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The quantum mechanical theory of spectral parameters and dynamic conductivity of electrons, inter-
acting with field of the created by them space charge in open flat resonance tunneling structure with a
constant electric field in the model of rectangular potential wells and barriers has been developed. The in-
fluence of space charge on the conductivity of the experimentally realized nanostructures as the active re-
gion of a quantum cascade laser for different concentrations of electrons in the falling on the resonance

tunneling structure beam, has been investigated.
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1. INTRODUCTION

One of the directions which is still developing now,
is the study of dissipative processes affecting the pro-
cess of electron tunneling in open multilayer resonance
tunneling structures (RTS), which act as active ele-
ments of quantum cascade lasers (QCL)[1, 2] and de-
tectors [3]. These processes are caused by the electron-
electron interaction and interaction of electrons with
phonons and impurities. The effect of electron-electron
interaction on electron tunneling was investigated in
the paper [4]. The electron-phonon interaction and the
influence of phonons on the electronic spectrum were
studied in the works [5-7]. The effect of static and dy-
namic charge fields generated by electrons on the elec-
tron transport in open RTS is studied poorly. Similar
works taking into account the effect of static space
charge on the electrons spectrum in closed RTS have
been considered in [8, 9]. However, the self-consistent
impact of static and dynamic spatial charges on the
tunneling of electrons interacting with time-dependent
electromagnetic field was studied in [10, 11] in a very
rough model of RTS with &like potential barriers.

In the proposed paper the theory of electronic
transport through the three-barrier RTS with applied
constant longitudinal electric field based on the found
self-consistent solution of full Schrédinger equation and
the Poisson’s equation has been developed. Basing on
the three-barrier RTS as the active region of the exper-
imentally realized QCL with In1.xGaxAs — wells and Ini.
xAlxAs — barriers the influence of spatial static and dy-
namic charges on the spectral parameters of quasi-
stationary states (QSS) of the electrons and active dy-
namic conductivity of nanostructure.

PACS numbers: 73.21.Fg, 68.65.Ac, 68.65.Cd

2. SELF-CONSISTENT SCHRODINGER AND
POISSON EQUATIONS. THEORY OF DYNAM-
IC CONDUCTIVITY OF THREE-BARRIER
RESONANCE TUNNELING STRUCTURE

To calculate the active dynamic conductivity of elec-
trons by three-well active region of QCL we assume that
the nanostructure in the Cartesian coordinates is located
so, that layers are perpendicular to the boundaries heter-
oboundaries of nanosystem. Perpendicular to the layers of

RTS constant electric field with intensity F is applied.
The geometric parameters of nanosystem are known
(Fig. 1).
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Fig. 1 — Geometric and energy schemes of the three-barrier RTS

Since the difference between lattice constants of
well and barrier layers is insignificant, the model of
effective masses and rectangular potentials is used for
electron:
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where &z) — Heaviside function, z1 — — o, z6 — o; m,
and mp — effective mass of electron in the potential
wells and barriers of nanostructure respectively.

It is assumed, that mono-energetic current of elec-
trons with energy E and initial concentration n, falls
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at RTS from the left side perpendicularly to its layers.
The motion of electron is assumed to be one-
dimensional and described by the wave function ¥z, f),
which satisfies the full Schrédinger equation:

A0 (10 1 0
ih Py ( 5 2 m(2) 0 +U((z)+ H(z, t)J‘{’(z t), . 3)
— where
H(z,t)= —ee[zﬁ(z) + (25 —2)0(z - 25):| €™ +e ™) +ep(z,t) , 4)

Hamiltonian, the first term of which describes the
time-dependent electromagnetic field with frequency
and amplitude of its electric component €, and the
second term describes the interaction of the electron
with the field of space charge, potential ¢(z,t) of which

is determined by the Poisson’s equation:

{ z )a¢(z t)} —4zen(z,t) (5)

- where

8(2)=¢, (9(—2)+Z(9(2 Zyp1) — (2~ Z2p)))+€b2(9(2 29p) =2 =25p.,1)) (6

— dielectric permeability of three-barrier TRS, &, and &
— dielectric permeability of the potential well and bar-
rier layers material correspondingly,

n(z,) = ny | Pz, t)[* )

is variable in space electrons concentration.

It is seen from the equations (3) and (5), taking into
account Hamiltonian (4) and relation (7), that they
form self-consistent system.

Solution of full Schrédinger equation (3) with Ham-
iltonian (4) in the weak signal approximation is found
as:

P(z,t) = Wo(2)e ™ +¥_ (2)e " +

+"P+1(Z)€_i(%+w)t, wO —E/h

®

Having substituted the relation (7) in the Poisson’s
equation (5) taking into account (8) we obtain:

{ (2) 2= t)} = —dreny[ £&,(2) +E@)e + & (2)e ™ | ©)
where For random p — layer inside the RTS the solution of
equation (9) is found as:
&(2) =Y
£.(2) =Y ()Y, (2) + ¥ ()Y, (2), (10
£()=8(2).
0@) = 3 [0D @)+ ¢ @)™ + P (@e | [0z -2, ) -0z —2,)] ()

p=1

From the equation (9), taking account (11) with
keeping the summands of the first degree we obtain:

P (2 4ren
Pt 2( ) __ 0 5(()1))(2) (12)
0z »

P (2 4dren,
28 o) (13)

p

the solutions of which have the appearance:

4ren, 23
@) =~ 6P (2)dzdz, + (P (22, ,) + O
» 00

(14)

4 z 2 _ -
PP (2) = _7’2 o[ [ £ P(z,)dzdz, + CTP(z-z2, )+ CTP
00

p

(15)

They determine potential (/{f,t”)(z) caused by static

spacial charge, and potentials, which are caused by
spacial dynamic charge in the case of electronic transi-

tion with the absorption (p(”)(z) and the emission of
photons ¢?(2) correspondingly.
All unknown coefficients C*; C?; CFP; C;® are

definitely determined from the continuity conditions of
the potential and the vector of electric displacement
field on all RTS hetero-boundaries:

¢7p(2p,t) = ¢p+1(2p 9t);

; 09, (2,1) 09,.1(2,0) (16)
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Taking account (11) from the system of equations
(16) we obtain the boundary conditions for potentials

oD @), #P @),
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On the left and on the right of the RTS boundaries for
the potentials caused by the static and dynamic charges,
the conditions of their disappearance must be satisfied:

. Py (2) 0;  ¢,(2) 0;
%zp)(z ) (/)(P 1)(Zp); t ‘z~>0 t ‘zaz
(2 0; (2) 2, =
(ﬂéf)(z) ~ a(pitpﬂ)(z) P ( )‘z—>0 (p—( ) s
Pz e i 0z =, ’ Taking into account (11) and (8) from the full
Schrodinger equation after equating the coefficients at
(Pip)(zp) _ (ﬂipﬂ)(zp); ¢ and zero order values, we obtain the equations:
8@‘7)(2) 6(/)3”1)(2) 17
L z: Tt TG .
P01 0 Gy rep,(5)-F |wy(2) =0 (18)
2 0z m(z) 6z Put 0 ’
o 1 o
——————+U@)+ep,(2) - o+ an,) |V,(2)= e(C[z@(z) +(z;—2)0(z —25)]— (pi(z))‘l’o(z). (19)
2 0z m(z) 0z

The obtained Schrodinger equations (18), (19) to-
gether with the Poisson’s equations (12), (13) form the
system of self-consistent equations, while solving this
system of equations in order to simplify the bulky equa-
tions, let as omit the symbol E in %¥(z) and ¢s(z) these
two functions depend on, caused in opened nanosystem.
at the first the solution of equation (18) is found in zero
approach without taking into account the static spacial
charge, substituting in it @s(2) = 0. Taking into account
the analytical complexity of the equations (18) and (19),
they are worth being solved due to linear approxima-

tion of the effective potential Ue(z) = U(z) on all the
RTS layers. Then the approximated effective potential
for electron has the appearance:

~ 5 N
Us(2) = 2 3 Uiz, )|0Gz-z,)-0G-2, )] ,(20)

Now, the solution of the stationary Schriédinger
equation (20), found with the necessary accuracy, is
obtains as:

W)= PO (2)0(-2) + PO ()02 2) + 3, §W<P>(z)[e(z 2,)-0(z-z, )]=

p=11=0

+7,(0) _ip(0) 5(6) (o
= (A" 7 + B{Ve M %)0(—2) + AVe™ FTH0(z — z;) + (21)

5 N ip) B
(p) ik (z=2,) (p) =ik (2-2,)
+Z Z[A&?e ‘ ' +BOle ' ' ][H(Z_ZP;)_Q(Z_ZPM)J ’

p=11=0
where

wells

ht ’2mw(E + eFZp, );

k(Pz) — k(pz)(z ):
0 0 %p -1 \/2”%( E-U+efFz,). barriers

Substituting the solution (21) in the Poisson’s equa-
tion (12), taking into account (20) the potential Py, (2)

is found. Further the potential ¢, (z) is linearized:

5 N
02 = 3 300z, [0z -2,) -0z, )] , (22)

where in the expressions (20) and (22):

(U)Z

¥ (2)=(AVe"

iK{" (z-z,) -iK{"(2-2,,)
+3 S AP ) 4+ BPe Noe-z,)-0G-2,)]

p=11=0
where

z, = ZN(Z -z, ), p=1-5; z,=0,

N — is the number of mesh intervals in the P-th RTS
layer.
Having substituted the potential Py, (2) 1n (18), we

obtain the equation:

[_262m(2)6+U(z)+egost - E}V(z) 0, 23

for the wave function of the first approximation ¥i(z).
Its solution is:

+ B M) 0(2) + APeM (2~ 2,) +

(29)
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@) i\ Jom, (e, —ed(z,,);
1 o =

7%’1\/2mb (heoy —U —eg(z, ). barriers

wells
KI( P|) =

The found in the first iteration order the stationary
wave function ¥(z) makes possible to obtain the poten-
tial of the static spatial charge ¢, (2) of the first order

as well due to the already applied algorithm.

Self-consistent solution of the equation system (18)
and (12) is obtained with the necessary accuracy in the
L — iteration cycle, if the relationship is satisfied:

04, (D=0, @)/, (@) <<1.

Then, having used the omitted earlier energy sign
(E), we will obtain:

. (6 5
Wou(2) = Bile ™ 002) + AR 0 —2)+ 2

T Mz

- are solutions of homogenous equations (21),

Q. (2) = i %[4.262\{1(17)() e€ d‘f’ (Z) [

171

- partial solutions of correspondingly inhomogeneous
equations (21), where:

m
m, = { Yo RO = kO =07t 2m, (7w, + @) ;
(4 mb - -

\/me (W, £ w) - ez, );

wells
Kfrp, )

=KP(z,) =

Similar to the mentioned above scheme of calcula-

(z-2,)-0(z-2, )] +%‘I’f)6)(2)9(2 -z5).

\/Zmb(h(a)o tw)-U- ego(zpl )). barriers
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\PO(EsZ) ~ lPL(Z)5 (Dst (E,Z) ~ (03,% (Z) .

The found wave function ¥(FE, z) makes possible to
calculate analytical function of transparency coefficient
of nanostructure:

D(E) = (25)

A<L°>

Wave function ¥(E, z) makes possible to find simi-
larly the self-consistent solution of equation systems
(19) and (13). In the zero iteration order it is assumed,
¢,(2) =0 can be put in equation (19). Then the solu-
tions of these equations with the linearized potential
@,,(z) are found as:

\Pf] (2) =¥,.(2) + Dp.(2) . (26)

Here

(4520 ) | B e ) [z -2, ) - Bz -2, )] 2T)

(28)

tion of the static potential, the analytical calculation of
the dynamic component of the potential ¢,,(z) in zero

iteration order is carried out. As result we obtain:
2. & AP
()= 2 Yol G, )[0G-2,)-0-z2, )], (29

where

(p l)(z) Ct(p,l)(z -z, )+ Czt(p,l) +
w,b -1 Ew s

APD B ES NG | Bl gx(p DI K2,
1 N2
(K(()‘D )+Kip ))

A(’;(p,l)Aép.Z)e’KKr()p”’Ky)'“)(z’z,,,) +BS(p,Z)B;(p,l)ei(Kr(lp“’KEPIM)(Z’ZM) Bg(p,z)A;(pJ)ei(KA”'”JrKé""‘)(H,,l) +As(p,bB;(p,l)efi<K$""‘+Ki"‘“><272,,,>

N 'K“’“fKi”’” _ " 7'K(p‘l)7K(+F»/) _
dzen, X{Aép,oAt(p,z)ez( § )z-2,) + BPDB:#Dg i(K )z-2,)

+

(K" - K0y

(30)

(K(()pyl) _ Kj(rp,l))z

(.D) | D)2
(K" + K7

1e€ ( APD B FES @2 _ o As(p,1>e2in‘”'“<zZm)}_

ZK(()"”Z)mla)2

Conditions of continuity of wave functions and their
flows density on all boundaries define the necessary
coefficients (A, B). As the result of L - iteration the
functions ¥(z), ¥1(2) are definitely found, hence, the

total wave function ¥z, t).

Using the found wave functions similar to those as
in the works [4, 12], the calculation of the electron cur-
rents density due to RTS is carried out:

i(Exho,z)= ey Y (E, z)—d\Pﬂ(E’ ) -9, (E, z)_d‘*’ﬂ(E, )
m a dZ - dZ

w
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which are in the proportion to the corresponding parts
of the active dynamic conductivity o (E, Q).

The calculated full active conductivity of RTS o(E, £
is defined by the sum of two partial components:

o(E,Q)=c"(E,Q)+0 (E,Q), (31)
where
. hQn, 2 2
o (B0 = (k9 a9 -1 )
2m,,z,€ 32)
B0y = % (10|50 _ L0 |gof
O'(,)*W [P —71‘71‘ .

As to their physical content these partial components
are formed by the electronic flows, directed to the input

(c"(E,Q)) and output (o (E,Q)) of the nanostructure
relatively to the initial direction of electron flow.

J. NANO- ELECTRON. PHYS. 9, 03030 (2017)

3. DISCCUSSION OF THE RESULTS

Taking advantage of the developed theory, the cal-

culating of potentials ¢{”’(z) caused by the static spa-

cial charge was carried out, as well as the potentials,
defined by the spacial dynamic charge for radiation

electronic transitions ¢ (2) .

The calculations where carried on the example of
the experimentally realised three-barrier RTS [13] with
GaAs — potential wells and Alo.15GaossAs — potential
barriers with the known physical parameters:
m,=0.063 me; mp= 0.075 me; U=516 meV,
F=62kV/em, where me. — mass of free electron. Geo-
metric parameters of the examined three-barrier RTS
are as follows: the widths of the potential wells
b1 =8.0 nm; b2=5.7 nm, the thicknesses of the input,
internal, and output potential barriers A:=4.5 nm;
A2 =1.0 nm; A3 = 2.4 nm respectively.

In Fig 2a the nanosystem potential profile,

600 @ o 10f (b) — ¥
-—— ] — 510 7 o
% N _1018 > L M~ _(p2,1
gl i % (e o
- =i 3,1
D - —®
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o)) — —_— ] \
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Fig. 2 — Potential profile of RTS renormalized by static charge (a) and dependencies of potential, caused by dynamic charge in

laser transitions 3 - 2,2 —> 113 — lonz

renormalized by static charge is presented, calculated
for different values of the electron concentration in the
beam falling on RTS. As it is seen from the Figure, with
greater of concentration of electrons, the potential pro-
file of RTS is deformed greater, the heights of the po-
tential barriers being greater and the bottom of the
conductivity zone of the input and output quantum
wells being raised. As it will be shown further, the
identified effect is revealed as the sufficient effect on
spectral parameters of the quasi-stationary states of
electron in the investigated RTS — its resonance energy
and widths.

In Fig. 2b the dependences of the potential values

Pgyn OD the geometric sizes of RTS z, found by the dy-

namic charge in the laser quantum transitions 3 — 2,
2 —>1, 3—>1 are presented. As it is seen from the
Fig. 2b for the calculated potentials ¢, , the relation is

satisfied:

(3,2) (2,1) (3,1)
(pdyn > godyn > (pdyn

Here the nature of the potentials q(li‘nz), wéiﬁ), (pc(f;ﬁ)

dependencies on z are qualitatively the same: values of

potentials increase within the left potential barrier,
that is, when 0 < z< Aj, being of the maximal values on
the boundary of this barrier with the input potential
well. For 0 < z< b dependencies of potentials on z are
declining nature.

In Fig. 3a, b, ¢, d, e, f the dependencies on the loca-
tion of the internal potential barrier b in the total po-
tential well at the unvariable other geometric TRS pa-
rameters of the energy spectrum of the electron En,
logarithms of resonance width /1, logarithms of dynam-
ic conductivity, are presented, revealed in the quantum
electron transitions from the third to the second and:

O30, Oag, O3y 1 from the third to the first energy levels

041, Oa5 O3, - The calculations were performed for the

electrons concentration n = 2-10'7 cm within two mod-
els: in the model without taking into account the spa-
cial charge effect [12], the results of which are present-
ed in Fig. 3a, b, ¢ (I), and within the model, for which
the theory is developed above, and which are presented
in Fig. 3d, e, f. (IT). The value b = bexp corresponds the
geometric configuration of the experimentally realised
RTS [13].
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Fig. 3 —Dependencies of energy spectrum E,, logarithms of resonance widths 73, logarithms dynamic of conductivity of electron

and their partial components, revealed in the laser transitions 3 — 2 (oy,, 0';2, 03,)13—1(0oy, 0;1, 035,) on the position of the

internal potential barrier (b) in the total potential well without (a, b, ¢) and with taking into account spatial charge (d, e, f), for

carrier concentration n = 2-1017 cm-3

From Fig. 3a and Fig. 3d it is seen, that the depend-
encies of the energy spectrum En on b, which are calcu-
lated in two models are qualitatively similar. But in the
dependencies of the energy spectrum, which are calcu-
lated taking into account the effect of spacial static and
dynamic charge, the effects of the increase of the reso-
nance energies of the first quasi-stationary state are
revealed, and those of the second — much smaller and
that of the third — relatively small at all. As it was
mentioned earlier, these effects are caused by the
renormalization of potential profile of RTS by the po-
tentials of the static and dynamic spacial charges. For
the experimentally realised geometric configuration
bexp in both models we obtain:

E® =-20.553 meV; E’ =10.003 meV ;
E{" =158.624 meV E"V =-8.962 meV ;
E{" =18.879meV; E§" =163.736meV .

and

Thus, for both models the value of the electromag-
netic field energy, generated in the quantum transition

352 Q) =148,621 meV and Qf) =144,857 meV is
different from experimentally realised
Q5 =146.161 meV by 1.7% and 0.9% correspondingly.

From Fig. 3b and Fig. 3e it is seen, that the depend-
encies of resonance width of the quasi-stationary states
of electron 77 on b is presented. It should be noted, that
in spite of the quantitive similarity of the resonance
width dependencies, calculated in both models, in the
model, which takes into account the contribution of
spacial charge, the value of the resonance width is
smaller, relatively to the model, which does not take
into account the spacial charge, the value of resonance
width 77 become smaller, when the quantum number n
becomes larger. Thus, for the experimentally realized
geometric configuration bexp in both models we obtain:

'Y =0.638 meV; I'Y =0.409 meV;
rd =1.295 meV
and T'{™ =0.352 meV; I'{Y =0.269 meV;

03030-6
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Y =0.780 meV .

As the electron life-time in the quasi-stationary
state is connected with the resonance width of this
state by the relation z = A/, the spacial charge causes
the increase of the electron life-time in two operational
quasi-stationary states almost in two times. Thus, we
may conclude the first, that for the sufficient electron
concentration n, the effect of the spacial charge is of the
dissipation nature, causing breaking of the nanodevices
coherent state.

In Fig. 3c and Fig. 3 f the dependencies of the loga-
rithms of dynamic conductivities on the b-values are
presented, which are revealed in the laser electron
quantum transitions 3 - 2 and 3 — 1, and their partial

components: oy, Ogy, Ogy and oy, 0y, O3, - It is seen
from these Figures, that when b varies, the absolute
values of the conductivities oy, and o, stay almost

the same for both models. But in the model, which
takes into account the effect of the spacial charge, the

partial components of conductivity o,,, o3, , which are
defined by the direct electron flow, decrease. The par-
tial components oy,, o;,, defined by the electron flow

in the opposite direction, increase. It should be noted,
that this effect sufficiently revealed seen for the quan-
tum transition 3 — 2, which can be explained by satis-
fying the relation (44). Here, for the experimentally
realized configuration of RTS bex, , we obtain:

o) =-7397.14 Slcm, oisP = -7342.96 S/cm,

J. NANO- ELECTRON. PHYS. 9, 03030 (2017)

03" =-54.185/cm, off) = —54.15 Slem,

oM = -54.12 Slem, ;" =-0.03 S/em and
ol =—7423.21 Slem, oy = -6938.64 S/cm,
oV = -484.57S/em, ol =-56.17 S/em,
o = 5552 Slem, ;" = ~0.65 S/em.

Thus, we can conclude, that the dynamic charge
causes the redistribution of the partial components of
the dynamic conductivity, formed in the laser transitions
3 — 1 and 3 — 2 in its total value. Here, the component
of conductivity o*, found on the direct electron flow, de-
creases, and the component ¢~ found by the flow in the
opposite direction, increases. According to the work [13],
this effect is the dissipative factor, that is why it must be
taken into account in investigating of the electron tun-
neling transport through the multilayer RTS.

4. CONCLUSIONS

Quantum-mechanical theory of the active dynamic
conductivity of electrons by the three-barrier RTS with
the applied constant electric field, taking into account
the effect of the spacial dynamic and static charges, has
been developed. It was shown, that the effect of spacial
charge reveals itself in the displacement of the energy
spectrum of electron towards the greater energies, in-
crease of the electrons life time in the quasi-stationary
states and the increase of the partial component of con-
ductivity, which is defined by the electron flow, which
is directed to the RTS input.

Biutue mpocTOpoBOro 3apsaay HA TYHEIIOBAHHS €JIEKTPOHIB Ta 1X IPOBiaHiCcTh
PE30HAHCHO-TYHEJILHUMU CTPYKTYPaMHU B IIOCTIMHOMY €JIEKTPUIHOMY IOJIi
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HUMH II0JIEM IIPOCTOPOBOTO 3apsily y BIIKPWTIN IJIOCKiN pPE30HAHCHO-TYHEJIbHIA CTPYKTYpi 3 MOCTIHHAM
eJIeKTPUYHUM T10J1eM. JIOCIII3KeHO BILJIUB IIPOCTOPOBOIO 3apsijy Ha IIPOBLIHICTH €KCIIEPUMEHTAIBLHO peasti-
30BAHOI HAHOCTPYKTYPHU SK AKTHUBHOI 00JIacTI KBAHTOBOTO KACKAIHOIO JIadepa [JiA PISHUX KOHIIEHTPALLiHi
€JIEKTPOHIB B I1a/1a1090My Ha PE30HAHCHO-TYHEJbHY CTPYKTYPY IIY4KY.

Knouosi ciosa: PesonancHo-TyHe/IbHA CTPYKTYpa, KBanToBUMiT Kackaguuit masep, Crarnunuit sapan, Jdu-

HaMiYHAH 3apsan, JluaaMidHa IpoBiIHICT.

BausHue npocTpaHCTBEHHOrO 3aps/ia Ha TYHHEJIMPOBAHUE JJIEKTPOHOB
M UX IPOBOJUMOCTH P€30HAHCHO-TYHHEJIBHBIMU CTPYKTYpPaMHU
B IIOCTOIHHOM JJIEKTPUIECKOM II0JIe

N.B. Boiiko, M.P. Ilerpux

Teprononvckuil HALUOHAIbHBLL MexHuveckul yrusepcumem umenu Hearna Ilyniwos, yn. Pycoka, 56, 46001,
Teprononv, Yepauna
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C wmCcrosb3oBaHWMEM MOJIEIN IIPSIMOYTOJIBHBIX IIOTEHIIMAJIBHBIX $SIM W 0aphepoB pPas3BHUTA KBAHTOBO-
MeXaHWJecKas TeOpHus CIEKTPAJIbHBIX ITapaMeTpoB W TWHAMWYECKON IIPOBOJUMOCTH JJIEKTPOHOB, B3aWMO-
JeHCTBYIOIINX C CO3TaBaeMBIM MMM II0JIEM IIPOCTPAHCTBEHHOTO 3apsla B OTKPHITOM IIJIOCKOM PEe30HAHCHO-
TYHHEJIbHOU CTPYKTYpPE C MOCTOSTHHBIM JJIEKTPUYECKUM TrosieM. Vccie0BaHo BIIMSHEE IIPOCTPAHCTBEHHOTO
3apsila Ha IPOBOJUMOCTH JKCIIEPHMEHTAJIFHO PeaM30BAHHON HAHOCTPYKTYPH KAK aKTUBHOW 00JacTH
KBAHTOBOT'O KACKaIHOTO Jiadepa IJIA Pa3JIMYHBIX KOHIIEHTPAIINH 3JIEKTPOHOB B IaJalolieM Ha Pe30HAaHCHO-
TYHHEJIBHYIO CTPYKTYPY IIy4Ke.

Knrouersie cnosa: PesoHaHCHO-TYHHeJbHAS CTPYKTYpa, KBAHTOBBIN KackaaHbmi gasep, Cratnyeckwmii 3a-
pan, Junamudeckuii sapsn, Junamudeckass mpoBOIUMOCTb.
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