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Part 1. Direct current circuits.  
 

Sources and consumers. 
Electrical circuit is the multitude of devices designed for transforming, 

distribution and conversion of electrical energy, while the processes which are taking 
places in these devices can be described by the concepts of current, voltage and 
electromotive force (e.m.f.).  

The simplest electrical circuit contains three main elements: electrical source 
(active element), consumer (passive element) and the wires. Besides, the circuit can 
have also additional elements: measuring devices, switches, fuses, contactors, etc.  

Electrical power is transformed into heating, 
mechanical energy, etc. at the consumers. The measure of 
this transformation is resistance R (fig.1.1). You can see 
the directions of the electrical values at fig.1.1.  

Ohm’s law for this element is as follow RIV   or 
GVI  , where R  - is resistance, RG /1  - is 

conductivity. The power on resistive element is 22 GVRIP  . 
Heating, mechanical energy, etc. is transformed into electrical power at the 

electrical sources. The measure of this transformation is electromotive force (e.m.f.) 
E (fig.1.2). You can see the directions of the electrical values at fig.1.2.  

 The ideal electrical source (without losses) is characterized only by E . The 

power on the electrical source is EIP  .  
The real electrical source has losses and is characterized by E and 0R  (internal 

resistance), which reflects the losses. The simplest electrical circuit is shown at 
fig.1.3. For this circuit:  

)RR/(EI  0 ,  then IREV 0 , RIV  , ERIIR 0 . 
We can represent real electrical circuit by two substitution schemes: serial 

(fig.1.4) and parallel (fig.1.6). The external volt-ampere characteristic (fig.1.5) V(І) is 
the main characteristic of the source. Its analytical expression is IREV 0 . At 
fig.1.5 solid line indicates the characteristic of real source, dashed line - the 

a > b 
Fig.1.1 
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characteristic of ideal source. Boundary points of this characteristic correspond to the 
source boundary modes – open circuit (idle) mode (without loading), when 0I , 

OCVEV   and short circuit mode, when 0V , SCII  . The external characteristic 
of ideal source EV   is represented by dashed line at fig.1.5.  

Parallel substitution scheme (fig.1.6) consists of ideal current source J  and 
internal conductivity 0G , which characterizes the losses. The external characteristic 
of real source (fig.1.7) is described by the equation UGJI 0 . The external 
characteristic of ideal source JI   is represented by dashed line at fig.1.7.  

Serial and parallel schemes are equivalent, it means you can transform one into 
another using such formulas:  

JGE 0 , 00 /1 GR  , 0/ REJ  , 00 /1 RG  . 
The efficiency factor of the source characterizes the efficiency of energy 

transforming from the source to consumer:  

E
V

EI
VI

P
P

E

R  ,  EV  , 

where RP  - is a consumer power, EP  - is a source power.  
We can also write down the efficiency factor using the elements parameters: 

R/RRR
R

IRRI
RI

PP
P

R

R

00
2

0
2

2

1
1











 , 

where P  - are power losses. 
There are three main electrical circuit modes: nominal, operating and 

boundary.  
The nominal mode is the best mode for the working device, the device nominal 

parameters are shown in its technical passport ( NOMI , NOMV , NOMP ). 
Operating mode is a mode, where the deviation from the nominal parameters is 

not big.  
Boundary modes are: open circuit or idle (non-working) and a short circuit 

(emergency) modes. For the open circuit (o.c.) mode R= , then using the scheme at 
fig.1.3, we can write down: 

0
00








R

E
RR

EI , EIREV  0 , 1 . 

For short circuit mode (s.c.) R=0, then using the scheme at fig.1.3, we can 
write down: 

RIV  , V=0, SCIREI  0/ , 0 . 
The methods of open circuit and short circuit experiments can be used for 

Fig.1.7 

I 
J 

V 

Fig.1.6 
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defining the parameters of the source ( 0,RE ): SCOC IEREV /, 0  . The experiment  
of s.c. mode is provided at low voltage.  

Electrical source operating modes: 
- voltage generator, when the voltage at the clamps of the source practically 

does not depend on the current, thus EV  , and this mode is close to o.c. In this 
mode RIIR 0  (fig.1.4), that’s why the condition of it is RR 0  and 1 . This 
is the main operating mode of electrical engineering devices.  

- current generator, when the current at the clamps of the source practically 
does not depend on the voltage, thus JI  , and this mode is close to to s.c. In this 
mode GUUG 0  (fig.1.6), that’s why the condition of it is GG 0  ( RR 0 ).  

-balanced mode – the maximum power 2IRP   is transferred from the source 
to the consumer at this mode? )RR/(EI  0 , and 2

0
2 )RR/(REP   at this mode. 

The condition of this mode comes out from the expression 0/ dRdP , that 
means RR 0  and 5.0 . This mode is used in electronics.  

 
Connections of elements 

There are two types of elements connections in electrical circuits, they are 
simple and complex. The major difference between those two types is that we know 
the directions of currents before we calculate the circuit with simple connection and 
don’t know the directions of currents at the circuits with complex connections, that’s 
why we choose them arbitrarily. 

There are three types of simple connection: serial, parallel and mixed. 
When the elements are connected in serial (fig.1.8), the same current I  is 

flowing through them. The total resistance of serial connection is nRR  .  
The input voltage (fig.1.8) 

IRVVVV NNN  ...1 . 
The power of this circuit  

NNN PIRIIRVIP  2 , 
where VIP   – the power of the source, NP  – the 
power of the consumers.  

When the elements are connected in parallel 
(fig.1.9), the same voltage V  is applied to them. 

The total conductivity of parallel connection is nGG  .  
The total current of the circuit (fig.1.9):  

VGIIII NNN  ...1 .  
The power of this circuit:  

NNN PVGVVGVIP  2 .  
For two elements connected in parallel:  

21
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 , 
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21

211
RR

RR
G

R


 . 

 The circuit with two elements connected in serial (fig.1.10) can be used as 
voltage divider.  

21 RR
VI


 ,  
21

1
11 RR

RVIRV


 ,  
21

2
22 RR

RVIRV


 . 

 The circuit with two parallel connected elements (fig.1.11) can be used as 
current divider.  

21

21

RR
RRIV


 , 
21

2
11 /

RR
RIRVI


 , 
21

1
22 /

RR
RIRVI


 . 

 We can replace the mixed (serial-parallel) connection (fig.1.12) by one 
equivalent (total) resistance R :  

)RR/(RRR 323223  ,  231 RRR  .  
We can also replace the mixed (parallel-serial) connection (fig.1.13) by one 
equivalent (total) resistance R :  

3223 RRR  ,  231231 RR/RRR   
The complex connections are DELTA (fig.1.14) and WYE (fig.1.15).  

We can know real directions of the currents only after calculation. We can also 
transform DELTA into WYE using such expressions:  

R1 
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cabcab

caab
a RRR

RRR


 , 
cabcab

bcab
b RRR

RRR


 , 
cabcab

bcca
c RRR

RRR


 .  

We use the simplification method to calculate the circuits with one source. To 
use this method we must:  

 simplify the circuit to one equivalent resistance;  
 calculate the total current by using Ohm’s law;  
 revert back the circuit and calculate the branch currents and voltages across 

the elements;  
 verify the calculation by using the power balance equation.  

 
The calculation of electrical circuits with several sources. 

We can use several methods, which are based on Kirchhoff’s laws. 
Kirchhoff’s first law states that the sum of the currents entering the node is 

equal to the sum of the currents leaving the node 0n I (the algebraic sum of the 
currents in the node is equal to zero). 

Kirchhoff’s second law states that the algebraic sum of all voltages across 
passive elements around a loop is equal the algebraic sum of electro-motive forces 
around the same loop nnn EIR  .  

Branch of the circuit is the part of the circuit with the same current, it may be 
consisted from one or several elements connected in serial. 

Node is the place where three or more branches are connected. 
Loop is any closed path around the circuit. 

 

Kirchhoff’s laws method. 
Let`s suppose the circuit has p  branches and q  nodes. There’ll be p  

unknown currents. We must solve the system of p  equations to find them.  
First, you have to choose the directions of branch currents arbitrarily and mark 

them at the scheme, then mark the nodes and the loops. After this, it is necessary to 
write down 1q  nodes equations according to Kirchhoff’s first law and 1qp  
loop equations according to the Kirchhoff’s second law. 

After the equations system is solved, some currents may have sign “-“, it 
means that the real directions of that current is opposite to the one we have chosen at 
the beginning.  

Let`s write down the equations system for the scheme at fig.1.16. There are 5 
branches 5p  and 3 nodes 3q  here.  

The equations according to Kirchhoff’s first law ( 21q ) for the nodes 1 and 

I5 I1 

E5 E1 

Fig.1.16 
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R5 
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R2 L3 R4 L2 
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1 2 
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2:  

453

321

2“ “
1“ “

III
III




  (1) 

The equations according to Kirchhoff’s second law ( 31qp ) for the loops 

1L , 2L , 3L  (we choose the directions along the loops clockwise , if the directions of our 
bypass and the voltage or e.m.f. are the same, we denominate it with “+“, if opposite 
with “-“). 

555443

4433222

122111

“L “
0“L “

“L “

EIRIR
IRIRIR

EIRIR






  (2) 

So, the equation system according this method will be:  

55544

443322

12211

543

321

0

0
0

EIRIR
IRIRIR

EIRIR
III
III








 (3) 

After solving this system we get the unknown branch currents. 
We apply the equation of power balance to verify our calculations: the total 

power of the sources should be equal to the total power of the consumers ER PP  . 
The total power of the sources 5511 IEIEIEP nnE  . The total power of the 
consumers 2 2 2 2 2 2

1 1 2 2 3 3 4 4 5 5R n nP R I R I R I R I R I R I       . 
 

Loop currents method.  
This method has less equations than previous and is based on the Kirchhoff’s 

second law. Let’s suppose that we have three loop currents 321 ,, LLL III  at circuit 
(fig.1.17), the directions of these currents we choose arbitrarily. Then we can write 
down branch current by using loop currents: 11 LII  ,  212 LL III  , 23 LII  , 

35 LII  , 324 LL III  . 
We have to substitute these expressions in the equations of Kirchhoff’s second 

law: 

Fig.1.18 
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I5 I1 
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555443

4433222

122111

“L “
0“L “

“L “

EIRIR
IRIRIR

EIRIR






 

We get the following:  














535424

34243212

122121

)(
0)(

)(

EIRRIR
IRIRRRIR

EIRIRR

LL

LLL

LL

 (4) 

Let’s mark:  
2111 RRR  , 43222 RRRR  , 5433 RRR   - it’ll be individual resistances of the 

loops, which are equal to the sum of all the resistances of the loop;  
22112 RRR  , 03113 RR , 43223 RRR   - mutual resistances of the loops, the 

resistances of the branches which are mutual for the respective loops;  
11 EEL  , 02 LE , 53 EEL   - loops e.m.f., is equal to the algebraic sum of the 

electromotive forces of the loops.  
Using these markings, system (4) looks like (5), that can be used for any circuit 

with three independent loops:  













3333232131

2323222121

1313212111

LLLL

LLLL

LLLL

EIRIRIR
EIRIRIR
EIRIRIR

. (5)   

 
Nodal potential method 

This method has less equations than previous one and is based on Kirchhoff’s 
first law. Let’s analyze the circuit on fig.1.19. There are two independent nodes b,a . 
Try to suppose that the potential of the basic (dependent) node is equal to zero, so the 
potentials of other nodes are marked at the scheme as ,a b   (fig.1.19).  

We can also write down the branch currents using node potentials:  

111 IREa  , ,G)E(
R

)E(I a
a

11
1

1
1 




  

22 IRa  , 2
2

2 G
R

I a
a 
 ,  44IRb  , 4

4
4 G

R
I b

b 
 , 

33 IRba  , 3
3

3 G)(
R

)(I ba
ba 




 , 

b a 

c I5 I1 

E5 E1 

Fig.1.19 

R3 R5 R1 

R2 R4 

I2 

I3 

I4 

φa 
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555 IREb  , 55
5

5
5 G)E(

R
)E(I b

b 



 . 

Let’s substitute these expressions into the equations for the nodes b,a  

0
0

543

321




III
III

, 

we get 








555433

113321

EG)GGG(G
EGG)GGG(

ba

ba




.   (6) 

Let’s mark:  
 32111 GGGG  , 54322 GGGG   - the individual conductivities of the 
nodes, it’s the sum of the branch conductivities which coming in the node; 
 32112 GGG   - the mutual conductivities of the nodes, the conductivity of the 
branch, which connects respective nodes; 
 11 EGJa  , 55 EGJb   - the algebraic sum of the currents of current sources, 
which are flowing in the respective nodes. If the current J  of the source flows in the 
node, we mark it by the sign “+“, when it flows out – with sign “-“. 

Using these markings, system (6) looks like (7), that can be used for any circuit 
with two independent nodes:  








bba

aba

JGG
JGG




2212

1211 .  (7) 

 

Two nodes method.  
This method is used for calculating the circuits with only two nodes and 

several parallel branches. The example of such circuit is on fig.1.20. This method is 
also based on the Kirchhoff’s first law and is partly the method of nodal potentials. 
First of all, we calculate the inter-node voltage 

nnn GEGV  / , where nG - conductivity of n 
branch, nE - e.m.f.of n branch. For the circuit on 
fig.1.20  it’ll be  

1 1 2 2

1 2 3
ab

G E G E
V

G G G



 

. 

Then we calculate the branch currents 
using such expressions: 

33 IRVab  , 
3

3
3 GV

R
VI ab

ab  , 

111 IREVab  , ,)()(
11

1

1
1 GVE

R
VEI ab

ab 


  

222 IREVab  , 
22

2

2
2 )()( GVE

R
VEI ab

ab 


 . 

 

Fig.1.20  
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The superposition method. 
We can use this method when the e.m.f. of one source is changed. The method 

based on the superposition principle, means that every e.m.f. acts in the circuit 
independently. So, the calculation of one circuit (fig.1.20) with two sources, for 
example, can be reduced to the calculation of two circuits with one source (fig.1.21, 
1.22).  

According to this method, we must calculate two partial circuits with partial 
currents. We have only e.m.f. 1E  in the first partial circuit (fig.1.21).  

The total resistance of this circuit: 2 3
1

2 3

R RR R
R R

  


.  

The partial branches currents: 1 1 /I E R  , 3
2 1

2 3

RI I
R R

 


, 2
3 1

2 3

RI I
R R

 


. 

We have only e.m.f. 2E  in the second partial circuit (fig.1.22).  

The total resistance of this circuit: 1 3
2

1 3

R RR R
R R

  


. 

The partial branches currents: 2 2 /I E R  , 3
1 2

2 3

RI I
R R

 


, 1
3 2

1 3

RI I
R R

 


. 

Then we have the real branch currents as an algebraic sum of the respective 
partial currents (fig.1.20):  

111 III  , 222 III  , 333 III  . 
 

Equivalent generator method. 
The method is used when it is necessary to calculate the current of only one 

branch of the circuit (for example it is varying resistor or non-linear element in this 
branch). We select the branch with unknown current (e.g. 3I ) from the circuit on 
fig.1.20  and the rest of the circuit is replaced by the equivalent generator (fig.1.23) 
with parameters eqvE  - equivalent e.m.f., which is equal to the open circuit voltage on 

Fig.1.21  

I1 

R1 

E1 

R3 

R2 

I2 I3 

Fig.1.22  

I1 

R1 

R3 

R2 

I2 

E2 

I3 

b 

a I3 

V3 R3 Eеqv 

Rеqv 

Fig.1.23 Fig.1.24  
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E1 

R2 

E2 

I 
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I 
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the clamps of an open branch ab and eqvR – equivalent resistance, which is equal to the 
input resistance of the circuit in respect to the open branch ab. The problem is to 
calculate the parameters of equivalent generator eqvE  and eqvR .  For the circuit at 

fig.1.20 1 3

1 3
екв

R RR
R R




. Then we can calculate eqvE  using fig.1.24 IREEV eqvOC 11  , 

where 1 2

1 3

E EI
R R





. 

According to the fig.1.23 we calculate unknown current )/( 23 RREI eqveqv  . 
 

Direct currents non-linear circuits.  
Non-linear circuits consist of one or more 

non-linear elements. We call an element non-linear 
when its resistance is not constant and depends on 
voltage, current, temperature, light, etc. The volt-
ampere characteristic (VAC) )( IV  is the main 
characteristic of non-linear element and it’s non-
linear (fig.1.25).  

 There are non-controlled and controlled 
non-linear elements. Non-controlled elements have 
two clamps (lamps, diods), controlled elements 
have three or more clamps (transistors, thyristors). 
VAC of non-linear elements may be symmetrical or non-symmetrical. If the 
resistance of the element doesn’t depend on the direction of the current and the 
polarity of voltage then the characteristic is symmetrical. We can present VAC by 
graphs, tables or formulas )( IV .  

Non-linear circuits can be calculated by analytical or graph methods. If we use 
graph method we define the voltage and current of the circuit using VACs of the 
elements. We can use Ohm’s and Kirchhoff’s laws as well. Analytical methods (two 
nodes method and equivalent generator method) can be used when the VAC is 
presented by a formula.  

Non-linear element is characterized by static and dynamic resistance. We can 
calculate them for every point of VAC (at fig.1.25 for work point – w.p.):  

0 0/ ,SR V I  / /дR V I dV dI tg    , 
 – the angle between axe X and tangent to working point (w.p.). 0SR  , 0дR   
when VAC rise and 0дR   when VAC drops. 

 
Part 2. Alternating current (AC) 

 

Instantaneous value of AC is a value at every time moment, so it depends on 
the time: )tsin(I)t(i Im   . Instantaneous value of alternating voltage is 

)sin()( Vm tVtv    (fig.2.1).  

I 

 

V0 

Fig.1.25.  

 

V 

I 

I0 

V 

α 

w.p. 
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AC is characterized by such 
parameters: mI  - amplitude, maximum value 
during the period, period T , cyclic frequency 

T/f 1  (quantity of periods per second) 
(Hz), angular frequency f 2  (rad/s), 
phase )t( I  , initial phase I  (phase 
shift from zero). 

Phase shift angle is: IV    
(fig.2.1). 

Average current value per half of period is:  





 0

sin1 dttII mAV , /2 mAV II  mI637.0 . 

Effectiv e value of AC )(ti  (RMS – root-mean-square) 
is equal to such a value of DC I, which generates the 
same amount of energy per period 2T , as AC )(ti . 
Amount of energy per period of AC: 

TRIdtRiQ m

T
2

0

2   . 
T

dtRi
0

2  

Amount of energy per half a period of DC: TRIQ 2 . 

 QQ , so TRIdtRiQ
T

2

0

2    and RMS value will be 

equal: 
T

dtRi
T

I
0

21
. 

TRIQTRIQ m
22   , thus AC effective value is 2/mII  mI707.0 . 

AC can be represented by the time diagram (fig.2.1), vector (fig.2.2) and 
complex number.  

When AC )sin( Im tIi    is represented by vector, the length of this vector is 
proportional to the amplitude mI , and angle between this vector and axis X is 

It   . The positive rotation direction will be counterclockwise. In that case, the 
vectors of current and voltage will be rotating with the same angular frequency   
counterclockwise. It is convenient to fix them at the time moment 0t  (fig.2.2), in 
that case the angle I   (initial phase).  

Vector diagram consists of several vectors of currents and voltages, which 
represent real sinusoidal currents and voltages starting from the same point. It’s better 
to build a vector diagram for the effective values of the currents and voltages 

2/mII  , 2/mVV  . One of the vectors is chosen as a basic one, it is the vector of 
current when the connection is in serial one and the vector of voltage when the 

  

 

 t 
 I 

Im, t>0 

Fig.2.2 

Im, t=0 

 

  

1 

j 

 t 
I  

Ime j(t+I) 

Fig.2.3 

Ime jI
 

φ 

ψV 

Vm Im 

ψI t 

i 

Т 

v 

Fig.2.1 
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connection is in parallel. 
The AC can also be designated by the complex number 

( )( ) sin( ) j t i j i j t j t
mm I m mi t I t I e I e e I e           (it’s an exponential form of complex 

number). AC on the complex surface is shown on fig.2.3, where “ 1 ” is a real axis 
and “ j” is an imaginary axis. j i

m mI I e   is then called an amplitude complex, 
ij

m eII )2/(  is accordingly an effective complex that corresponds to the 
instantaneous current (at the moment 0t ) and doesn’t depend on the time (fig.2.3). 
Amplitude complex doesn’t contain the frequency but it is not so important because 
circuit’s voltage and current have the same frequency.  

 
Complex numbers 

 Complex number c has two presentation forms: 
algebraic jbac   (where a is a real part and bis an 
imaginary part) and exponential jcec  (where c is a module 
and   is an argument) (fig.2.3a). One form can be converted 
into another by using the following expressions: 22 bac  , 

)/( abarctg , cosca  , sincb  , j  is a symbol for the 
imaginary part (also known as rotating operator – see below 
why). Thus jbaecc j   . It’s more convenient to use the algebraic form when 
adding complex numbers jbabbjaajbajba  )()()()( 21212211 , and 
exponential form for multiplication and division of the complex numbers: 

 jjjj ececcecec   )(
2121

2121 , 



jj

j

j

ece
c
c

ec
ec

  )(

2

1

2

1 21

2

1

. The number 

jecjbac    is called a complex conjugate to number jecjbac  . 
 

Consumers at AC circuit 
Expressions for instantaneous current and voltage are correspondingly: 

)sin( Im tIi   , sin( )m Uv V t   . 
The voltage for the resistive element (fig.2.4) (active resistance) is  

sin( ) sin( )m v m iv V t Ri RI t         
according to Ohm`s law, where m mV RI , 

V RI , phase expression v i   and phase shift 
angle makes 0v i     . Resistance of this element is R  (Ω) and conductance is 
thus RG /1  (Sm). Vector diagram for this element is shown on fig.2.5. Active power 
of resistive element is accordingly 2 2P RI GV  (W).  

Inductance L (H) is correspondingly the main parameter for the ideal inductive 
element (fig.2.6). The differential form of Ohm`s law is thus applied accordingly:  

 )sin()sin( im
L

VmL tI
dt
dL

dt
diLtVv   

c 

1 a 

b 

0 

j 

α 

Fig.2.3a 

c 

Fig.2.4 

R 

v 

i I V 

Fig.2.5 
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)2/sin()cos(   imim tLItLI , 
where m mV LI , LV X I , reactance LXL  (Ω), 
susceptance LBL /1  (Sm), phase expression 

/ 2v i    , phase shift angle makes 
/ 2v i      , it means voltage leads current. In 

case of DC: 0 , 0LX , LB . Vector diagram 
for this element is shown on fig.2.7. Reactive power for L  element makes 

2 2
L L LQ X I B V  (VAr). 

Capacitance C  is the main parameter for the ideal capacitive element (fig.2.8). 
Integral form of Ohm`s law is applied in this case:  

  )cos(1)sin(11)sin( imimVmC tI
C

tI
C

dti
C

tVv 


  

 

)2/sin(1)cos(1






 imim tI

C
tI

C
,  

where 1
m mV I

C
 , CV X I , reactance )/(1 CXC   (Ω), susceptance 

CBC   (Sm) , phase expression / 2v i    , phase shift angle makes 
2/  iv , it means voltage lags current. In case of DC : 

0 , CX , 0CB . Vector diagram for this element is shown 
on fig.2.9. Reactive power for this element makes thus 2 2

C C CQ X I B V   (VAr).  
The complex designation for current, voltage, derivative and integral functions 

are accordingly:  
ij

m eIIIi  2/ , Vj
m eVVVv  2/ , 

jdtd / ,  /)/(1 jjdt  . 
Complex form of Ohm`s law equation for R-element is thus:  

 Riv IRV  , iV jj eRIVe   , 
0,Re)/(/ )(    jjjj iViV eIVeIeVR . 

Complex form of Ohm law equation for L-element is accordingly:  
 dtLdiv /  ILjV  , iV jj eLIjeV   , 

complex reactance is  
 j

L
jjj eXeIVeIVeLj iViV   )()/(/ , 90 , 

complex susceptance is LjeB j
L  / . Multiplication by j  means 

counterclockwise rotation for 90 . That’s why j  is called a rotation operator. 
Complex form of Ohm`s law equation for C-element is accordingly:  

Cidtv /    ICjV )/1(  , iV jj eICjeV   )/1( , 
complex reactance is  

Fig.2.6 
v 

L i 
 I 

V 

Fig.2.7 

Fig.2.8 
v 

i C 

 

V 

Fig.2.9 

I 
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iV jj eIeVCj  /)/1(    )()/( iVjeIV   j
CeX , 90 , 

complex susceptance is CjeB j
C   . Multiplication by j  means clockwise 

rotation for 90 .  
Serial connection of consumers at AC circuit 

Electrical status equations for the circuit (fig.2.10) for voltage instantaneous 
values and voltage vectors are accordingly:  

vvvv CLR  , VVVV CLR  . 
Vector diagram is shown on fig 2.11. The calculated 

triangles for voltages, resistances and powers (fig.2.12) are 
obtained from this diagram. Out of those triangles:  

22 )( CLR VVVV  , RCL VVVarctg /)(  , 

aR VVV  cos , rCL VVVV  sin ,  
-these are active and reactive constituents of the applied 
voltage V . Therefore circuit impedance makes:  

22 )( CL XXRZ  , )/)(( RXXarctg CL  , 

cosZR  , sinZXXX CL   - 
these are resistance and reactance of the circuit. 

Total power makes thus: 
22 )( CL QQPS  (VA), PQQarctg CL /)(  , 

 coscos VISP  ,  sinsin VISQQQ CL   
- these are active and reactive powers of the circuit. 
 Circuit complex form electrical status equation is:  

VICjILjIR  )/( . 
Complex impedance makes thus: )()/( CL XXjRCjLjRZ   .  
Expression for Ohm`s law is accordingly:  

 IVZ /   )( IV

I

V
j

j

j

e
I
V

eI
Ve 





jXRjZZZe j   sincos . 

 
Parallel connection of consumers at AC circuit 

Circuit electrical status equations (fig.2.13) for current instantaneous values 
and current vectors are accordingly:  

iiii CLR  , IIII LCR  . 

R 

L 
 

C 

Fig.2.10 
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Vector diagram is shown on fig.2.14. The calculated triangles of currents and 
conductivities are obtained from this diagram (fig.2.15). From those triangles we get 

subsequently:  
22 )( LCR IIII  , )/)(( RLC IIIarctg  , 

aR III  cos , rLC IIII  sin  - these are active 
and reactive constituents of the current.  
Circuit admittance makes: 

22 )( LC BBGY  ,  GBBarctg LC /)(   , 

cosYG  , sinYBBB LC   
 - these are conductance and susceptance of the circuit.  

Electrical status equation for the circuit in complex 
form is accordingly: IVLjVCjVG  )/( . 

Complex admittance makes: )()/( LC BBjGLjCjGY   .  
Expression for Ohm`s law is 

thus:  VIY /   )( VI

I

V
j

j

j

e
V
I

eV
Ie 





jBGjYYYe j   sincos . 
Total complex power makes accordingly:  

 IVS    jjjj SeVIeIeVe iVIV )(  
jQPsinjScosS   , 

where real part of complex number cosSP   – is an active power, imaginary part of 
complex number sinSQ   – is a reactive power. 

To check the calculation of the circuit you may use power balance equations: 
the active power of the source must be equal to the active powers of the consumers: 

 consps PP , 

cosVIPps  , 22
22

2
11 ... nncons IRIRIRP   , 

the reactive power of the source must be equal to the reactive powers of the 
consumers:  consps QQ , 
sinVIQps  , 22

22
2

11 ... nncons IXIXIXQ   , 

where nI  – is an effective value of the branch n-th current, nR – resistance of the n-th 
branch, CnLnn XXX   – reactance of the n-th branch. 

The transformation formulas must be used to calculate the alternating current 

circuits. The admittance is inversely to impedance:  
Fig.2.16 
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jBG
XR

Xj
XR

R
XR
jXR

jXRZ
Y 













 222222

11 . 

So, the following formulas must be used to transform serial connection into parallel 
(fig.2.16): 

,
)( 22 XR

RG


  
)( 22 XR

X
B


 . 

It is obtained from the calculation triangles of resistances (Fig.2.17a) and 
conductivities (Fig.2.17b): 

Y
G

Z
R
cos , 

Y
B

Z
X
sin , 

Thus the following formulas must be used to transform parallel connection into serial 
(fig.2.18): 

222 BG
G

Y
G

Y
ZGR


  , 222 BG

B
Y
B

Y
ZBX


 . 

 
The real coil can be represented by serial and parallel substitution schemes 

(fig.2.16). The elements of this scheme: L  - is an ideal inductance 
)/(1, LBLX   , R (G ) – represents power losses. The coil quality can be 

estimated by Q - factor:  
tgRXPQd L  // . 

The real capacitor can be represented by serial and parallel substitution 
schemes (fig.2.18). The elements of this scheme: C  - is an ideal capacitance 

)/(1, CXCB    R (G ) – represents power losses.  
The capacitor quality can be estimated by loss tangent:  

  90,// CXRQPtg . 
Power factor determines the efficiency of using electrical energy: 

22//cos QPPSP  , 
P - is an active useful power, Q - reactive, non-useful power (for electromagnetic 
field creation).  

In ideal case power factor depends on the loading character 
22//cos XRRZR  . 

Fig.2.18 
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1cos   must be provided to avoid the work of electrical devices at idle mode. Most 
of the devices consume the active-inductive power ( P  and LQ ). Capacitors C  must 
be connected in parallel to such devices to enhance cos , thus CL QQ  . Reactive 
power, which is non-useful power 0 QQQ CL , so 1cos   is maximum. 

 
Voltage resonance. 

Voltage resonance take place at the circuit with serial connection of L,C 
elements (fig.2.10). CL VV   at resonance mode, so the condition of voltage resonance 
is CL XX  , it means 

)/(1 00 CL   ,   
Thus 12

0 LC  and, resonance frequency  
LC/10  . 

Resonance can be reached by changing C , L  or 0 .  
)/(1 00 CL   , CL /  is called wave resistance. 

At resonance mode   
0 CL XXX , RXRZ  22 , 

0 QQQ CL , PQPS  22 , 0 . 

Total current RVZVI //   is at maximum, what is an indication of the voltage 
resonance. Frequency characteristics of the circuit LXL  )( , )/(1)( CXC   , 

)()()(  CL XXX   are shown at fig.2.19. When 0  , 0X , 0 , reactance 
has inductive character. When 0   0X , 0  reactance has capacitive 
character. 

At fig.2.20 resonance curve )(I  and at fig.2.21 vector diagram for resonance 

0 
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mode are shown. 

Phase-frequency characteristic 
R

CLarctg )/(1)( 



  is shown at fig.2.22 

and the resonance curves of voltages )(RV , )(LV , )(CV  at fig.2.23 accordingly. 
Voltage resonance should be avoided, because the voltage across the elements 

may several times exceed the nominal value. 
 

Current resonance. 
Current resonance takes place at the circuit with parallel connection of L,C 

elements (fig.2.24). CL II   at resonance mode, so the condition of voltage resonance 
for real circuit is CL BB  , that means 

)/(1))(/( 0
2

0
2

0 CLRL   . 
For ideal circuit ( 0R ) the condition is )/(1 00 CL   .   
Thus 12

0 LC , resonance frequency LC/10  .  

The resonance can be reached by changing C , L  or 0 .  
At resonance mode  

0 LС BBB , GBGY  22 , 

0 QQQ CL , PQPS  22 , 0 . 
Total current VGVYI   is at minimum, what is the indication of the current 

resonance. 
Frequency characteristics of the ideal (R=0) circuit )/(1)( LBL   , 

CBC  )( , )()()(  LC BBB   are shown at fig.2.25. Susceptance has an 
inductive character when 0  , 0B , 0 . Susceptance has a capacitive 
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character, when 0  0B , 0 . 
Vector diagram for resonance mode is shown at fig.2.26. Resonance curves 

)(I , VBI LL )( , VBI CC )(  and phase-frequency characteristic )(  are shown 
at fig.2.27 and 2.28. 

Voltage resonance on one hand should be avoided, because the current across 
the elements may several times exceed the nominal current, but on the other hand the 
resonance can be applied for rising power factor and as the working mode of some 
electronic devices. 
 

Part 3. Three-phase circuits 
 Three-phase electro-motive-force circuit system is the set of three sinusoidal 

e.m.f. with the same frequency   and out of 
phase with each other by 3/2  ( 120 ). Phase is 
the part of the circuit with the same current. The 
amplitudes of e.m.f. are marked accordingly:  

CmBmAm EEE ,, , if they are equal, such system is 
called balanced.  

The instantaneous values of e.m.f. 
(fig.3.1) are:  

tEe AmA sin , )120sin(  tEe BmB  , )120sin(  tEe CmC  . 
Phase sequence is the time order in which the e.m.f. pass through their 

respective maximum values (or through zero value). Phase sequence ABC is called 
positive (fig.3.1), the reverse phase sequence ACB be called negative.  

The following requirements are met for three-phase balanced electro-motive 
force system:  

phCBA EEEE  . 
The following expressions are true having disregarded losses at power sources:  

AA VE  ,  BB VE  ,  CC VE  , 
where AV , BV , CV  – are source phase voltages (between the lines and neutral point N 
(fig.3.3). These voltages in complex form are presented as:  

0j
AA eVV  ,  120j

ВВ eVV  , 120j
СC eVV  . 

Linear voltages (between lines, which connect the 
sources and the consumers) (fig.3.4) in complex form are:  

30j
AВBAAВ eVVVV  ,  

90j
ВСCBВС eVVVV   

150j
CAACCA eVVVV  . 

Linear voltage is equal to the difference between 
corresponding phase voltages and lead the phase of the first one for 30 (fig.3.2). 
Vector diagram (fig.3.2) illustrates relationship between phase and linear voltages. 
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Three-phase circuit consists of three-phase electro-motive force system, three-
phase loads and connection wires.  

The most common types of connection the three-phase sources and consumers 
are WYE (Y ) (fig.3.3) and DELTA ( ) (fig.3.7).  

At WYE connection the ends of source phases windings (fig.3.3) are connected 
in common neutral point N , and the beginnings of phases CB,A,  are connected to 
the linear wires. The ends of consumer phase windings (fig.3.3) are connected in 
common neutral point n , and the beginnings of phases c,b,a  are connected to the 
linear wires.  

The source phase voltages are called the voltages between phase and neutral 
points CBA VVV ,, , for consumer cba VVV ,, . The source linear voltages are called the 
voltages between phase points (fig.3.4) CABCAB VVV ,, , for consumer cabcab VVV ,, . The 
directions of these voltages are shown at fig.3.4. The effective values of phase and 
linear voltages are related according to the expression phL VV 3 . 

For WYE connection (fig.3.4) phase currents (flowing through the phase) phI  

( cba I,I,I ), are equal to the linear currents (flowing through the lines connecting the 
source and the consumer) LI  ( CBA I,I,I ), Lph II  . The directions of these currents are 
shown at fig.3.4. Balanced load is one in which the phase impedances are equal in 
magnitude and in phase: 

phcba ZZZZ  . 
In this case:  

Aa VV  ,  Bb VV  ,  Cc VV  . 
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aaA ZVI / ,  bbB ZVI / ,  ccC ZVI / . 
The effective values of the currents are also equal: LphCBA IIIII  . 

If the load is unbalanced ( cba ZZZ  ) the voltage between the neutral points 
of source and consumer appears – nNV  (fig.3.3). This voltage is called the bias 

neutral and can be calculated by using the method of two nodes:  

Cba

cCbBaA
nN YYY

YVYVYVV



 , 

where aaaa VIZY //1  ,  bbbb VIZY //1  ,  cccc VIZY //1  . 
In that case the consumer phase voltages are calculated according to the 

following expressions:  
nNAa VVV  ,  nNBb VVV  ,  nNCc VVV  , 

Phase currents complexes are:  
aaa ZVI / , bbb ZVI / , ccc ZVI / . 

There is also a neutral wire at three-phase four-wires circuits, which connects 
neutral points of source N  and consumer n (fig.3.5). In this case 0nNV .  

The following is true according to the Kirchhoff`s first law for node n :  

NCBA IIII  . 

When the load is balanced ( cba ZZZ  ): 0 CBA III , 0NI , 0nNV .  
The vector diagram of currents for unbalanced load is shown in fig.3.6.  

At DELTA connection the end of one source (consumer) winding is connected 
to the beginning to the second source (consumer) winding (fig.3.7). For this 
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connection the following is true: Lph VV  , LCABCAB VVVV  . 
The phase (linear) complex voltages can be represented:  

0j
ABAB eVV  ,  120j

ВCВC eVV  ,  120j
СAСA eVV  . 

The consumer linear (phase) voltages are equal to the source linear voltages:  
ABab VV  ,   BCbc VV  ,   CAca VV  . 

If the phase load is active ( 0 ), the vectors of 
phase currents cabcab III ,,  have the same directions as the 
vectors of corresponding phase voltages CABCAB VVV ,, . 

If the phase load is an active-inductive one 
( 0 ), the phase current lags behind the corresponding 
phase voltage by an angle of )/( phph RXarctg .  

If the phase load is an active-capacitive one 
( 0 ), the phase current leads the corresponding phase 

voltage by an angle of )/( phph RXarctg . 
The load is balanced when phcabcab ZZZZ   and unbalanced when 

cabcab ZZZ  . 
The following is true for the nodes c,b,a  (fig.3.7) according to the first 

Kirchhoff law: 
0 abcaA III ,   0 bcabB III ,  0 cabcC III , 

Then:  
caabA III  ,  abbcB III  ,  bccaC III  . 

The linear current is equal to the difference between corresponding phase 
currents and lags the first one for 30 (fig3.8). Vector diagram (fig.3.8) illustrates 
relationship between phase and linear currents. 

The effective values of the phase and the linear currents are connected by 
expression: phL II 3 . 

Complex phase currents can be defined according to Ohm’s law: 
ababab ZVI / , bcbcbc ZVI / , cacaca ZVI / . 

For balanced load: CBA III  , cabcab III  .  
Complex total power of three-phase unbalanced circuit is: 

jQPIVIVIVS CCBBAA   .  
Active power of three-phase unbalanced circuit is:  

CBACCCBBBAAA PPPIVIVIVP   coscoscos .  
Reactive power of three-phase unbalanced circuit is:  

CBACCCBBBAAA QQQIVIVIVQ   sinsinsin .  
These formulas can be used for WYE or DELTA connections.  
Active P , reactive Q and total S  powers of the consumer can be calculated 

by using phase or linear voltages for balanced load:  

 

Fig.3.8 

IC

IB 

Ibc 

-Ica 

IA 

Ica 

Iab 

+j 

+1 

-Ibc 

-Iab 



25 
 

LLLphphphphcba IVIVPPPPP  cos3cos33  , 

LLLphphphphcba IVIVQQQQQ  sin3sin33  , 

phphph ZR /cos  ,  phphph ZX /sin  ,. 

phphphcba IVSSSSS 33  ,  22 QPS  . 
The same formulas can be used for WYE and DELTA connection. 
 

Part 4. The non-sinusoidal current circuits.  

Non-sinusoidal voltages or currents are the ones which are changed with the 
time according to periodical non-sinusoidal law. The cause of non-sine currents 
(voltages) is the source of non- sinusoidal voltage or the non-linear element of the 
circuit. 

Such circuits may be represented by the Fourier series as the sum of sinusoidal 
functions in order to get calculated:  

 )sin(...)2sin()sin( 22110 VkmkVmVm tkVtVtVVv   

)sin(
1

0 





k

Vkmk tkVV  , 

where V0 is the steady component; )sin( 111 Vm tVv   is the first (basic) harmonic 
component, (  - the frequency of first harmonic), )sin( Vkmkk tkVv    - k  
harmonic component (called also as harmonic), mkV  - amplitude,   - fundamental 
frequency, k  - frequency of k harmonic, Vk  - initial phase of k  harmonic. The 
harmonics with the frequencies 2, 3,…k times larger than  , are called higher 
harmonics.  
 We can represent the value )sin()sin( kmkVkmk tkAtkV    by the sum of 
two constituents : 

tkCtkBtkA mkmkkmk  cossin)sin(  , 
where kmkmk AB cos ,  kmkmk AC sin , 22

mkmkmk CBA  , )/( mkmkk BCarctg . 
 So, the Fourier series we can write down ( )( tfv  ): 











11

0 cossin)(
k

mk
k

mk tkCtkBAtf  . 

 If the function is symmetrical across the X axis )()(   tftf  then 
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Fourier series have only odd harmonics: 
 ....)5sin()3sin()sin()( 553311  tAtAtAtf mmm  

...5cos5sin3cos3sincossin 553311  tCtBtCtBtCtB mmmmmm   
 If the function is symmetrical across the origin )()( tftf    then Fourier 
series have only sin constituents: 

...3sin2sinsin)( 321  tBtBtBtf mmm   
 If the function is symmetrical across Y axis )()( tftf    then Fourier 
series have only steady component and cos constituents: 

...3cos2coscos)( 3210  tCtCtCAtf mmm   
Fourier series has only steady component and cos constituents: 

...3cos2coscos)( 3210  tCtCtCAtf mmm   
For example, the square shape of voltage (fig.4.1) can be represented in such a 

way (fig.4.2): 

),5sin
5
13sin

3
1(sin4 max tttVv 


  

Non-sinusoidal current )sin(
1

0 





k

Ikmk tkIIi  (i.e. the sum of the 

sinusoidal currents) is present in the circuit with non-sinusoidal voltage 

)sin(
1

0 





k

Vkmk tkVVv   (the sum of the sine voltages). The calculation of the 

circuit is based on the principle of superposition. The steady component of the 
current 0I  can be calculated by using the methods of DC circuits’ calculation and 
harmonic of current ki  by using the methods of AC circuits’ calculation.  

As known reactance of the coil for k-harmonic is equal LLk kXLkX    and 
susceptance kBLkB LLk /)/(1   . Reactance of the coil for DC (as effect of the 
steady voltage component 0V ) is 00)0(  LXL . The susceptance of the capacitor 
for k-harmonic is CCk kBCkB    and reactance is kXCkX CCk /)/(1   . 
Reactance of the capacitor for DC (as effect of the steady voltage component 0V ) is 

 )0/(1)0( CXC , 00 I . The resistance of the circuit doesn’t actually depend on 
the frequency and is the same for every harmonic.  

The non-sinusoidal circuit calculation order is:  
– the source voltage is expressed by Fourier series as an infinite sum of 
harmonic (sinusoidal) components (functions); 
– the circuit for every harmonic component is calculated separately using DC 

and AC circuits’ calculation methods. Also it should be taken into consideration that 
the reactances depend on the frequency;  

– according to the superposition principle, the current instantaneous value is 
equal to the sum of currents instantaneous values of all harmonics, that’s why the 
calculation results are considered at each particular moment. The effective values of 
voltage and current are equal correspondingly:  
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22
1

2
0 ... kVVVV  , 22

1
2
0 ... kIIII  ,  

where kk IV ,  are harmonic voltages and currents effective values. 
The average value of non-sinusoidal function ),( 000 IVA  for the period:  


T

AV dta
T

AA
0

0

1 , 

The effective value of non-sinusoidal function - A (V, I) is the mean-square 
value for the period T :  


T

dta
T

A
0

21 22
0

2 ... k

n

ok
k AAA  


. 

Shape factor is equal to the relation of function effective value to its average 
value: AVsh AAK / . ( 11.1/2  shK  for sinusoidal curve).  

Amplitude factor is equal to the relation of function amplitude value to its 
effective value: ААK ma / . ( 41.12 aК  for sinusoidal curve).  

Distortion factor is equal the relation of first harmonic effective value to the 
function effective value:  

AAKd /1  ( 1dК  for sinusoidal curve). 
Harmonic factor is equal the relation of high harmonics effective values to the 

first harmonic effective value: 1/ AAK gg  , where 





2

222
2 ...

k
kkg AAAA  is the 

mean-square value of high harmonics effective values ( 0gК  for sinusoidal curve).  
Active power of non- sinusoidal current is equal to the sum of harmonics active 

powers: 



n

ok
kk IVP kk PPPPP  010 .. , where 000 IVP   is the power of 

steady voltage component, kkkk IVP cos  is the active power of k  harmonic, 

IkVkk    - phase shift angle between k  harmonic component of voltage and 
current. Reactive power of non- sinusoidal current is equal to the sum of harmonics 
reactive powers: kkkk QIVQ  sin .  

Total power of non- sinusoidal current is: 22 QPS  . 
 

Part 5. Transient processes 
The transient processes occur when devices and circuits change their working 

regime. Transient processes may have negative effect in electrical engineering, but 
they can be useful in electronics.  

The transient processes start at turning on/off the sources, changing the 
configuration of the scheme, circuit parameters, changing the current/voltage 
amplitude, phase, frequency or shape. Still the transient processes are typically 
caused by commutation (turning on/off the circuit).  

The transient process is the process of transition from one energetic state of the 
circuit into another. This process cannot proceed stepwise, because the stock of 
energy can´t change abruptly. That’s because the elements' values upon which the 
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energy storage depends (L,C) don't allow to change current and voltage stepwise 
( Li , Cv ). Two main laws of transient processes come out from this point. 

The first law states that the current through inductance just after the 
commutation )0( Li  is equal to the current through inductance just before the 
commutation )0( Li : )(i)(i)(i LLL 000   . 

The second law states that the voltage at capacity just after the commutation 
)0( Cv  is equal to the voltage at capacity just before the commutation )0( Cv : 

)0()0()0( CCC vvv  .  
Initial conditions (voltage or current values at the commutation moment 0t ) 

are defined by these laws. The steady-state mode before the commutation is at 0t . 
The steady-state mode after the commutation is after the transient process is over. 

The transient process duration depends on the elements parameters. It is 
estimated as 65trt  , where  is the time constant. It is time during which 
voltage or current changes e=2.7 times of its initial value.  

The transient process can be described by linear differential equation, which is 
formed with the help of Kirchhoff’s laws. Commutation laws should be used to solve 
this equation.  

The partial solution of inhomogeneous differential equation is the steady-state 
component SSi  or SSv . The general solution of homogeneous differential equation is 
the transient component Ti  or Tu , which dies out with time. The solution of linear 
differential equation is current (voltage), which is equal to the sum of transient and 
steady-state components SST іiti )(  ( SST vvtv )( ). Therefore, to calculate transient 
process means to find the current or voltage changing rule.  
 Let's analyse the transient process when RL link is connected to DC source 
(fig.5.1). According the differential equation to the Kirchhoff’s second law for after 
commutation steady-state mode is: VRidtLdi / . Its solution is SST іiti )( . The 
partial solution SSі  of inhomogeneous differential equation VRidtLdi SSSS /  is 
equal to the current value when transient process is over RVіSS /  (because 0LX  
for DC). 

Ti  is the general solution of homogeneous differential equation 
0/  TT RidtLdi . The characteristic equation corresponding to this differential one 

is 0RpL  with its root LRp  . The time constant is RLp //1  . Since the 
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characteristic equation has one real root, the transient component is pt
T eAi  . 

Constant of integration can be found from initial conditions: 
RVAiii SST /)0()0()0(  . According to the first commutation law 

0)0()0( ii , so RVA / , tLR
T eRVi )/(/  . 

The solution of differential equation is (fig.5.2): 
)1(/// )/()/( tLRtLR

SST eRVRVeRViii   . 
The voltage on resistive element is (fig.5.3): 

).1()1)(/( )/()/( tLRtLR
R eVeRVRRiv    

The voltage on inductive element is (fig.5.3):  

.)()()1( )/()/()/( tLRtLRtLR
L Vee

L
R

R
VLe

R
V

dt
dL

dt
diLv  






   

Let's analyse the transient process when RL link is disconnected from DC 
source and shortened (fig.5.4). The differential equation according to the Kirchhoff’s 
second law for after commutation steady-state mode is: 0/  RidtLdi . Its solution is 

SST іiti )( . The partial solution SSі  of inhomogeneous differential equation 
0/  SSSS RidtLdi  is equal to the current value when transient process is over 0SSі  

 Ti is the general solution of homogeneous differential equation 
0/  TT RidtLdi . The characteristic equation corresponding to this differential one 

is 0RpL  with its root LRp  . The time constant is RLp //1  . Since the 
characteristic equation has one real root, the transient component is pt

T eAi  . 
Constant of integration can be found from initial conditions: Aiii SST  )0()0()0( . 
According to the first commutation law RVii /)0()0(  , so RVA / , 

tLR
T eRVi )/(/  . 

 The solution of differential equation is (fig.5.6): 
tLR

T eRVii )/(/  . 
The voltage on resistive element is (fig.5.5): 

tLRtLR
R VeeRVRRiv )/()/()/(   . 

The voltage on inductive element is (fig.5.5): 
tLRtLRtLR

L Vee
L
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R
VLe

R
V

dt
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dt
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



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Let's analyse the transient process when RC link is connected to DC source 
(fig.5.7). The differential equation according to the Kirchhoff’s second law for after 
commutation steady-state mode is VvRi C  , )/( dtdvCi C , then 

VvdtdvRC CC )/( . Its solution is CSSCTC uvv  . The partial solution CSSv  of 
inhomogeneous differential equation VvdtdvRC CC )/(  equals to the voltage 
value on C when the transient process is over. The circuit current equals zero in this 
case, because the input voltage is applied directly to capacitance VvCSS  . 

CTv  is the general solution of homogeneous differential equation 
0)/(  CC vdtdvRC . The characteristic equation corresponding to this differential 

one is 01RCp  with its root )/(1 RCp  . The time constant is RCp /1 . 
Since the characteristic equation has one real root, the transient component is 

pt
CT eAv  . Constant of integration can be found from initial conditions: 

VAvvv CSSCTC  )0()0()0( . According to the first commutation law 
0)0()0(  CC vv , so VA  , RCt

CT Vev / . 
 The solution of differential equation is (fig.5.8): 

)1()1()( /// tRCtRCt
C eVeVVeVtv   . 

The current is (fig.5.9): 

  RCtRCtRCt
C eRVeRCCVVeV

dt
dCdtdvCi /// )/())(/()/(   . 

The voltage on resistive element is (fig.5.9): 
.))(/( // RCtRCt

R VeeRVRRiv    
Let's analyse the transient process when RC link is disconnected from DC 

source and shortened (fig.5.10). The differential equation according to the 
Kirchhoff’s second law for after commutation steady-state mode is: 

0)/(  CC vdtdvRC . Its solution is CSSCTC vvv  . The partial solution CSSv equals 
zero, because this equation is homogeneous.  

CTv  is the general solution of homogeneous differential equation 
0)/(  CC vdtdvRC . The characteristic equation corresponding to this differential 

one is 01RCp  with its root )/(1 RCp  . The time constant is RCp /1 . 
Since the characteristic equation has one real root, the transient component is 

pt
CT eAv  . Constant of integration can be found from initial conditions: 
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Avvv CSSCTC  )0()0()0( . According to the first commutation law 
Vvv CC  )0()0(  (the circuit current is equal to zero in this case, because the input 

voltage is applied directly to the capacitance), RCt
CT Vev / . 

The solution of differential equation is (fig.5.11): 
RCt

CT Vetvtv /)()(  . 
The current is (fig.5.12): 

  RCtRCtRCt
C eRVeRCCVVe

dt
dCdtdvCi /// )/())(/()/(   . 

The voltage on resistive element is (fig.5.12): 
.))(/( // RCtRCt

R VeeRVRRiv    

  
 
 

Attachment 

№ Greek letters  
1 Α α alfa 
2 Β β beta 
3 Γ γ gamma 
4 Δ δ delta 
5 Ε ε epsilon 
6 Ζ ζ dzeta 
7 Η η eta 
8 Θ θ, teta 
9 Ι ι jota 
10 Κ κ kapa 
11 Λ λ lambda 
12 Μ μ miu 
13 Ν ν niu 
14 Ξ ξ ksi 
15 Ο ο micron 
16 Π π pi 
17 Ρ ρ ro 
18 Σ σ,ς sigma 
19 Τ τ tau 
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20 Υ υ ipsilon 
21 Φ φ fi 
22 Χ χ hi 
23 Ψ ψ psi 
24 Ω ω omega 
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Physical values designation and units  

Value Designati
on Dimension 

Resistance R, Ω Om 
Reactance X, Ω Om 
Impedance Z, Ω Om 
Conductance G, Sm Simens 
Susceptance В, Sm Simens 
Admittance Y, Sm Simens 
Capacity С, F Farada 
Inductance L, H Henry 
Inductance mutual М, H Henry 
Electromotive force Е, V Volt 
Potential φ, V  Volt 
Voltage V, V Volt 
Current I, А Amper 
Active power Р, W Watt 
Reactive power Q, VAr Volt-Amper reactive  
Total power S, VA Volt-Amper 
Magnetomotive force F, А Amper 
Magnetic induction В, T Tesla 
Magnetic field tension Н, А/m Amper per meter  
Magnetic stream Ф, Wb Weber 
Linkage , Wb Weber 
Magnetic permeability (absolute)  а,, Гн/м Henry per meter  
Magnetic permeability (relative)   
Magnetic constant 0, Гн/м 4-7 

Frequency f, Hz Herz 
Angular frequency , rad/s radian per second  
Length 1, m meter 
Hight, depth h, m meter 
Layer , d, m meter 
Arial S, m2 square meter 
Magnetic resistance Rm  
Number of turns w  
Force F, N Newton 
Work (energy) W, J  Joule 
Charge Q, C Coulomb 
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