI02UX NPIMOKYMHUX Y NAAHI 000JIOHOK 8i0 2e0MEeMPUYHUX [ MEXAHIYHUX napamempis, a
MaKodic GUABUMU 3AKOHOMIpHOCIE Y po3nodini yacmom. Ompumani 00e3po3mipeni uacmomu mModcyms oymu
BUKOPUCMAHI 8 Npaysix OJis OYIHI6AHH MIYHOCMI Ul HAOIUHOCMI eflemenmie KoHcmpykyiu. Cuio 3a3nauumu, wo
iHghopmayin npo OUHAMIYHI XAPAKMePUCMUKY WAPY8AMuX NoI02UX 000JI0HOK € BAHCTUBUM eMAaNnom OYiHIOBAHHS
MIYHOCME Ma HAOIIHOCMI 0O0NOHKOB0T cucmemu 8 YoMy, 8U2OMOGIEHOL 3 CYUACHUX KOMNOSUMHUX MAMePIais.
Omoice, po3pobens eghekmusHo2o Nioxo0y HA OCHOBI YUCETbHUX MemOoodi8 0 PO38 SA3aHHA MAKUX 3a0ay y
CYUACHUX NPOSPAMHUX KOMNIEKCAX € UMO20I0 CbO20OEHHO20 MEXHIYHO20 NPOcpecy.

Knwouosi cnosa: 8invHi KoIUBAHHA, wiapysama noio2a 000J10HKA, Memoo CHIAUH-KOIOKAYii, meopis
Minonin.

Ompumano 22.05.2018
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