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Summary. New methods for analysis of robust stability and optimization of discrete output feedback
control systems are developed. Sufficient stability conditions of the zero state are formulated with the joint
quadratic Lyapunov function for control systems with uncertain coefficient matrices and a measured output
feedback. The solution of a problem of robust stabilization and evaluation of the quadratic performance criterion
for linear discrete systems with matrix uncertainty are proposed. The example of a stabilization two-masse
mechanical system is showed.
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Problem setting. In applied problems of analysis and synthesis of real objects, one often
uses systems of differential and difference equations with uncertain components (parameters,
functions and random perturbation) (see, e.g., [1] — [6]). This focuses on the analysis and
achievement of performance index of such systems particularly robust stability and optimality.

As set robust stability of dynamic systems we mean parametric or functional set
characterizing uncertainty of the given structure of the system and its control components. In
particular, in the uncertain linear models matrices of coefficients and feedback may belong to
some given sets in the corresponding spaces (intervals, polytopes, affine and ellipsoidal families
of matrices, etc.).

The problem of robust stabilization of the control system is to build a static or dynamic
control to ensure the asymptotic stability for equilibrium states of the closed-loop system with
arbitrary values of uncertain components.

Analysis of recent research and publications. Numerous works the problem of robust
stabilization of control system is reduced to solving systems of linear matrix inequalities. In the
works [3], [7], [8] find sufficient stability conditions for linear controllable systems with
uncertain matrices of coefficients and feedback with respect to measurable output in terms of
linear matrix inequalities. A survey of problems and known methods of robust stability analysis
and stabilization of feedback control systems can be found in [9] — [11].

The aim of the research is to develop new methods of robust stability analysis and
robust stabilization of linear difference systems with limited at a norm of matrix uncertainties
and static measurable output feedback.

Robust stabilization of nonlinear control systems. Consider a linear dynamical
control system with discrete time which describing difference equations in the form:

X = (A+AA)X +(B+AB)u,, y, =Cx, +Du,, 1)
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where x, eR", u,eR™ and y, eR' are state, control, and observable object output vectors
respectively, t=0,1,2,..., A, B, C and D are constant matrices of corresponding sizes nxn
,nxm, Ixnilxm,and

AA = FAAAIHA’ ABt = FBABtHB’

where F,, F;, H,, H, are constant matrices of corresponding sizes and matrices uncertainties
A, and A, satisfy the constraints

AL <1, [Ag]<storfa,], <1, |Ag]. <1, t=012,....

F

Hereinafter, |-|| is Euclidean vector norm and spectral matrix norm, |-|_ is matrix

Frobenius norm, 1 is the unit nxn matrix, X = X" >0 (=0) is a positive (nonnegative)

definite symmetric matrix. To simplify the records of the matrices dependency on t we will
omit. For matrices B and C, that have full rank with respect to columns and rows respectively.
We control the system (1) with output feedback:

u =Ky, K=K, +K, KeE, )

where E is an ellipsoidal set of matrices in the space R™
E={K:K"PK <Q}, @3)
where P=P" >0 and Q=Q" >0 are symmetric positive definite matrices of corresponding

sizes mxm and I xI.
According to (1) — (3), the following inequality must hold:

D'QC +G"PK,C A u,

o T]CTQC—CTKJPKOC cTQD+cTKgPGMxl}>O
t o Mt 22U,

where A=D'QD-G'PG, G=1_-K,D.We assume that
A<QO. 4)
Then x, =0 implies u, =0, and x, =0 is an equilibrium state for the system.

The problem is to construct conditions under which the zero state of the closed-loop
control system (1) and (2) is Lyapunov asymptotically stable for every matrix K € E. Matrix
K, is chosen for the purposes of stabilization, e.g., in case when the zero state of the system
(1) without control (u, =0) is unstable.

X, =M%, M, =A+AA+(B+AB)(I, -K,D)'K,C. (5)
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Matrix K, can be obtained with methods described in [12].
We introduce on the set of matrices K = {K:det(l, — KD) = 0} a nonlinear operator

D:R™ 5R™, D(K)=(l,,—KD)'K=K(l,-DK)™.

For the operator D the property is performed [12]: if K eK, K, eK and
K,=(,-KD)"K, eK then

K, +K, eK and D(K, + K,) =D(K,) + D(K,)[I, + DD(K,)]. (6)

Under assumption (4) matrix G must be nondegenerate. Therefore values of the
operator D(K,) = (I, — K,D)™K, are defined. If K E then values of D(K) and p(g are

also defined, where K =G ™K . Indeed, under conditions (2) and (4) we have
D'K'PKD<D'QD <G"PG, F'PF<P™,

where F=KDG™ and P >0. Therefore p(F) <1, and matrix 1 —F is nondegenerate, and

hence matrices |, —KD =(l, —F)G and I, — KD =G™(l, — KD) are nondegenerate as well.

Thus we exclude a control vector from relations (1) and (2) with restriction (4) and we
get system

Xy = MX,, M =A+AA+(B+AB)D(K)C. @)

Separately the zero equilibrium state of system (5) for K = K, should be asymptotically

stable.

Using following statements, we will receive a solution of the formulated problem by
means of methods of quadratic Lyapunov function.

Lemma 1. [12] Suppose that the following matrix inequalities hold:

R-P D' woutov
{[_) 1}0, U R-P DT |<0(<0), (8)
-Q Vv D -Q°

where P=P' >0, Q=Q" >0, R=R">0, W=W'<0, U, V, and D are matrices of
suitable sizes. Then for every matrix K € E the matrix inequality holds:

W +U'D(K)V +V'D" (KU +V'D" (K)RD(K)V <0 (<0). (9)

Lemma 2. [13] Suppose that L is symmetric matrix, the matrix M,,...,M, and
N,,...,N, have corresponding sizes. Then, if for some numbers ¢,,...,&, >0 matrix inequality
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L+Z(8iMiMf +iNINi]so,
E.

i=1 i

holds, then the inequality

L+ (MAN, +(MAN, ) <0,
i=1
is true for all A, <1 or |A]. <1, i=1...r.

We will note that Lemmas 1 and 2 are generalizations of the sufficiency statement of
the adequacy criterion called Petersen’s lemma on matrix uncertainty [14].

Theorem 1. Suppose that for a positive definite matrix X = X™ >0 and for some ¢, >0
(i=1,2,3) the following matrix inequalities hold:

~G'PG+g'HIH, DT BT
D -Q* 0 <0, (10)
B 0 —-X'+gFFy
-X+Q g5 CIH, Cs M.
HIC., -G'PG+¢,HLH D' BT
€3 Mg + &g Mg B <0, (11)
C, D -Q 0
M. B 0 -X'+0
where Q=¢g,'H H, +&ClIC., 0 =¢,F,F) +&,F.F,, M. = A+ BD(K,)C,

C.=H_D(K,)C, C,=C + DD(K,)C . Then any control (2) ensures asymptotic stability of the
zero state for system (1) and the general Lyapunov function v(x,) = x; Xx, .

Proof. We construct the Lyapunov function for the closed-loop system (7) as
V(X,) = X| XX, . According to discrete analogue of the Lyapunov’s second theorem the matrix

inequality X = X' >0 and negative definite first difference of the given function due to system
(7) ensure asymptotic stability of the zero equilibrium state, that is with (2) it suffices that the
following matrix inequality holds:

MTXM - X <0. (12)
Using property (6) of operator D(K) = (I, — KD) ™K, we rewrite inequality (12) as
[.4+ Ad +(B +AB)D(K,) + D(K)(I + DD(X. ))_]cfXx
x4+ A4+ (B + AB)D(K,) + D&Y + DD(K) Jc|- X <0,

We rewrite last inequality as
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MJ XM, — X +M] X (B+AB)D(K)C, +C./D" (K)(B+AB)" XM +
+C,D" (K)(B+AB)" X(B+AB)D(K) <0,
where M, = A+ AA+ (B+AB)D(K,)C , K =G*K . Here
KeE e ReBE={K:KPK<Q],

where P=G'PG .
We use Lemma 1 putting

W =MJXM,-X,U=(B+AB)" XM,,V =C,, R=(B+AB)" X(B+AB).

Then the first block inequality in (8) has the form

B+AB)' X(B+AB)-G'PG D’
( ) X( ) <o, (13)
D -Q*

Inequality (4) follows from inequality (13). Then the second block inequality in (8) has
the form

Mg XM, - X M, X (B + AB) C,
(B+AB)' XM, (B+AB)'X(B+AB)-G'P'G D' |<0. (14)
C, D -Q*

We use the following well-known criterion of nonpositive (negative) definite of block
matrices (Schur’s lemma [15]): if det V =0 then

u <2 15T
Jr oy |S0 0 & V<0 U-2vIZT <0(<0). (15)

We see that inequality (13) can be represented as

-G'PG D' (B+AB)'
D -Q™* 0 <0,
B+AB 0 -x*

and inequality (14) can be represented as

-X 0 C, M,

0 -G'P'G D' (B+AB)

c, 5 o 0 <0.
M, B+AB 0 - X
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Using the structure of matrix uncertainties A ,,, A, , we decompose the last two inequalities:

-G'PG DT B' 0 H
D -Q' 0 |+ 0]a[H, 0 0]+ 0 aLJo o Fl]<o0,
B 0 X7 |F 0
- X 0 Cs (A+BD(K,)C) 0
0 -G'PG D' BT 0
B +| |ay[H, 0 0 0]+
C, D -Q 0 0
A+BD(K,)C B 0 -x* F,
H ., 0
0 T T 0
H Ao oo FI+ o [2s[HeD(K)C 0 0 0]+
0 R
C'D" (K )H; 0 0
0 T T 0 H-lB- T T
+ . Ao o o B+ o [0 Hy 0 0]+ Ao o o Fl<o,
0 Fy 0
which is done for Lemma 2 if there are ¢, ¢,,&, >0 such as
~-G'PG DT B' 00 O HiH, 0
D -Qt 0 |[+g/0 0 0 A0 0 of<o,
B 0 -x*| oo RF| o o0
- X 0 C, (A+BD(K,)C)' 000 O
0 ~-G'PG D' BT 000 O
a + &, +
Co D -Q 0 0 0O 0
A+BD(K,)C B 0 _x 0 0 0 FF,
HyH, 0 0 O 000 O
1/ 0 000 000 O
+— + &, +
& 0 000 000 O
0 000 0 0 0 FFy
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C'D"(K,)HiH.D(K,)C C'D'(K,)H{H, 0 0

N HiH D(K,)C HeH, 00| 4
&, 0 00
0 00

We get inequalities equivalent to conditions of the form (10) and (11) under which
matrix inequality (12) holds. These conditions ensure asymptotic stability for the zero state of
the closed-loop system (7) for any control (2).

This completes the proof of the theorem.

Bounds on the quadratic quality criterion under uncertainty conditions. Consider
a control system (1), (2) with quadratic quality functional

Ju(xo):igot,q)t:[xf uj]@{z;},cp{s N}o, (16)

t NT R

where x, is initial vector, S=S" >0, R=R" >0, and N given constant matrices.

We need to describe the set of controls (2) that would provide asymptotic stability for
the state x, =0 of system (1) and a bound

J,(x) <o, (17)

where @ >0 is some maximal admissible value of the functional. When solving this problem,
we still use the quadratic Lyapunov function v(x,) = x; Xx, under constraint x, Xx, < . Under

assumptions (2) and (4) values of D(K), D(K,), and D(K) are defined, where K=G"'K,
G =1, —K,D. Here the closed-loop system can be represented as (7), and the first difference
v of function due to system (7) and the summable function in (16) have the form

V(%ea) =V(X) =% (MTXM = X)x,, ¢ = X/ L' ®Lx,

where L' =[I, C'D"(K)], K=K, +K.
We now require that together with (4) the following inequality holds:

V(Xt+1) - V(Xt) < m4r (18)
For this it suffices that the following matrix inequality holds:
MTXM —-X +L"®L<0. (19)

Then the zero solution x, =0 of system (1) is asymptotically stable and together with
(18) we get an upper bound on the functional:

3.00) € SV ~v(x )] = X X% < 0 (20)

t=0
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Using property (6) of operator A , we rewrite inequality (19) as
W +UDEV +V DN + VP DNE)RDEW <0 (21)

where W =MjXM, - X + j®L,, U=(B+AB)'XM,+N" +RD(K,)C, V=C,=C+
DD(K,)C, L =[I, C'D'(K,)], R=R+(B+AB) X(B+AB),
Here

KeEo KeE={K:KPK<Q],

where K=G"'K p=-G"PaG,
Applying Lemma 1, relations (18)-(21), and Lemma 2, we arrive at the following result.
Theorem 2. Suppose that for a positive definite matrix X = X' >0 and for some &, >0

(i =1,2,3) the following matrix inequalities hold:

R-G'PG+¢g 'H{H, D' B'
D -Q* 0 <0, (22)
B 0 X '+gF,F,
—X+Q N/ C, M.
N. R-G'PG+¢H.H D' B'
&g . <0, 23)
C, D -Q 0
M. B 0 —-X'+0©

where Q=L®L,+&,'HH, +&'C!IC., ©=¢FF] +&FF, M.=A+BD(K,)C,
N.=N"+RD(K,)C, C.=H,D(K,)C. Then any control (2) ensures asymptotic stability of
the zero state for system (1), the general Lyapunov function v(x,) = x! Xx,, and a bound on the

functional (17).

Based on Theorem 2 and its corollaries, we can formulate the following optimization
problem for system (1): minimize @ > 0 under constraints (22), (23).

The results of Theorems 1 — 2 can be generalized in case when

AA() =Y FIAGHE, AB() = Y FOAQ (MH .
i=1 i=1

Numerical experiment. Consider a control system for a double oscillator. It is system
of two solids that connected by a spring and slide without a friction along of horizontal rod.
This system is defined with two linear differential equations of order two, or, in vector-matrix
form [13]:

X =(A +AA(t))x+B.u, (24)
where
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0 0
0 0 0 0
k, K 0 0
- -—— = 00 = =
A, + AA(t) m, m, + FAA('[)HA, B, Ll Fa s
Kk 0 0 0 o
L M, m, i

Figure 1. A two-masse mechanical system

Here x, and X, are coordinate and velocity respectively for the first solid, x, and X,
are coordinate and velocity respectively for the second solid, m, and m, are masses of the first

and second solids respectively. We define a stiffness coefficient as variable periodic function
of time k =Kk, + A(t), where A(t) =sin(at), § <<1 is the amplitude of harmonic oscillations,

and = is the frequency parameter.
We will make the discrimination of system (24) in the form:

X, = (A+AA)X +Bu, A=1,+7A, AA =AA(t), B=mB_, t=012,.., (25)

where x, = x(tr), u, =u(tr), = is the pitch of discrimination. Let r=0,0005, m, =1,
m, =1, k, =1, 6 = 0,01, A(t) =sin(t/5).
We assume that the output vector

X, + U, 0 010 1
Y, =Cx, +Du, = , C= . D=
Xy 01 0O 0

can be measured.
We find control in the form static output feedback u, =Ky,, where

K=[k k]=K,+K.We find the vector K,=[1,6938 0,1089] that ensures asymptotic
stability for system x,=My,x, M,=A+BD(K,)C. Here the spectrum
o(M,) ={0,9989;0,9999 + 0,0005i;0,9999} places in the middle of unit disk [12]. The behavior
of solutions of system with matrix uncertainty (25) with control u, = K,y, and initial vector
X, =[L 0 -1 2 isshown on Fig. 2.

For demonstration of Theorem 2 we define a matrix functional (16): S =0.1I,,

R=0,01, N"=[0,00 0 0 0,01]. Using the Matlab suite, we find P =0,0009 and positive
definite matrices
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16556 —-16556 0,0005 —0,0008

o 0_8{ 0,2267 - 0,0013} X =109~ 16556 16556 -0,0005 0,0008
—-0,0013 0,2308 0,0005 -0,0005 0,0000 -0,0000

—-0,0008 0,0008 -0,0000 0,0000

that satisfy the inequalities (22), (23) for &, =0,01.

3
25/\

A

e

AN A

o5l kN

INY/pS
/

NIRAV
PREY

-2

0 5 10 15 , 20 25 30 35
Figure 2. System behavior with control u, = K,y,

Thus, for all values of the vector of feedback amplification coefficients K = K, + K

from a closed region bounded by the ellipse E = {K KQ'K' < P’l} (Fig. 3), the motion of the
system of two solids in a neighborhood of the zero state is asymptotically stable. Here
v(x,) = x| Xx, is a general Lyapunov function, and the value of the given quality functional

does not exceed v(X,) =16513.

R B e L, }
(1 ic] T R — TN . 1

0, 257,7 SR S A RS SN . YOUNE
0.372| [ \

k203715 ,,,,, | e | _— |

0.371 ----- \ | --------------- .

TR {01, AN SR SUUUUUOORD SO - < - —_— ]

0.37 \/ rrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrr .

1659 1658 -1657 -1656 -1.655 -1.654

ki

Figure 3. Region of feedback amplification coefficients

Conclusions. In this work, we have proposed new methods of robust stability analysis
and optimization of linear difference systems with static output feedback. Here values of
unknown matrix coefficients are defined by restrictions on norm of matrix uncertainties and the
measurable output vector contains components of both the system state and the control.
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Practical implementation of the proposed methods is related to solving differential or

algebraic matrix inequalities. An important characteristic feature that distinguishes matrix
inequalities that we have found from known ones is the possibility to construct an ellipsoid of
stabilizing matrices for the feedback amplification coefficients, general quadratic Lyapunov
function, and also bounds on the quadratic quality functional for linear control systems with the
considered matrix uncertainties.
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YK 517.93; 519.718

POBACTHA CTIMKICTD I OLIHKA ®YHKIIIOHAJIA IKOCTI
JIHIMHUX ITUCKPETHUX CUCTEM 3 MATPUYHUMU
HEBU3HAYEHOCTAMHA

Amnapiit Auinyiiko; Basepiit €EpbomeHko
Tepnoninbcokuil HAYIOHAILHUU eKOHOMIYHUL YHIgepcumem, TepHonins, Ykpaina

Pe3tome. Po3pobaeno Hogi memoou ananiszy pobacmuoi cmikocmi ma onmumizayii OUCKpemuux cucmem
KepyBaHHs i3 360pOMHUM 36 A3KOM. [ JNiHIIHUX KEePOGAHUX CUCMEM 3 HEeGUSHAYEHUMU MAMPULHUMU
Koeiyienmamu ma 360pOMHUM 36 A3KOM 34 BUMIDIOBAHUM 6UXOOOM (DOPMYTIOIOMbCA OOCMAMHI  YMO8U
CMIUKOCMI HYIb08020 CMAHY i3 CNLIbHOW (pyHKYyiet Jlanynosa. 3anpononosano po3e sizaunns 3a0aui pobacmHuoi
cmabinizayii ma OYiHKU KEAOPAMUYHO20 KPUMepito SAKOCMI JIHIUHUX OUCKDEMmHUX CUcCmem 3 MAampuyHumMu
HesusHavenocmamu. Haseoeno npuxnao cmabinizayii 06omacogoi mexaniunoi cucmemu.

Kniouoei cnosa: pobacmna cmitikicms, Mampuina HeGU3HAYEHiCMb, OUCKPEIMHA CUCEMA, 360POMMHULL
38 ’A30K NO 8UX00Y.
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