

Тернопільський національний технічний університет імені Івана Пулюя

Кафедра автоматизації технологічних процесів і виробництв

Лабораторна робота № 8 з курсу "Мікропроцесорні та програмні засоби автоматизації"

Керування кроковим двигуном за допомогою PIC16

Методичні вказівки до лабораторної роботи №8 "Керування кроковим двигуном за допомогою PIC16" з курсу "Мікропроцесорні та програмні засоби автоматизації" Медвідь В.Р., Пісьціо В.П., - Тернопіль: ТНТУ, 2018 - 17 с.

Відповідальні за випуск

доцент, к.т.н. Медвідь В.Р., асистент Пісьціо В.П.

Для студентів напряму: 151 "Автоматизація та комп'ютерно-інтегровані технології"

Лабораторна робота №8 Керування кроковим двигуном за допомогою PIC16

1. Послідовність роботи з програмним симулятором PIC Simulator IDE

Основне вікно програми PIC Simulator IDE має вигляд, показаний на (рис. 1).

File Simulation	Rate Tools Opt	ions Help	1		
Program Location	C:\Pro	gram Files\PIC Si	mulator IDE\dem	o3.hex 2	
Microcontroller	PIC16F877A	3		<u> </u>	
Last Instruction		Next In	struction		
GOT	O 0x002A		DECFSZ 0	x024,F	
Program Counter an	d Working Register		nstructions Count	er 263	2
PC 002A			ock Cycles Count	ter 153	6
W Register			Real Time Duratio	384.0	0.00
Special Function R	egisters (SFRs)		General Purpo	ose Registers (GPRs
	Hex Binary	Value 4	Hex	Hep	
Address and Name	Value 7654	3210	Addr. Value	Addr. Valu	e
001h TMR0			020h 02	030h 00	
002h PCL	2A [0		021h 00	031h 00	
003h STATUS	18		022h 08	032h 00	
004h FSR	00		023h 00	033h 00	- 1
005h PORTA	00		024h 0C	034h 00	- 1
UUGh PORTB			025h 00	035h 00	- 1
00% PORTO			0250 00	0360 00	-11
009b PORTE			0286 00	0385 00	-
00Ab PCLATH			029h 00	039h 00	-
00Bh INTCON			02Ah 00	03Ah 00	-
DOCH DID1			028h 00	03Bh 00	-
JUUCH PIRT			02Ch 00	03Ch 00	
00Dh PIR2			02Dh 00	03Dh 00	
00Dh PIR2 00Eh TMR1L	00			the second se	
00Ch PIR1 00Dh PIR2 00Eh TMR1L 00Fh TMR1H			02Eh 00	03Eh 00	

Рис. 1. Основне вікно програми РІС Simulator IDE

У верхній частині знаходяться меню, через які можна отримати доступ до основних і додаткових модулів програми (поз. 1)(рис. 1).

В рядку Program Location вказано шлях до обраної програми і її ім'я (поз. 2).

В рядку Microcontrollers, відображається тип обраного мікроконтролера (поз. 3).

У нижній частині вікна є дві панелі (поз.4 і поз.5), в яких відображаються стан програми, вміст регістрів спеціальних функцій (РСФ) і керуючих регістрів обраного МК.

Послідовність роботи з програмним симулятором наступний:

• запуск програми PIC Simulator IDE;

• вибір типу мікроконтролера, для якого написана програма;

• вибір частоти кварцового генератора (впливає тільки на відображувані програмою дані про час виконання програми або команди, але не на швидкість роботи програми, що налагоджуються в PIC Simulator IDE);

• завантаження програми у вигляді НЕХ-файлу або запуск вбудованого компілятора мови асемблера і написання в ньому потрібної програми;

- вибір потрібних модулів віртуальних пристроїв;
- вибір швидкості і режиму роботи програми симулятора;
- запуск процесу симуляції роботи програми на обраному МК.

Якщо потрібно скористатися для роботи з симулятором власною програмою або внести зміни у вже розроблену, необхідно створити або завантажити для цього файл асемблера, з якого після компіляції буде створений необхідний для роботи з симулятором hex-файл.

S PIC Simulator IDE						1.00			S	Asse	nbler -	- UNTITLED		🛛
File Simulation Rate									File	Edit	Tools	; Options		
Program Location		C:\Program Files\	PIC Sir	mulator ID	E\rb0in	t.hex			000	1				•
Microcontroller	PIC16	F84 Clock Frequ	lency	4.0) MHz									
Last Instruction		N	ext Inst	truction										
Program Counter and	W Regi	ster	In	structions	Counte	r	0							
PC 0000			Clo	ck Cycles	: Counte	er	0							
W Register	00		B	eal Time [Juration		0.00 p	s						
						-								
 Special Function Regi 	isters (SI	-RsJ		Genera	I Purpo:	se Regis	ters (Gi	PRs)						
Address and Name	Hex Value	Binary Value 7 6 5 4 3 2 1 0		Addr.	Hex Value	Addr.	Hex Value							
001h TMR0	00			00Ch	00	01Ch	00	-						_
002h PCL	00			00Dh	00	01Dh	00							•
003h STATUS	18			00Eh	00	01Eh	00							· · · ·
004h FSR	00			00Fh	00	01Fh	00		Lin I	, LOI I	,			INUM of lines: 1
005h PORTA	00			010h	00	020h	00							
006h PORTB	00			011h	00	021h	00		000	01				-
008h EEDATA	00			012h	00	022h	00							
009h EEADR	00			013h	00	023h	00							
00Ah PCLATH	00			014h	00	024h	00							_
00Bh INTCON	00			015h	00	025h	00							•
081h OPTION_REG	FF			016h	00	026h	00		1.5.1	Call) Norma (linear 1
U85h TRISA	11-			017h	00	027h	00		Lin I	, LOI (,			Num or lines: 1
U86h TRISB	11			0186	00	028h	00							
TMP0 Presenter	00	FFFFFFF		0190	00	0290	00							
I MHU Prescaler	00			01Ph	00	02Ah	00							
				JUIBN	00	02Bh	00	_						

Рис. 2. Вікно симулятора з відкритим вікном Assembler

Для цього:

1. Натиснути Options | Assembler. Відкриється вікно компілятора Assembler – UNTITLED (рис. 2);

2. У вікні Assembler натиснути опцію File. Розкриється закладка (рис. 3), з якої для створення нового файлу потрібно натиснути New, а для завантаження вже створеного – OPEN.

S PIC Simulator IDE						S Assem	bler - UNTITLED	
						File Edit	Tools Options	
Program Location	C:\Program File:	NPIC Sim	ulator IDE\rb0int.h	nex		New	Ctrl+N	
Microcontroller	PIC16F84 Clock Fre	quency	4.0 MHz			Open	Ctrl+O	
Last Instruction		Next Instr	ruction			Save As	carro	
						Print Sou	rce Ctrl+P	
						Print List	ina	
 Program Counter and ¹ 	W Register	Ins	tructions Counter	0		_		
PC 0000		Cloc	ck Cycles Counter	0	_			
W Register		Re	al Time Duration	0.00 µs	:			
Special Eurotion Regi	istore (SED a)		General Purpose	Pagisters (GP	Pal			
special Function Regi	sters (orns)		deneral Pulpose	negisters (an	nsj			
Address and Name	Hex BinaryValue Value 76543210		Addr. Value /	Addr. Value				
		100		O1CL 00				
			00Ch 00	01Dh 00	-			•
	10		005h 00	0156 00		4		÷
003h STRT05			00Eh 00	01Eh 00		Lin 1, Col 0		Num of lines: 1
005h PORTA			010h 00	020h 00				
006h PORTR			011h 00	021h 00		0001		<u> </u>
008h EEDATA			012h 00	022h 00				
009h EEADR			013h 00	023h 00				
00Ah PCLATH			014h 00	024h 00				
00Bh INTCON			015h 00	025h 00				•
081h OPTION_REG	FF FF		016h 00	026h 00		4		÷
085h TRISA	1F		017h 00	027h 00		Lin 1, Col O		Num of lines: 1
086h TRISB	FF		018h 00	028h 00				
088h EECON1	00		019h 00	029h 00				
TMR0 Prescaler	00		01Ah 00	02Ah 00				
		~	01Bh 00	02Bh 00	-			

Рис. 3. Завантаження існуючого або створення нового файлу асемблера 3. Після вибору і завантаження файлу (наприклад, rb0int.asm), його текст з'явиться у вікні Assembler (рис. 4).

S PIC Simulator IDE					1.00				Ass	embler - rl	o0int.asm				🗙
								File	e Ed	dit Tools	Options				
Program Location	C:\F	Program Files\PIC	Simulator I	DE\rb0in	thex			00	01	; Begin					•
Microcontroller	PIC16F84	Clock Frequen	ay 4.0 MHz				00	02		ROL EQU	OxC				
Last Instruction		Next	Instruction					00	03		ROH EQU	OxD			
		_						00	04		RIL EQU	OVE			
-								00	0.5		R2L EOU	0x10			
 Program Counter and 	W Register	[Instruction	s Counte	r 🗌	0		00	07		R2H EQU	0x11			
PC 0000			Clock Cycle	es Counte	er	0		00	08		R3L EQU	0x12			
W Register			Real Time	Duration		0.00 µ:	s	00	09		R3H EQU	Ox13			
,	,							00	10		R4L EQU	0x14			
- Special Function Reg	isters (SFRs)		Gene	ral Purpo	se Regis	sters (GF	PRs)	00	11		R4H EQU	0x15			
	Hex Bina	ry Value		Hex		Hex		00	12		R5L EQU	0x16			
Address and Name	Value 765	43210	Addr.	Value	Addr.	Value		00	13		R5H EQU	0x17			
001h TMR0			000	00	01Ch	00	-	00	14		W_TEMP	EQU Ox4F			
002h PCL			00DH	00	01Dh	00		00	15		STATUS_	TEMP EQU	OX4E		-
003h STATUS	18		00Eh	00	01Eh	00				4		Ð			· ·
004h FSR			00Fh	00	01Fh	00		Lin	1, Lo	10				Num	of lines: 60
005h PORTA	00		010h	00	020h	00			_						
006h PORTB			011h	00	021h	00		00	01						-
008h EEDATA	00		012h	00	022h	00									
009h EEADR	00		013h	00	023h	00									
00Ah PCLATH	00		014h	00	024h	00									_
00Bh INTCON	00		015h	00	025h	00									•
081h OPTION_REG	FF		016h	00	026h	00				4					
085h TRISA	1F		017h	00	027h	00		Lin	1, Lo	10				Nur	n of lines: 1
U86h TRISB	FF F		018h	00	028h	00									
U88h EECON1	00		019h	00	029h	00									
I MRU Prescaler			UTAH	00	02Ah	00									
			OIBH	00	02Bh	1 00	<u> </u>								

Рис. 4. Завантаження файлу rb0int.asm

4. Для компіляції створеного або завантаженого і потім зміненого файлу, натисніть Tools і у вікні, що розкриється – Assemble. В нижній половині вікна Assembler з'явиться лістинг відкомпільованого файлу і, одночасно, при відсутності помилок, буде створений одноіменний hex-файл.

S PIC Simulator IDE		S Assembler - rb0int.asm	🛛
		File Edit Tools Options	
Program Location C:\Program Files\	IC Simulator IDE\rb0int.hex	0001 ; Assemble F7 0002 Assemble & Load F8	-
Microcontroller PIC16F84 Clock Frequ	ency 4.0 MHz	0003 Assemble With MPASMWIN F9	
Last Instruction Ne	xt Instruction	0004 R1L EQU OxE	
		0005 R1H EQU OxF	
 Program Counter and W Register 	Instructions Counter 0	0007 R2H EQU 0x11	_
	Clock Cycles Counter 0	0008 R3L EQU 0x12	
W Register 00 DEEDEEDE	Real Time Duration 0.00 µs	0009 R3H EQU Ox13	
		0010 R4L EQU 0x14	
Special Function Registers (SFRs)	General Purpose Registers (GPRs)	0011 R4H EQU 0x15	
Hex BinaryValue	Hex Hex Addr Value Addr Value	0013 R5H EQU 0x17	
		0014 W_TEMP EQU Ox4F	
	00Db 00 01Db 00	0015 STATUS_TEMP EQU 0x4E	-
003h STATUS	00Eh 00 01Eh 00	•) F
004h FSR 00	00Fh 00 01Fh 00	Lin 1, Col 0	Num of lines: 60
005h PORTA 00	010h 00 020h 00	2001	
006h PORTB 00	011h 00 021h 00	0001	
	012h 00 022h 00	0003 Line Address Opcode Instruction	. П
00Ah PCLATH 00	014h 00 024h 00	0004	
00Bh INTCON 00 00000000	015h 00 025h 00	0005 0001 0000 ; Begin	-
081h OPTION_REG FF	016h 00 026h 00	4 0	+
085h TRISA 1F	017h 00 027h 00	Lin 5, Col U	Num of lines: 66
086h TRISB FF	018h 00 028h 00		
TMR0 Prescaler 00	01Ah 00 02Ah 00		
	01Bh 00 02Bh 00 -		

Рис. 5.

- 2. Режими керування біполярним кроковим двигуном
- 2.1. Типи крокових двигунів

Кроковий двигун (КД) являє собою безколекторний двигун постійного струму з фіксованими положеннями валу.

КД призначено для точного позиціювання валу без застосування систем зворотного зв'язку. Обмотки КД є частиною статора. На роторі розташовано постійний магніт або, у випадках зі змінним магнітним опором, зубчастий блок з магнітом'якого матеріалу.

Усі комутації проводяться за зовнішніми схемами керування. На двигунах з постійними магнітами звичайно є дві незалежні обмотки.

Крокові двигуни мають широкий діапазон кутових дозволів. Більш грубі двигуни, звичайно с постійними магнітами, обертаються на 90° за крок, у той час як прецизійні двигуни можуть мати дозвіл 1,8° або 0,72° на крок.

«Обертове» магнітне поле забезпечується відповідними перемиканнями напруг на обмотках. Слідом за цим полем буде обертатися ротор, з'єднаний за допомогою редуктора з вихідним валом двигуна. Потужність крокових двигунів знаходиться у діапазоні від одиниць ватів до одного кіловату.

Кроковий двигун має не менш двох положень стійкої рівноваги ротора в межах одного оберту. Напруга живлення обмоток керування кроковим двигуном - це послідовність однополярних або двополярних прямокутних імпульсів, що надходять від електронного комутатора або контролера. Результуючий кут відповідає кількості перемикань комутатора, а частота обертання двигуна – частоті перемикань електронного комутатора.

На рис. 6 зображено положення ротора крокового двигуна залежно від комутації обмоток. Послідовно комутуючи *струм в обмотках відповідно до діаграм*, наведених на рис. 7, можна змусити обертатися вектор магнітного поля, а за ним і ротор, у прямій або зворотній послідовності. Від'ємне значення струму через обмотку на діаграмі відовідає логічному «1-0» та зворотньому «0-1» значенням напруги, прикладеної до обмотки. При такому керуванні двигун має 4 стійких стани на одному оберті ротора.

Рис. 6. Положення ротора при кроковому (а) і напівкроковому керуванні (б)

Рис. 7. Прямий і зворотний хід у кроковому двигуні

2.2. Біполярні і уніполярні крокові двигуни

В залежності від того, якою є форма обмоток крокового двигуна, двигуни діляться на **уніполярні і біполярні**.

У **біполярного** двигуна по 1 обмотці в кожній фазі, тобто всього дві обмотки і відповідно 4 виводи (рис. 8,а). Для забезпечення обертання валу на ці обмотки має подаватися напруга із змінною полярністю. Тому для біполярного двигуна необхідний півмостовой або мостовий драйвер, забезпечений двополярним живленням.

Рис. 8. Біполярні та уніполярні крокові двигуни

Уніполярний двигун також, як і біполярний, для кожної фази має по одній обмотці, але кожна обмотка містить відвід від середини. У зв'язку з цим, шляхом перемикання половинок обмоток крокового двигуна з'являється можливість міняти напрям магнітного поля (8,6).

Уніполярні двигуни можуть забезпечуватися чотирма обмотками, кожна з яких містить власні виводи - тобто їх всього вісім (рис. 8,в).

Уніполярний двигун, що має дві обмотки з відводами по середині, можна використовувати як біполярний. У цьому випадку проводи, що йдуть від середини обмоток, не використовуються.

Симулятор Pic Simulator IDE імітує роботу уніполярного крокового двигуна.

Він містить дві обмотки з середніми виводами, які заземляються (у вікні симулятора крокового двигуна заземлення середніх виводів не показане) (рис. 9).

Рис. 9 Вікно «Stepper Motor Phase Simulation»

2.3. Основні способи управління кроковим двигуном

• Озрізняють: - повнокроковий режим без перекриття фаз,

- повнокроковий режим з перекриттям фаз,
- напівкроковий режим.

Повнокроковий режим без перекриття фаз

У цьому режимі (рис. 10) в один момент часу живиться тільки одна фаза двигуна. Полюси ротора займають положення навпроти обмотки, на яку подається живлення, залежно від напрямку протікання струму в ній. Недоліком даного способу є менший момент двигуна.

Повнокроковий режим з перекриттям фаз

Характерною рисою даного режиму є те, що одночасно подається живлення на дві суміжні фази, і ротор зупиняється не напроти полюсів, а в проміжному положенні між ними.

для уніполярного двигуна

Даний спосіб комутації фаз (рис. 11) забезпечує в 2^{1/2} разів більший момент. При зупинці двигуна важливо не знеструмлювати його обмотки, щоб двигун забезпечував повний момент, бо може статися зсув ротора на половину кроку і відповідно втрата положення.

Напівкроковий режим

 ε комбінацією двох вищеназваних, тобто ротор зупиняється як навпроти полюсів, так і в проміжному положенні між ними. З одного боку, це дозволяє зменшити крок у два рази, з іншого - будуть коливання моменту, тому що коли на дві фази подається живлення, то момент буде в 2^{1/2} разів більшим.

Щоб уникнути цього явища, в момент, коли включені дві фази, необхідно занижувати на них струм теж у 2^{1/2} разів більший, але це призведе до загального зменшення моменту.

Проблемою напівкрокового режиму є перехід в стан з однією включеною фазою. В цьому випадку потрібно якомога швидше звести в фазі, яка вимикається, струм до нуля.

Коли використовується мостова схема, це здійснюється вимиканням всіх ключів, що призводить до того, що великий розрядний струм протікає через діоди і джерело живлення.

Якщо ж залишити один ключ замкненим, то коло розряду буде включати в себе діод і ключ, тому струм буде спадати повільніше.

Рис. 12. Діаграми роботи в напівкроковому режимі для уніполярного двигуна

Діаграму, зображену на рис. 10 у вигляді **покрокової залежності струмів через обмотки**, зобразимо у вигляді логічних рівнів напруг на виводах порту В на кожному з кроків роботи двигуна протягом двох обертів ротора (табл. 1).

Таблиця 1

	PORTB.3	PORTB.2	PORTB.1	PORTB.0
Крок 1	«0»	«0»	«0»	«1»
Крок 2	«0»	«0»	«1»	«0»
Крок 3	«0»	«1»	«0»	«0»
Крок 4	«1»	«0»	«0»	«0»
Крок 5	«0»	«0»	«0»	«1»
Крок б	«0»	«0»	«1»	«0»
Крок 7	«0»	«1»	«0»	«0»
Крок 8	«1»	«0»	«0»	«0»

Дослідимо роботу такого двигуна в повнокроковому режимі без перекриття фаз.

Приклад 1

Програма забезпечує керування кроковим двигуном, який під'єднаний до чотирьох молодших розрядів порту В (рис. 9).

Текст програми з робочого файлу має наступний вигляд:

; Begin

ORG 0x0000 R0L EQU 0x20 R0H EQU 0x21 BCF PCLATH,3 BCF PCLATH,4 BSF STATUS,RP0 MOVLW 0x80 MOVUW 0x80 MOVUW 0x00 MOVUW TRISB BCF STATUS,RP0

- LB1: MOVLW 0x03 MOVWF R0L MOVLW 0x01 MOVWF PORTB
- LB2: RLF PORTB,W MOVWF PORTB DECFSZ R0L,F GOTO LB2 GOTO LB1

END

Послідовність роботи з симулятором при виконанні програми

Виконаємо цю програму в PIC Simulator ID, для чого необхідно:

1. Запустити PIC Simulator IDE;

2. Натиснути Options | Select Microcontroller;

3. Вибрати PIC16F84 і натиснути кнопку Select;

4. Натиснути Tools і у вікні, що розкриється, вибрати «Assembler». Відкриється вікно компілятора «Assembler – UNTITLED» (рис. 2);

5. Набрати текст програми Прикладу 1 у вікні «Assembler»;

6. Натиснути Tools і у вікні, що розкриється – Assemble. В нижній половині вікна Assembler з'явиться лістинг відкомпільованого файлу (рис. 13);

7. Одночасно, при відсутності помилок, буде створений файл з розширенням «.hex», для якого можна вибрати ім'я та шлях для запису. Записати його на «Робочий стіл» комп'ютера;

8. Вибрати File | Load Program і завантажити створений файл з розширенням «.hex»;

9. Натиснути Tools | Stepper Motor Phase Simulation. Відкриється вікно з панеллю крокового двигуна «Stepper Motor Phase Simulation» (рис. 14);

10. Вибрати Rate | Normal;

S PIC Simulator IDE	:				1.5	-		S Ass	embler -	115.asm			1.35	- • ×
File Simulation Rate														
Program Location Microcontroller	PIC16F84A Clock Fre	quency	4.0) MHz				0001 0002 0003		; Beg O R	in RG OxOOC OL EQU C)0)x20		-
Last Instruction		Next Inst	ruction					0004 0005 0006		R B B	OH EQU C CF PCLAT CF PCLAT	0x21 TH,3 TH,4		
Program Counter and	W Register	Ins	structions	Counter		0		0007		B	SF STATU	JS,RPO		
W Register		R	ick Cycles eal Time [: Counte)uration	er	U 0.00 µs	-	0009		M	OVER OPT	TION_REG		
Special Function Regi	isters (SFRs) Hex Binary Value Value 76543210		Genera Addr.	l Purpos Hex Value	e Regis Addr.	ters (GP Hex Value	Rs) –	0011 0012 0013	LB1:	MOVLU	CF STATU Ox03	IS, RPO		
001h TMR0 002h PCL 003h STATUS 004h FSR	00 00 18 00		00Ch 00Dh 00Eh 00Fh	00 00 00 00	01Ch 01Dh 01Eh 01Fh	00 00 00 00	-	0014 0015 0016 0017 0018	LB2:	M M RLF M	OVWF ROI OVLW OxC OVWF POF PORTB,W OVWF POF	,)1 ?TB ?TB		
005h PORTA 006h PORTB 008h EEDATA			010h 011h 012h	00	020h 021h 022h	00		Lin 17, 0	∢ Col O				Nu	m of lines: 23
009h EEADR 00Ah PCLATH 00Bh INTCON			013h 014h 015h	00 00 00	023h 024h 025h	00 00 00		0024 0025 0026	0020 0021 0022	000E 000F 0010	0BA0 280C 2808			DECFS • GOTO GOTO
081h OPTION_REG 085h TRISA 086h TRISB	FF 1F FF		016h 017h 018h	00 00 00	026h 027h 028h	00 00 00		0027 0028 0029	0023 Number	0011 of erro	 rs = 0	END		
088h EECON1 TMR0 Prescaler		~	019h 01Ah 01Bh	00 00 00	029h 02Ah 02Bh	00 00 00	•	0030 Lin 30.0			O		Nı	m of lines; 30

Рис. 13. Інтерфейс симулятора з виконуваною програмою та її лістингом після компілювання

Рис. 14. Інтерфейс симулятора з виконуваною програмою та панеллю крокового двигуна «Stepper Motor Phase Simulation»

11. У вікні крокового двигуна почергово натиснути поле «PORTB,2» (вивід «С» крокового двигуна) і далі у вікні, що відкриється, вибрати вивід «1», після чого натиснути на поле «Select», яке розташоване внизу вікна. Таким чином, буде вибрано вивід «1» порту В.

Це ж повторити для виводу двигуна «В» («PORTB,1»), змінивши номер лінії порту на «PORTB,2»;

12. Натиснути Simulation | Start (почнеться виконання програми). Ротор двигуна почне обертатися з кроком 90^0 (двигун має 4 стійких стани на одному оберті ротора);

13. Щоб зупинити виконання програми, потрібно натиснути Simulation | Stop.

Для того, щоб мати змогу контролювати вміст регістрів після виконання симулятором кожної команди, перейти на виконання програми в кроковому режимі роботи.

Для цього:

1. В основному вікні симулятора натиснути Rate | Step By Step, а далі вибрати опцію Simulation і натиснути Start. Симулятор готовий до виконання програми в кроковому режимі;

2. Для виконання наступної команди програми потрібно натиснути на закладку STEP, яка з'явиться справа від закладки HELP вгорі основного вікна симулятора після вибору крокового режиму роботи програми.

Рис. 15. Інтерфейс симулятора при виконанні програми керування кроковим двигуном «Stepper Motor Phase Simulation»

Вміст регістрів контролера, які використовуються при виконанні команд програми, знайти в області регістрів Adress and Name, яка розташована в лівій нижній частині основного вікна симулятора (виділені рожевим кольором). Всі регістри восьмирозрядні.

В процесі виконання програми по зміні кольору комірок видно, вміст яких регістрів змінюється. Забарвлення комірки відповідного розряду регістру помаранчевим кольором означає наявність "1", білим - "0".

3. Завдання для виконання лабораторної роботи

Завдання 1

1. Виконати програму (Приклад1) в режимі «Normal». Переконатися в реалізації обертання ротора крокового двигуна в процесі виконання програми.

2. Виконати програму в повнокроковому режимі виконання програми. Вміст тих регістрів, значення яких змінюється в процесі виконання команд програми, записати в шістнадцятковому коді в табл. 2.

Таблиця 2

Регістр	PC	W	TMR0	STATUS	PCL	TRISA	TRISB	PCLATH	EEADR	EEDATA	FSR
Команда 1											
Команда 2											
Команда п											

3. З програм Прикладу 1 вибрати десять команд і за таблицею команд асемблера для PICконтролера (таблиця 3) записати коментар щодо призначення цих команд (див. Приклад 2, де наведено такий запис для однієї команди).

Приклад 2		
Код команди	Команда	Виконувана операція (коментар)
118A	BCF PCLATH, 3	; скинути в "0" 3-ій біт регістра РСLАТН

і т.д.

Завдання 2

1. Скласти програму, яка реалізує **реверсне обертання крокового двигуна** в **повнокроковому режимі роботи двигуна**, що ілюструється діаграмою на рис. 10.

2. Скласти таблицю за прикладом табл. 1, яка ілюструє зміну рівнів напруги на виводах порту В в процесі керування двигуном, за прикладом діаграми зміни струмів через обмотки двигуна (рис. 10).

3. Виконати програму в режимі «Normal». Переконатися в реалізації реверсного обертання ротора крокового двигуна в процесі виконання програми.

4. Виконати програму в кроковому режимі виконання програми.

5. Вміст тих регістрів, значення яких змінюється в процесі виконання команд програми, записати в шістнадцятковому коді в табл. 2.

6. З виконуваної програми вибрати десять команд і за таблицею команд асемблера для РІС-контролера (таблиця 3) записати коментар щодо призначення цих команд (див. Приклад 2, де наведено такий запис для однієї команди).

Завдання 3

1. Скласти програму, яка реалізує обертання крокового двигуна в напівкроковому режимі його роботи, що ілюструється діаграмою на рис. 12.

2. Скласти таблицю за прикладом табл. 1, яка ілюструє зміну рівнів напруги на виводах порту В в процесі керування двигуном, користуючись діаграмою зміни струмів через обмотки двигуна.

3. Виконати програму в режимі «Normal». Переконатися в реалізації обертання ротора

крокового двигуна з кроком в 45⁰ в процесі виконання програми (двигун має 8 стійких станів на одному оберті ротора).

4. Виконати програму в кроковому режимі виконання програми.

5. Вміст тих регістрів, значення яких змінюється в процесі виконання команд програми, записати в шістнадцятковому коді в табл. 2.

6. З виконуваної програми вибрати десять команд і за таблицею команд асемблера для РІС-контролера (таблиця 3) записати коментар щодо призначення цих команд (див. Приклад 2, де наведено такий запис для однієї команди).

4. Контрольні запитання

1. Будова РІС-контролерів серії РІС16Х8Х.

2. Призначення регістрів мікроконтролера.

3. Формат та призначення perictpiв PC, W, TRISHA, TRISHB, PORTA, PORTB.

4. Як програмуються лінії портів на ввід та на вивід?

5. Як організувати циклічний зсув розряду на виводах порту мікроконтролера?

6. Які режими роботи крокового двигуна можуть бути реалізовані при його керуванні? Пояснити, в чому відмінність цих режимів.

7. Призначення та позначення основних елементів програмної моделі мікроконтролера.

5. Література

1. Данилин А. Программа-симулятор PIC Simulator IDE / Данилин А. // Современная электроника. 2006.- №4. -С. 68-76.

2. Тавернье К. РІС-микроконтроллеры. Практика применения. М.: ДМК, 2002.

3. Предко М. Создайте робота своими руками на PIC- контроллере./ Майкл Предко; Пер. с английского Земского Ю.В. – М.: ДМК Пресс, 2006. – 408 с.: ил.

4. Кениг А. и М. Полное руководство по РІС-микроконтроллерам.: Пер. с нем.-К.: МК-Пресс", 2007.-256 с., ил.

Познанения	Dynymia	Пикли	Код	Біти	Прим
позначення	Функція	цикли	команди	стану	прим.
ADDLW	Додавання константи і W	1	11111x	C, DC, Z	
ADDWF	Додавання W с f	1	00 0111 dfff ffff	C, DC, Z	1, 2
ANDLW	Логічне I константи і W	1	11 1001 kkkk kkkk	Z	
ANDWF	Логічне I W і f	1	00 0101 dfff ffff	Ζ	1, 2
BCF	Скидання біту в регістрі f	1	01 00bb bfff ffff		1, 2
BSF	Встановлення біту в регістрі f	1	01 01bb bfff ffff		1, 2
BTFSC	Пропустити команду, якщо біт у f дорівнює нулю	1 (2)	01 10bb bfff ffff		3
BTFSS	Пропустити команду, якщо біт у f дорівнює одиниці	1 (2)	01 11bb bfff ffff		3
CALL	Виклик підпрограми	2	10 0kkk kkkk kkkk		
CLRF	Скидання регістру f	1	00 0001 1 fff ffff	Ζ	2
CLRW	Скидання регістра W	1	00 0001 0xxx xxxx	Ζ	
CLRWDT	Скидання сторожового таймера WDT	1	00 0000 0110 0100		
COMF	Інверсія регістру f	1	00 1001 dfff ffff	Ζ	1, 2
DECF	Декремент регістру f	1	00 0011 dfff ffff	Ζ	1, 2
DECFSZ	Декремент f, пропустити команду, якщо 0	1 (2)	00 1011 dfff ffff		1, 2, 3
GOTO	Перехід за адресою	2	10 1kkk kkkk kkkk		
INCF	Інкремент регістру f	1	00 1010 dfff ffff	Z	1, 2
INCFSZ	Інкремент f, пропустити команду, якщо 0	1 (2)	00 1111 dfff ffff		1, 2, 3
IORLW	Логічне АБО константи і W	1	11 1000 kkkk kkkk	Z	
IORWF	Логічне АБО W і f	1	00 0100 dfff ffff	Z	1, 2
MOVF	Пересилання регістру f	1	00 1000 dfff ffff	Ζ	1, 2
MOVLW	Пересилання константи в W	1	11 00xx kkkk kkkk		
MOVWF	Пересилання W у f	1	00 0000 1 fff ffff		
NOP	Пуста команда	1	00 0000		

OPTION	Завантаження регістру	1	00 0000		
RETFIE	Повернення з	2	00 0000		
RETLW	Повернення з підпрограми з заванта- женням константи в W	2	11 01xx kkkk kkkk		
RETURN	Повернення з підпрограми	2	00 0000 0000 1000		
RLF	Зсув f вліво через перенесення	1	00 1101 dfff ffff	С	1, 2
RRF	Зсув f вправо через перенесення	1	00 1100 dfff ffff	С	1, 2
SLEEP	Перехід у режим SLEEP	1	00 0000 0110 0011		
SUBLW	Вирахування W з константи	1	11 110x kkkk kkkk	C, DC, Z	
SUBWF	Вирахування W з f	1	00 0010 dfff ffff	C, DC, Z	1, 2
SWAPF	Обмін місцями тетрад в f	1	00 1110 dfff ffff		1, 2
TRIS	Завантаження регістру TRIS	1	00 0000 0110 0fff		
XORLW	Виключаюче АБО константи і W	1	11 1010 kkkk kkkk	Z	
XORWF	Виключаюче АБО W i f	1	00 0110 dfff ffff		1, 2

*Якщо в результаті виконання команди змінюється лічильник команд, або виконується перехід по перевірці умови, то команда виконується за два цикли. Другийцикл виконується як NOP.

Програма, що реалізує напівкроковий режим обертання уніполярного крокового двигуна:

;Begin

ORG 0x0000 R0L EQU 0x20 R0H EQU 0x21 BCF PCLATH,3 **BCF PCLATH,4** BSF STATUS, RP0 MOVLW 0x80 MOVWF OPTION REG MOVLW 0x00 MOVWF TRISB BCF STATUS, RP0 MOVLW 0x20 MOVWF R0L LB1: MOVLW 0x01 MOVWF PORTB MOVLW 0x03 MOVWF PORTB MOVLW 0x02 MOVWF PORTB MOVLW 0x05 MOVWF PORTB MOVLW 0x04 MOVWF PORTB MOVLW 0x0C MOVWF PORTB MOVLW 0x08 MOVWF PORTB MOVLW 0x09 MOVWF PORTB

LB2: DECFSZ R0L,F GOTO LB1 GOTO LB2

END