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Part 1. Direct current circuits.

Sources and consumers.

Electrical circuit is the multitude of devices designed for transforming,
distribution and conversion of electrical energy, while the processes which are taking
places in these devices can be described by the concepts of current, voltage and
electromotive force (e.m.f.).

The simplest electrical circuit contains three main elements: electrical source
(active element), consumer (passive element) and the wires. Besides, the circuit can
have also additional elements: measuring devices, switches, fuses, contactors, etc.

Electrical power is transformed into heating,

,_|R mechanical energy, etc. at the consumers. The measure of

a © — °P this transformation is resistance R (fig.1.1). You can see
s >7 the directions of the electrical values at fig.1.1.

Fig.1.1 Ohm’s law for this element is as follow V' =RI or

I=GV, where R - 1s resistance, G=1/R - is
conductivity. The power on resistive elementis P = RI* = GV *.

Heating, mechanical energy, etc. is transformed into electrical power at the
electrical sources. The measure of this transformation is electromotive force (e.m.f.)
E (fig.1.2). You can see the directions of the electrical values at fig.1.2.

The ideal electrical source (without losses) is characterized only by E . The
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power on the electrical source is P = ET .
The real electrical source has losses and is characterized by E and R (internal

resistance), which reflects the losses. The simplest electrical circuit is shown at
fig.1.3. For this circuit:

I=E/(R,+R), then V=E-R]I, V=RI, RI+RI=E.

We can represent real electrical circuit by two substitution schemes: serial
(fig.1.4) and parallel (fig.1.6). The external volt-ampere characteristic (fig.1.5) V(l) is
the main characteristic of the source. Its analytical expression is V=E—-R/[. At
fig.1.5 solid line indicates the characteristic of real source, dashed line - the
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characteristic of ideal source. Boundary points of this characteristic correspond to the
source boundary modes — open circuit (idle) mode (without loading), when 7=0,

V=E=V,. and short circuit mode, when ¥ =0, /=1 The external characteristic

of ideal source V' = E is represented by dashed line at fig.1.5.
Parallel substitution scheme (fig.1.6) consists of ideal current source J and

internal conductivity G, which characterizes the losses. The external characteristic

of real source (fig.1.7) is described by the equation /=J—G,U. The external

characteristic of ideal source 7 = J is represented by dashed line at fig.1.7.
Serial and parallel schemes are equivalent, it means you can transform one into
another using such formulas:
1

o
J Go i/V
o

Fig.1.6 Fig.1.7
E=GJ, R =1/G,, J=E/R,, G,=1/R,.
The efficiency factor of the source characterizes the efficiency of energy

transforming from the source to consumer:
P ViV

R

= =—=—, V: E,
=P "E " E !

where £, - is a consumer power, . - is a source power.

We can also write down the efficiency factor using the elements parameters:
B R R 1
T=p +AP RP+RI’ R+R 1+R/R’
where AP - are power losses.
There are three main electrical circuit modes: nominal, operating and
boundary.

The nominal mode is the best mode for the working device, the device nominal

parameters are shown in its technical passport (£ o Vvous Pxon)-

Operating mode is a mode, where the deviation from the nominal parameters is
not big.

Boundary modes are: open circuit or idle (non-working) and a short circuit
(emergency) modes. For the open circuit (0.c.) mode R=oo, then using the scheme at
fig.1.3, we can write down:

j=—Lf __E _§ V=E-RI=E, ;-1
Ry,+R R, +

For short circuit mode (s.c.) R=0, then using the scheme at fig.1.3, we can

write down:

V=RI,V=0,[=E/R=I,,n=0.

The methods of open circuit and short circuit experiments can be used for



defining the parameters of the source (E,R): V,.=E, R, =E/I,.. The experiment

of s.c. mode is provided at low voltage.

Electrical source operating modes:

- voltage generator, when the voltage at the clamps of the source practically
does not depend on the current, thus V' ~ E, and this mode is close to o.c. In this

mode R,/ <<RI (fig.1.4), that’s why the condition of it is R, <<R and n ~ 1. This
is the main operating mode of electrical engineering devices.

- current generator, when the current at the clamps of the source practically
does not depend on the voltage, thus 7 ~ J, and this mode is close to to s.c. In this

mode G,U <<GU (fig.1.6), that’s why the condition of it is G, <<G (R, >>R).
-balanced mode — the maximum power P =R’ is transferred from the source

to the consumer at this mode? / =E/(R,+R), and P=RE’ /(R +R)’ at this mode.
The condition of this mode comes out from the expression dP/dR =0, that
means R, =R and 5 = 0.5 . This mode is used in electronics.

Connections of elements
There are two types of elements connections in electrical circuits, they are
simple and complex. The major difference between those two types is that we know
the directions of currents before we calculate the circuit with simple connection and
don’t know the directions of currents at the circuits with complex connections, that’s
why we choose them arbitrarily.
There are three types of simple connection: serial, parallel and mixed.

When the elements are connected in serial (fig.1.8), the same current [ is

flowing through them. The total resistance of serial connection is R=2'R .

The input voltage (fig.1.8)
V=V +..+V, =2V, =2R I.

Vv, — 1
—

o : —, The power of this circuit
| B - P=VI=3R I[=3R I’ =3P,
V | =
| where P =VI — the power of the source, 2P, — the
— v

1l power of the consumers.

;, 13 When the elements are connected in parallel

ig.1.

(fig.1.9), the same voltage ¥ is applied to them.

The total conductivity of parallel connectionis G=2'G, .
The total current of the circuit (fig.1.9):
I=1+.+1, =2 =2GJV. o——¢

The power of this circuit: — i .
P=VI=3GVV=3G,V> =3P, o [Je [Jon
For two elements connected in parallel: =~ o——*-—- o

1 1 R +R Fig.1.9

b

G=G,+G,=—+—
R R, RR
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1 RR,
"G R +R,
The circuit with two elements connected in serial (fig.1.10) can be used as
voltage divider.
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Fig.1.10 Fig.1.11
V R R
I = , V.=RI=V ‘ , V,=R,I=V 2,
R +R, R + R, R +R,

The circuit with two parallel connected elements (fig.1.11) can be used as
current divider.

1

RR R R
%2 =V/R =I—2—,] =V/R =1

R, +R, R, +R, R +R,

V=1

We can replace the mixed (serial-parallel) connection (fig.1.12) by one
equivalent (total) resistance R :

Ry
R] — R] R23 R
o—[ |} R, T° o— 1+ t+to o— 1o
.
— Fig.1.12

R, =RR,/(R+R,), R=R +R,;,.
We can also replace the mixed (parallel-serial) connection (fig.1.13) by one
equivalent (total) resistance R :

— R — R R
LT —
R2 R3 —O o— R23 *—O O—l:l—o
T

Fig.1.13

R,=R,+R,, R:RIRZ3/(RI +Rz3)

The complex connections are DELTA (fig.1.14) and WYE (fig.1.15).

Rbc

Fig.1.14 Fig.1.15

We can know real directions of the currents only after calculation. We can also
transform DELTA into WYE using such expressions:



— RabRca R — RabRbc R — RcaRbc .
“ R,+R,+R " R,+R,+R, “ R,+R, +R,

We use the simplification method to calculate the circuits with one source. To
use this method we must:

» simplify the circuit to one equivalent resistance;

» calculate the total current by using Ohm’s law;

» revert back the circuit and calculate the branch currents and voltages across
the elements;

» verify the calculation by using the power balance equation.

The calculation of electrical circuits with several sources.
We can use several methods, which are based on Kirchhoff’s laws.
Kirchhoff’s first law states that the sum of the currents entering the node is

equal to the sum of the currents leaving the node 2./, =O0(the algebraic sum of the

currents in the node is equal to zero).
Kirchhoff’s second law states that the algebraic sum of all voltages across
passive elements around a loop is equal the algebraic sum of electro-motive forces

around the same loop X R [ =XFE .

Branch of the circuit is the part of the circuit with the same current, it may be
consisted from one or several elements connected in serial.

R] 1 R3 13 2 RS
— o — o —
I— L = L
E] e 612 e e E5

I | I | | |

<T> /I\Ll \4’ R, 1\ L \# Ry ’I‘ L; #/ T)
L——_1 L——_1 L———1 [

Q I] 6[4 T [5

3 Fig.1.16

Node is the place where three or more branches are connected.
Loop is any closed path around the circuit.

Kirchhoff’s laws method.
Let's suppose the circuit has p branches and ¢ nodes. There’ll be p
unknown currents. We must solve the system of p equations to find them.

First, you have to choose the directions of branch currents arbitrarily and mark
them at the scheme, then mark the nodes and the loops. After this, it is necessary to

write down ¢ —1 nodes equations according to Kirchhoff’s first law and p—q—1
loop equations according to the Kirchhoff’s second law.

After the equations system is solved, some currents may have sign “-%, it
means that the real directions of that current is opposite to the one we have chosen at
the beginning.

Let's write down the equations system for the scheme at fig.1.16. There are 5
branches P =35 and 3 nodes ¢=3 here.

The equations according to Kirchhoff’s first law (¢ —1=2) for the nodes / and
7



“1“1 =1, +1,
“2“I+1, =1,
The equations according to Kirchhoff’s second law ( p —¢ —1=3) for the loops

(1)

L,L, L, (we choose the directions along the loops clockwise , if the directions of our

bypass and the voltage or e.m.f. are the same, we denominate it with “+*, if opposite
with “-%).
“L“+RI+R I, =+E,

“L,“-R,[,+R,I,+R,I,=0 (2)
“L,“-R,I,-R. I, =—E,
So, the equation system according this method will be:
(+1,-1,-1,=0
+1,-1,+1,=0
< + Rl Il + R2 12 = +El (3)
-RI,+R I +R1,=0
_—R,I,-R, [, =-E,
After solving this system we get the unknown branch currents.
We apply the equation of power balance to verify our calculations: the total

power of the sources should be equal to the total power of the consumers 2P, =2F, .
The total power of the sources 2 P.=XE I =FEI +E]I.. The total power of the
consumers » 5 =) R I!=RI+R L+RI+R I, +R I .

Loop currents method.
This method has less equations than previous and is based on the Kirchhoff’s

R 1 Ry I32 Rs
* L =" ° I3
E, ____ Y| | Es —

| | | | i |

(T) ’}‘Iu\#/ Rz’I‘ILz\# R41‘1L3$//T> [}Il \Iz 514 1}15
L ——1 L —1 L—— 1

Mo V|1 T\ Is

3 Fig.1.17 Fig.1.18

second law. Let’s suppose that we have three loop currents /,,,/,,,1,, at circuit
(fig.1.17), the directions of these currents we choose arbitrarily. Then we can write
down branch current by using loop currents: [, =1,,, L, =1, -1, I,=1,,

]5 :_]L37 ]4 :]LZ _]L3'
We have to substitute these expressions in the equations of Kirchhoff’s second

law:



“L“+RI +R I =+E,
“L“-~R,I,+R 1, +R,]I,=0
“L,“-R,I,—R.I,=-E.
We get the following:
(R+R)I, —R]I,=E
—RI, +(R,+R +R)I[,,-RI,,=0 (4
_R41L2 +(R4 +R5)1L3 :_Es
Let’s mark:
R,=R+R,, R,=R, +R, +R,, R; =R, + R, - it’ll be individual resistances of the
loops, which are equal to the sum of all the resistances of the loop;
R,=R,=R,, R;=R,,=0, R.=R,=R, - mutual resistances of the loops, the
resistances of the branches which are mutual for the respective loops;
E, =E, E =0, E =-E, - loops em.f, is equal to the algebraic sum of the
electromotive forces of the loops.
Using these markings, system (4) looks like (5), that can be used for any circuit

with three independent loops:
+R, I, —R,I,,—R,I,,=E,

117 L1 127 L2 137 L3

~R I, +R,I, -R1, =E,. (5

217 L1 227 L2 237 L3

-R I, —R,I,, +R,I =FE,

317 L1 327 L2 337 L3

Nodal potential method

This method has less equations than previous one and is based on Kirchhoff’s
first law. Let’s analyze the circuit on fig.1.19. There are two independent nodes @,b.
Try to suppose that the potential of the basic (dependent) node is equal to zero, so the
potentials of other nodes are marked at the scheme as @,,9, (fig.1.19).

We can also write down the branch currents using node potentials:

R, a Ry I b Rs
II || . |_|_> | I |
El 12 % Qa ES
® =[N\ /= ©
IP I c 614 Q Is
L Fig.1.19
— E -
(Da_El_Rlll’ [1:( 1R¢a):(E1_¢a)G1’
1
(Da:R2]29 [zzqoa :qoan) (Db:R4]47 [4:&:€0bG4’
R, R,
¢a_(0b:R3]3»13:(%1;%):(%—%)(;37
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E. —
¢, =E, — R, I :%:(ES_%)GS,
5

Let’s substitute these expressions into the equations for the nodes @,0

+1, -1, -1,=0
+1,—1,+1,=0"
we get
{(Gl +G,+ Gy )p, -G, 9, =G, E, - (6)
-G, +(G;+ G, +G; )p, =G5 Es
Let’s mark:

G,=G +G,+G;, G, =G, +G,+G; - the individual conductivities of the
nodes, it’s the sum of the branch conductivities which coming in the node;

G, =G, =G; - the mutual conductivities of the nodes, the conductivity of the
branch, which connects respective nodes;

J,=GE, J =GE, - the algebraic sum of the currents of current sources,

which are flowing in the respective nodes. If the current J of the source flows in the
node, we mark it by the sign “+*, when it flows out — with sign “-*.
Using these markings, system (6) looks like (7), that can be used for any circuit

with two independent nodes:
{Gn(Pa -G, =, 7
-G, +G6ro,=J,

Two nodes method.

This method is used for calculating the circuits with only two nodes and
several parallel branches. The example of such circuit is on fig.1.20. This method is
also based on the Kirchhoff’s first law and is partly the method of nodal potentials.
First of all, we calculate the inter-node voltage

V=%G E /ZG,, where G,- conductivity of n e
branch, E, - e.m.f.of n branch. For the circuit on [ £ £
fig.1.20 it’ll be (D R; lVab (D
v, :M. Q I I3 H IP 14
G +G,+G, —
Then we calculate the branch currents a  Figl20
using such expressions:
I/ab_R3]39[3_V =V,G,»
V,=E~RI, 1 -£=V)_p _y g,
Rl
V,=E —R I, = ) R V) _ =(E )G

10



The superposition method.
We can use this method when the e.m.f. of one source is changed. The method
based on the superposition principle, means that every e.m.f. acts in the circuit
independently. So, the calculation of one circuit (fig.1.20) with two sources, for

example, can be reduced to the calculation of two circuits with one source (fig.1.21,
1.22).

According to this method, we must calculate two partial circuits with partial
currents. We have only e.m.f. £ in the first partial circuit (fig.1.21).

. o R.R
The total resistance of this circuit: R'= R +——=—.
R, + R,

. ! ! [ [ R3 ! ! R2

The partial branches currents: [ =E /R I} =1, , =1 :
+R, R, +R,
R Rs R, R,
| S | S| I ¢ I
E] E2
Al v 15 vl 1% R bl 7 Al 7
Fig.1.21 Fig.1.22

We have only e.m.f. £ in the second partial circuit (fig.1.22).

The total resistance of this circuit: R" =R, +M.
R +R,

R3 Rl

R’ R+R

Then we have the real branch currents as an algebraic sum of the respective

partial currents (fig.1.20):
I,=1-1" L=0-1, I,=0+1.

"n__gn

The partial branches currents: [, =E, /R’ I=1]

Equivalent generator method.

The method is used when it is necessary to calculate the current of only one
branch of the circuit (for example it is varying resistor or non-linear element in this

branch). We select the branch with unknown current (e.g. /,) from the circuit on

fig.1.20 and the rest of the circuit is replaced by the equivalent generator (fig.1.23)
with parameters E, - equivalent e.m.f., which is equal to the open circuit voltage on

Re \4
o R R
O | — ° 1
a 6 I  — LI
3 El a E2

(1) Euwr

Fig.1.23
11



the clamps of an open branch ab and R — equivalent resistance, which is equal to the

input resistance of the circuit in respect to the open branch ab. The problem is to
calculate the parameters of equivalent generator £, and R, ,. For the circuit at
RIR3
R +R,
El _Ez
R+R,’

1 3

fig.1.20 R,, = . Then we can calculate E,  using fig.1.24 V, . =E, =E —R]I,

e

where [ =

According to the fig.1.23 we calculate unknown current 7, =E_ /(R,, +R,).

eqv

Direct currents non-linear circuits.

Non-linear circuits consist of one or more 4
non-linear elements. We call an element non-linear
when its resistance is not constant and depends on
voltage, current, temperature, light, etc. The volt-
ampere characteristic (VAC) v (7) is the main / AV
characteristic of non-linear element and it’s non- Vo T w.p. < /
linear (fig.1.25).

There are non-controlled and controlled a 1
non-linear elements. Non-controlled elements have I,
two clamps (lamps, diods), controlled elements
have three or more clamps (transistors, thyristors).
VAC of non-linear elements may be symmetrical or non-symmetrical. If the
resistance of the element doesn’t depend on the direction of the current and the
polarity of voltage then the characteristic is symmetrical. We can present VAC by
graphs, tables or formulas v (7).

Non-linear circuits can be calculated by analytical or graph methods. If we use
graph method we define the voltage and current of the circuit using VACs of the
elements. We can use Ohm’s and Kirchhoff’s laws as well. Analytical methods (two
nodes method and equivalent generator method) can be used when the VAC is
presented by a formula.

Non-linear element is characterized by static and dynamic resistance. We can
calculate them for every point of VAC (at fig.1.25 for work point — w.p.):

R.=V,/1,, R=AV/AN=dV/dl=tga,
o — the angle between axe X and tangent to working point (w.p.). R;>0, R >0
when VAC rise and R, <0 when VAC drops.

Fig.1.25.

Part 2. Alternating current (AC)

Instantaneous value of AC is a value at every time moment, so it depends on
the time: i(t)=1 sin(@t+y,). Instantaneous value of alternating voltage is

vit)=V sint+y,) (fig.2.1).

12



AC is characterized by such
i v parameters: I - amplitude, maximum value

during the period, period 7', cyclic frequency
Iy Vin f=1/T (quantity of periods per second)

AT (Hz), angular frequency @W=27f (rad/s),
// ! \V\U phase [=(a¥+y, ), initial phase Y, (phase

0 shift from zero).
Fig.2.1 Phase shift angle is: @=y, -y,
(fig.2.1).
Average current value per half of period is: L, >0
~— =
P [1,sinwrdt, 1y =21,/7=063TI, N I =0
T
0 . 7
Effectiv e value of AC i(f) (RMS — root-mean-square) .
is equal to such a value of DC /, which generates the Fig.2.2
same amount of energy per period T =27, as AC i(?). '
Amount of energy per period of AC: / 1, @D
0. ijzdt—Rl T. ijzdt s
Wt I.e™V!
Amount of energy per half a period of DC:Q = RI’T . Vi 1
Fig.2.3

0.=0,s0 Q. = [Ri*dt = RI’T and RMS value will be
0

1 T
equal: /= f—J.Rizdt.
Ty

Q. =RET=Q =RIT, thus AC effective value is 1 =1, /2 =0.7071 .

AC can be represented by the time diagram (fig.2.1), vector (fig.2.2) and
complex number.

When AC i=1,sin@t+y,) is represented by vector, the length of this vector is

proportional to the amplitude / , and angle between this vector and axis X is

mo
B=wt+y,. The positive rotation direction will be counterclockwise. In that case, the

vectors of current and voltage will be rotating with the same angular frequency @
counterclockwise. It is convenient to fix them at the time moment 7 =0 (fig.2.2), in

that case the angle 8 =/, (initial phase).

Vector diagram consists of several vectors of currents and voltages, which
represent real sinusoidal currents and voltages starting from the same point. It’s better
to build a vector diagram for the effective values of the currents and voltages

I=11 V2, V= V2. One of the vectors is chosen as a basic one, it is the vector of
current when the connection is in serial one and the vector of voltage when the

13



connection is in parallel.

The AC ~can also be designated by the complex number
i(t)=1, sin(wt+y,)+1, """ =1 e’e/” =] " (it’s an exponential form of complex
number). AC on the complex surface is shown on fig.2.3, where “+1” is a real axis
and “;” is an imaginary axis. I, =1€" is then called an amplitude complex,
1=,/ J?)e”’i is accordingly an effective complex that corresponds to the

instantaneous current (at the moment ¢ = 0) and doesn’t depend on the time (fig.2.3).
Amplitude complex doesn’t contain the frequency but it is not so important because
circuit’s voltage and current have the same frequency.

Complex numbers
Complex number ¢ has two presentation forms: j

19

algebraic ¢=a+jb (where G is a real part and bis an

imaginary part) and exponential c=c€” (where ¢ is a module » | ¢
and @ is an argument) (fig.2.3a). One form can be converted

1%

into another by using the following expressions: c=+a’ +b", 0 7
. a

a =arctg (b/a), A=CCOSQA, b=csin a, j 1s a symbol for the

imaginary part (also known as rotating operator — see below Fig.2.3a

why). Thus ¢=ce’” =a+ jb. It’s more convenient to use the algebraic form when
adding complex numbers (a, + jb,)+(a, + jb,) =(a,+a,)+ j(b, +b,)=a+ jb, and
exponential form for multiplication and division of the complex numbers:
c e ¢

P —Le/' " =ce The number
c,e c,

Joy Jjo

b

.C ejaz zcl .02 ej(“]‘*‘“z) —

c e’ -c

1 ce

¢ =a—- jb=ce’" is called a complex conjugate to number ¢ =a+ jb=ce’.

Consumers at AC circuit
Expressions for instantaneous current and voltage are correspondingly:

i=1, sin(@¥ +y,), v=V, sin(ax+y;).
The voltage for the resistive element (fig.2.4) (active resistance) is

i R VI VZVInSiII(a)t-I-l//v):RiZRImSin(a)t—i-l//l.)
’ —, Fig.2.5 according to Ohm's law, where V =RI
Fig.2.4 V=RI, phase expression ¥,=¥ and phase shift

angle makes @=y, -y =0. Resistance of this element is R (Q) and conductance is
thus G=1/R (Sm). Vector diagram for this element is shown on fig.2.5. Active power
of resistive element is accordingly P=RI°=GV* (W).

Inductance L (H) is correspondingly the main parameter for the ideal inductive
element (fig.2.6). The differential form of Ohm's law is thus applied accordingly:
di d
v, =V sin(wt + =L—+=L—1 sin(ot+y,)=
L m ( WV) dt dt m ( Wz )

14



=wlLl cos@+y,)=wlLl si@t+y, +7/2),
where V =awll , V=X, reactance X, =l (Q),

susceptance B, =1/l (Sm), phase expression ; 4
1
w,=w,+r/2,  phase  shift angle  makes o—>—"""— It
% V
=y -y =r/2 i
o=y, —VY, , it means voltage leads current. In Fig2.6 Fig2.7

case of DC: w =0, X, =0, B, =0, Vector diagram
for this element is shown on fig.2.7. Reactive power for : element makes
Q,=X,I’=B,V* (VAr).

Capacitance C is the main parameter for the ideal capacitive element (fig.2.8).
Integral form of Ohm's law is applied in this case:

1 1 1
v, =V sin(wt+y,)=—[idt==[I sin(wt+y )=—-—1 cos(wt+y,)=
C m ( W) CI C m ( Wz) a)C m ( Wz)

1 1 :
=———1 cos(wt+y,)=——1 sm(ot+y, —n/2),
wC wC

where sz%lm, V=X., reactance X, =1/(wC) (Q), susceptance

(0]

B.=aC (Sm) , phase expression ¥, =y, —7m/2, phase shift angle makes

@=y, —w,=—m/2, it means voltage lags current. In case of DC :

Fig.2.9

o=0, X.=0, B.=0. Vector diagram for this element is shown

on fig.2.9. Reactive power for this element makes thus Q. = X.I°=B.V> (VAr).

The complex designation for current, voltage, derivative and integral functions
are accordingly:

iv1=1/N2=Ie",v=V =V /2=Ve™,
dldt=jo, a1/ jo)=-j/o .
Complex form of Ohm's law equation for R-element is thus:
v=Ri=+ K:R_[’ Vejw ZR[ej% ,
R=Ve'"/Ie" =V /e’ =Re’’,p=0.
Complex form of Ohm law equation for L-element is accordingly:
v=_Ldi/dt+ V=jolLl, Ve = jolLle’,
complex reactance is
JjoL=Ve" [T’ =V /e’ ™ =X, e, p=90,
complex susceptance is B,e’"=—j/wl. Multiplication by , means
counterclockwise rotation for ¢ =90". That’s why ; is called a rotation operator.
Complex form of Ohm's law equation for C-element is accordingly:

v=[idt/C + V==jl/aO)L, Ve =—jl/aC)le”,

complex reactance is
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—j@C)=Ve™ [Te™ =V De’ ™ = X&', p=-90

complex susceptance is B.e '’ = jwC. Multiplication by - ; means clockwise

b

rotation for ¢=-90".

Serial connection of consumers at AC circuit
Electrical status equations for the circuit (fig.2.10) for voltage instantaneous
values and voltage vectors are accordingly:

R Ve +V, +V. =V, Ve+Vi+Ve=V.
—~ |7 Vector diagram is shown on fig 2.11. The calculated
V i VVR v triangles for voltages, resistances and powers (fig.2.12) are
¢t i obtained from this diagram. Out of those triangles:
C v=Jyrivw, v, e=arcdlV, VIV,
Fig.2.10 Ve=Vcosp=V,, V,-V.=Vsinp=V,
v, -these are active and reactive constituents of the applied
' voltage ¥ . Therefore circuit impedance makes:
LA ve Z=[R+(X,-X.7, p=arcig(X,-X,)/R),
\(0 V] R:Zcosgo,XZXL—XCZZSin(D-

these are resistance and reactance of the circuit.
Fig.2.11 Total power makes thus:

S=P+(,-0.) (VA), p=arctgQ, -0,)/ P,

5 AT SR
e o ] &
V
Fig.2.12
P =S8cos¢o=VIcos ¢, QZQL _Qc =Ssing0=V]sing0

- these are active and reactive powers of the circuit.
Circuit complex form electrical status equation is:

RI+ joLI— (@O =V .
Complex impedance makes thus: Z =R+ jal —j/(wC) =R+ j(X, - X_).

Expression for Ohm's law is accordingly:

Ve V. i A _
Z=Z/[=1 ~ =7€”/V " =Ze" =Zcosp—jZsinpg=R+ jX .
e I

Parallel connection of consumers at AC circuit
Circuit electrical status equations (fig.2.13) for current instantaneous values
and current vectors are accordingly:

i, +i.=1, [r+Ic+1.=1.
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Vector diagram is shown on fig.2.14. The calculated triangles of currents and
conductivities are obtained from this diagram (fig.2.15). From those triangles we get
° ? subsequently:

1 1 1 1

! ‘ * I:\/I; +(1C _IL)2 ’ gozarCtg(]C _]L)/]R))
I, =Icosp=1 [.—1 =Isinp=1 - these are active
and reactive constituents of the current.

Fig.2.113 Circuit admittance makes:
]F l], Y:\/G2+(BC—BL)2, p=arctgB.—B,)/G,
< G=Ycosgp, B=B.—B, =Ysing
¢ L y - these are conductance and susceptance of the circuit.
Fig.2.14 Electrical status equation for the circuit in complex

form is accordingly: GV + joCV —j/(wl)V =1.
Complex admittance makes: ¥ =G+ joC—j/(wl)=G+ j(B.—-B,).

Expression for Ohm's law is
: : / § (G BT
~ —_ —_ _ JWi=vyy) __
® ! ' thus: Y=1/V=——=—¢ =
5 1= R 2 4
I G Ye’* =Y cosp— jYsing=G+ jB.
Fig.2.15 v v /

Total complex power makes accordingly:
EZZZ* — Ve . Je i = Ve V) — Se it —
=Scosp+ jSsinp=P+ jQ,
where real part of complex number P = Scos ¢ — 1S an active power, imaginary part of
complex number 9 = Ssin ¢ — 1S a reactive power.

To check the calculation of the circuit you may use power balance equations:
the active power of the source must be equal to the active powers of the consumers:

Pps :Z})cons’
P, =Vicosp, )P, =RI’+RI +..=)R]I,

cons n

the reactive power of the source must be equal to the reactive powers of the

consumers: O, =>"0. .
Q, =Vlsing, 2.0, =X+ X[ +.=3 XTI

where I — is an effective value of the branch 7-th current, R — resistance of the n-th

branch, X, =X, — X, —reactance of the 7-th branch.
The transformation formulas must be used to calculate the alternating current

B
Y R A
— YY1 4 g o G +—o b
| I
Fig.2.16

circuits. The admittance is inversely to impedance:
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1 1 R-jX R .
X == = 2 2 = 2 2 o J 2 2
Z R+jX R +X° R +X R +X
So, the following formulas must be used to transform serial connection into parallel
(fig.2.16):

-G-/B.

R X

T®exy Py
It is obtained from the -calculation triangles of resistances (Fig.2.17a) and
conductivities (Fig.2.17b):

Z >|< Y g
@ E ¢ | I
R G
Fig.2.17a Fig.2.17b
cos _R_G sin _X_5
Ty T Ty
Thus the following formulas must be used to transform parallel connection into serial
(fig.2.18):
g=92_6_ G y BZ_B_ B
Y Y G'+B Y Y G*+B’
8
! [E—
o——¢ G t——>a o 1| [ 1 o b
1
Fig.2.18

The real coil can be represented by serial and parallel substitution schemes
(fig.2.16). The elements of this scheme: L - is an ideal inductance
X =wL, B=1/(wl), R(G) — represents power losses. The coil quality can be

estimated by ¢ - factor:
d=0Q0/P=X,/R=tgop.

The real capacitor can be represented by serial and parallel substitution
schemes (fig.2.18). The elements of this scheme: C - is an ideal capacitance
B=wC,X =1/(wC) R(G)—represents power losses.

The capacitor quality can be estimated by loss tangent:
tg0=P/Q=R/X_.,0=90 —0.
Power factor determines the efficiency of using electrical energy:
cosgD:P/S:P/m,
P - is an active useful power, ¢ - reactive, non-useful power (for electromagnetic

field creation).
In ideal case power factor depends on the loading character

cosp=R/Z=R/VR*+X".
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cos ¢ =1 must be provided to avoid the work of electrical devices at idle mode. Most
of the devices consume the active-inductive power (P and (). Capacitors C must
be connected in parallel to such devices to enhance cosg, thus O, =(Q... Reactive

power, which is non-useful power O, —0. =0=0, 50 cos ¢ =1 is maximum.

Voltage resonance.
Voltage resonance take place at the circuit with serial connection of L,C

elements (fig.2.10). ¥, =V, at resonance mode, so the condition of voltage resonance
is X, =X, it means
aL=1/@0),
Thus a)(f LC =1 and, resonance frequency
w, =1/ JLC .
Resonance can be reached by changing C, L or ).

p=w,L=1/(0,C), p=+L/C is called wave resistance.
At resonance mode

X=X,-X.=0,Z=/R*+X* =R,

0, -0.=0=0,8S=P+0' =P, p=0.

(4] VR:V J Vp

Fig.2.19 Fig.2.21
Total current /7 =V /Z =V /R is at maximum, what is an indication of the voltage

resonance. Frequency characteristics of the circuit X, (w)=awL, X .(®)=1/(wC),
X(w)=X,(w)—X_(®) are shown at fig.2.19. When @< ®,, X<0, ¢ <0, reactance

has inductive character. When @®>®, X>0, ¢ >0 reactance has capacitive

character.

w2 [T f
Wn
0 w
—7T/2 J _________
Fig.2.23

At f1g.2.20 resonance curve /(o) and at fig.2.21 vector diagram for resonance
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mode are shown.

L —1/
Phase-frequency characteristic ¢@(w) = arctg% -

is shown at fig.2.22

and the resonance curves of voltages V,(®), V,(®), V.(w) at fig.2.23 accordingly.

Voltage resonance should be avoided, because the voltage across the elements
may several times exceed the nominal value.

Current resonance.
Current resonance takes place at the circuit with parallel connection of L,C

elements (fig.2.24). I, =1, at resonance mode, so the condition of voltage resonance
for real circuit is B, =B,., that means
o,L/(R* +(w,L)*)=1/(0,C).
For ideal circuit (R=0) the condition is @,L=1/(0,C).
Thus a)(f LC =1, resonance frequency @, =1/ JLC.

Ic
L g X B Be
""" |
Mn
ool ] — <IB o
P n
Ic N B, : : 14
Fig.2.24 Fig.2.26
Fig.2.25

The resonance can be reached by changing C, L or @.
At resonance mode

B:BC _BL :0) Y= [Gz-i-B2 :G,
0,-0.=0=0,5=[P+Q' =P,y 0.

Total current 7 =VY =VG 1s at minimum, what is the indication of the current
1 @

le }\ Ji /2 ﬁ ---------
n W
I 0
0 : L
T2 T~

W Fig227 @ Fig.2.28

resonance.
Frequency characteristics of the ideal (R=0) circuit B, (w)=1/(al),

B (w)=wC, B(w)=B.(w)—B,(w) are shown at fig.2.25. Susceptance has an

inductive character when @ <@®,, B <0, ¢<0. Susceptance has a capacitive
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character, when @>@, B >0, ¢ >0 .

Vector diagram for resonance mode is shown at fig.2.26. Resonance curves
(o), [,(@)=BV, I.(w)=B.V and phase-frequency characteristic ¢(») are shown
at fig.2.27 and 2.28.

Voltage resonance on one hand should be avoided, because the current across
the elements may several times exceed the nominal current, but on the other hand the

resonance can be applied for rising power factor and as the working mode of some
electronic devices.

Part 3. Three-phase circuits
Three-phase electro-motive-force circuit system is the set of three sinusoidal
e.m.f. with the same frequency @ and out of

phase with each other by 27 /3 (120). Phase is
the part of the circuit with the same current. The
amplitudes of e.m.f. are marked accordingly:

T
’
' E
!
’

o> Egn> B, 1 they are equal, such system is

called balanced.
The instantaneous values of e.m.f.
(fig.3.1) are:

e,=E, sinax, e,=E, sin—120), e. =E_ sin(wt+120).

Phase sequence is the time order in which the e.m.f. pass through their
respective maximum values (or through zero value). Phase sequence ABC is called
positive (fig.3.1), the reverse phase sequence ACB be called negative.

The following requirements are met for three-phase balanced electro-motive
force system:

E,=E,=E. zEph‘
The following expressions are true having disregarded losses at power sources:
EA:I/A) EB:I/BD EC:I/Ca
where V,, V,, V.. — are source phase voltages (between the lines and neutral point N
(fig.3.3). These voltages in complex form are presented as:

+1 KA — VAejO, KB — VB e—jlzo° , Kc — Vc ejlzo°‘
Val p\Vas Linear voltages (between lines, which connect the
sources and the consumers) (fig.3.4) in complex form are:
+JV ZAB = KA _ZB = VABeﬂOO b
Vea Vs Vie=Vy=V.= VBC e
Ve Ve V.=V .-V =V ",
Fig.3.2 e e o

Linear voltage is equal to the difference between

corresponding phase voltages and lead the phase of the first one for 30 (fig.3.2).
Vector diagram (fig.3.2) illustrates relationship between phase and linear voltages.
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Three-phase circuit consists of three-phase electro-motive force system, three-
phase loads and connection wires.

The most common types of connection the three-phase sources and consumers
are WYE (Y ) (fig.3.3) and DELTA (A ) (fig.3.7).
At WYE connection the ends of source phases windings (fig.3.3) are connected

in common neutral point N, and the beginnings of phases 4,B,C are connected to
the linear wires. The ends of consumer phase windings (fig.3.3) are connected in
common neutral point 7, and the beginnings of phases @, b, ¢ are connected to the
linear wires.

A 'y
V4
\L N VnN
&
N2
C 7 B
Ve Ip
Ic
Fig.3.3

The source phase voltages are called the voltages between phase and neutral
points V,,V,, V., for consumer V. ,V,, V.. The source linear voltages are called the

voltages between phase points (fig.3.4) V., V,V,,, for consumer V.V, .V . The

directions of these voltages are shown at fig.3.4. The effective values of phase and
linear voltages are related according to the expression V, = \/3V

ph°

For WYE connection (fig.3.4) phase currents (flowing through the phase) 7 ,

A 1y
Vea / \VAB
C < B . €
V B
BC
Ic
Fig.3.4

(1,,1,,1)), are equal to the linear currents (flowing through the lines connecting the
source and the consumer) /I, (1,,15,1.), I, =1,. The directions of these currents are

shown at fig.3.4. Balanced load is one in which the phase impedances are equal in
magnitude and in phase:

Za ZZb ZZC Zth'
In this case:



ZA :Ka/Zaa IB :Zb/Zba IC :ZC/ZC‘

The effective values of the currents are also equal: [, =7, =1.=1,=1,.

If the load is unbalanced (£, #Z, # Z,) the voltage between the neutral points

of source and consumer appears — V, (fig.3.3). This voltage is called the bias

Fig.3.5

neutral and can be calculated by using the method of two nodes:
Y, +v,Y,+V. Y,

ZnN -

Y, +Y, +Y,
where Y, =1/Z,=11V, Y, =l/Z,=11V,, Y =V/Z=L/V.
In that case the consumer phase voltages are calculated according to the
following expressions:

V.=V,=V.n, V,=Vy=V., V.=V.=V.,
Phase currents complexes are:
1,=V,/Z,1,=V,/Z, 1=V /L.

There is also a neutral wire at three-phase four-wires circuits, which connects
neutral points of source N and consumer 7 (fig.3.5). In this case V,,=0.

The following is true according to the Kirchhoff's first law for node # .

I+I;+1.=1,.

When the load is balanced (z, =z, = z.): L,+1;+1.=0, 1, =0,V ,=0.
The vector diagram of currents for unbalanced load is shown in fig.3.6.

At DELTA connection the end of one source (consumer) winding is connected
to the beginning to the second source (consumer) winding (fig.3.7). For this

A IA a
+1 lca
I, Mlatis \VAB
Ve Ly
c L\
Ipc gVBC Ip
Ic
Fig.3.6 .
Fig.3.7
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connection the following is true: V,, =V,, V,, =V, .=V, =V, .

The phase (linear) complex voltages can be represented:

KAB = VABejO > Ve = VBc e/ y V= VCA e
The consumer linear (phase) voltages are equal to the source linear voltages:
e Vs =V 43, Vie=Vse, Vi=Ve

Ty If the phase load is active (¢ = 0 ), the vectors of

phase currents [ ,,/, ,I have the same directions as the

C

vectors of corresponding phase voltages V., V0, Ve,

\ If the phase load is an active-inductive one
I, (¢ > 0),the phase current lags behind the corresponding

phase voltage by an angle of ¢ =arctg(X ,,/R,).

Y, If the phase load is an active-capacitive one
Fig.3.8 “ (¢ < 0), the phase current leads the corresponding phase

voltage by an angle of ¢ =arctg(X ,, /R ,).

The load is balanced when Z,=Z,.=Z..=7Z
Loy F LpeF Loy

The following is true for the nodes @,b,c (fig.3.7) according to the first
Kirchhoff law:

I,+1,~1,=0, Iy+1,-1,,=0,  I.+I,-1I,=0,
Then:

»» and unbalanced when

l,=1,-1

il = —ca»

ZB :Zbc _laba ZC :lca _lbc-
The linear current is equal to the difference between corresponding phase
currents and lags the first one for 30 (fig3.8). Vector diagram (fig.3.8) illustrates

relationship between phase and linear currents.
The effective values of the phase and the linear currents are connected by

expression: [, = /31
Complex phase currents can be defined according to Ohm’s law:
l,=VilZy 1=V, /2, 1.=V, /2,
For balanced load: 1, =1,=1.,1,=1,. =1_,.
Complex total power of three-phase unbalanced circuit is:
S=V., L+V, [, +V I =P+ 0.
Active power of three-phase unbalanced circuit is:
P=V1I cosp, +V I, cosp,+V I .cosp.=P +PF +P..
Reactive power of three-phase unbalanced circuit is:
Q=V, I, sing, +V, I, sing, +V.I.sing. =0, + 0, +O..
These formulas can be used for WYE or DELTA connections.
Active P, reactive O and total S powers of the consumer can be calculated

ph "

by using phase or linear voltages for balanced load:
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P=P +PF +P =3P, =3V,1, cosp, :\/gVLIL cos @, ,

ph ™ ph
0=0,+0,+0,=30,=3V,1,sinp, =3V,1, sing,,
cosp, =R, /Z,, sinp, =X, /Z ..
S:Sa+Sb+Sc:3Sph:3Vph1ph7 S = P2+Q2'

The same formulas can be used for WYE and DELTA connection.

Part 4. The non-sinusoidal current circuits.

Non-sinusoidal voltages or currents are the ones which are changed with the
time according to periodical non-sinusoidal law. The cause of non-sine currents
(voltages) is the source of non- sinusoidal voltage or the non-linear element of the
circuit.

Such circuits may be represented by the Fourier series as the sum of sinusoidal
functions in order to get calculated:

v=V,+V sint+y,)+V  sinQwt+y,,)+...+V sinkot+y, )=

%
Vmax [ V3
Vs
ot t
Ts |
T3
— T
N~ !
Fig.4.1 Fig.4.2

=V, + 3V, sin(kot +y,,),
k=1

where ¥} is the steady component; v, =V sin(@+y,,)is the first (basic) harmonic
component, (@ - the frequency of first harmonic), v, =V sinka¥+y,, ) - k
harmonic component (called also as harmonic), V,, - amplitude, @ - fundamental

frequency, kw - frequency of k£ harmonic, ¥,, - initial phase of & harmonic. The

harmonics with the frequencies 2, 3,...k times larger than @, are called higher
harmonics.

We can represent the value V  sinfax+y,, )+A  sinfkax+@,) by the sum of
two constituents :
A sinkaxt+@ )=B  sinkax +C  coskax,

where B, ,=4,.cosp,, C, =489, 4 = VB +Ch s O =arctgC,,/B,,).

So, the Fourier series we can write down (V~ f (601)):
f(ot)=4, + iBmk sinkot +i C,, coskat .
k=1 k=1
If the function is symmetrical across the X axis f (C!I) =—f (C!I iﬂ) then
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Fourier series have only odd harmonics:
f(at)=A  sin(xt +¢)+ A sinGaxt +@,)+ A sSInCax¥ + ) +....=
=B sinawt+C  cosax + B sin3ax +C  cos3at + B ,sinSax +C . cosSax +...

If the function is symmetrical across the origin f (at) =— f (—at) then Fourier
series have only sin constituents:
f(ax)=B, sina¥ + B, sin2ax + B, sin3ax +...

If the function is symmetrical across Y axis f(a¥) = f(—¥) then Fourier
series have only steady component and cos constituents:
f(at)=A4,+C cosax+C , cos2axt+C  cos3ax +...
Fourier series has only steady component and cos constituents:
f(axt)=4,+C cosax¥ +C  cos2ax+C,  cos3ax +...
For example, the square shape of voltage (fig.4.1) can be represented in such a
way (fig.4.2):

4V : l . l .
v=—""(sinwt +—sin3wt +—sinSwt),
T 3 5

Non-sinusoidal current i=1,+> I sin(kot+y,)(i.e. the sum of the
k=1
sinusoidal currents) 1is present in the circuit with non-sinusoidal voltage
v=V,+> V sin(kot+y,) (the sum of the sine voltages). The calculation of the
k=1

circuit is based on the principle of superposition. The steady component of the
current /, can be calculated by using the methods of DC circuits’ calculation and

harmonic of current #, by using the methods of AC circuits’ calculation.

As known reactance of the coil for k-harmonic is equal X,, =k@wL=kX, and
susceptance B,, =1/(kwL)=B, /k. Reactance of the coil for DC (as effect of the
steady voltage component V) is X,(0)=0-L=0. The susceptance of the capacitor
for k-harmonic is B, =k@C=kB. and reactance is X =1/(koC)=X,/k.
Reactance of the capacitor for DC (as effect of the steady voltage component V}) is

X.(0)=1/(0-C)=o0, I,=0. The resistance of the circuit doesn’t actually depend on

the frequency and is the same for every harmonic.

The non-sinusoidal circuit calculation order is:

— the source voltage is expressed by Fourier series as an infinite sum of

harmonic (sinusoidal) components (functions);

— the circuit for every harmonic component is calculated separately using DC
and AC circuits’ calculation methods. Also it should be taken into consideration that
the reactances depend on the frequency;

— according to the superposition principle, the current instantaneous value is
equal to the sum of currents instantaneous values of all harmonics, that’s why the
calculation results are considered at each particular moment. The effective values of
voltage and current are equal correspondingly:
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V=V Ve +VE, I= P+ +. . +1],
where V,,1, are harmonic voltages and currents effective values.
The average value of non-sinusoidal function 4, (V,, I,) for the period:

T
A,=4, :%jadt,
0

The effective value of non-sinusoidal function - A (¥, I) is the mean-square
value for the period 7 :

T n
A= /%jazdzz N A=A +..+ A
0 k=0

Shape factor is equal to the relation of function effective value to its average
value: K, =A/A,,. (K, =2/7=1.11for sinusoidal curve).
Amplitude factor is equal to the relation of function amplitude value to its
effective value: K, =4 /A. (K, =~/2=1.41 for sinusoidal curve).
Distortion factor is equal the relation of first harmonic effective value to the
function effective value:
K,=A/A (K, =1 for sinusoidal curve).

Harmonic factor 1s equal the relation of high harmonics effective values to the
first harmonic effective value: K, =4, /4, where A, =4 +..+ A4 =) A’ is the
k=2

mean-square value of high harmonics effective values ( K, =0 for sinusoidal curve).

Active power of non- sinusoidal current is equal to the sum of harmonics active

powers: P=>V, I, =B+P+..+F =R +XP, where E =V, is the power of
k=0

steady voltage component, F, =V I cosp, is the active power of k harmonic,

®, =V, —Y¥, - phase shift angle between & harmonic component of voltage and
current. Reactive power of non- sinusoidal current is equal to the sum of harmonics
reactive powers: Q=2V. I sing, =20, .

Total power of non- sinusoidal current is: S =./P° + Q" .

Part 5. Transient processes

The transient processes occur when devices and circuits change their working
regime. Transient processes may have negative effect in electrical engineering, but
they can be useful in electronics.

The transient processes start at turning on/off the sources, changing the
configuration of the scheme, circuit parameters, changing the current/voltage
amplitude, phase, frequency or shape. Still the transient processes are typically
caused by commutation (turning on/off the circuit).

The transient process is the process of transition from one energetic state of the
circuit into another. This process cannot proceed stepwise, because the stock of
energy can’'t change abruptly. That’s because the elements' values upon which the
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energy storage depends (L,C) don't allow to change current and voltage stepwise
(I, ,V. ). Two main laws of transient processes come out from this point.

The first law states that the current through inductance just after the
commutation Z, (04+) is equal to the current through inductance just before the
commutation i, (0-): i, (0+)=i,(0—)=i,(0) .

The second law states that the voltage at capacity just after the commutation
V. (0+) is equal to the voltage at capacity just before the commutation v, (0-):
Ve (05) =v.(0-) =v.(0).

Initial conditions (voltage or current values at the commutation moment ¢ =0)
are defined by these laws. The steady-state mode before the commutation is at 7 < 0.

The steady-state mode after the commutation is after the transient process is over.
The transient process duration depends on the elements parameters. It is

estimated as f, =5+67 , where 7 is the time constant. It is time during which
voltage or current changes e=2.7 times of its initial value.

kK L ' i v
o—o>< o_fYY\;> V/R 14

i T \’VR
K e o}/

I
. 5t
o -V/R ﬁ"_’__ |(|| - i

I I
Fig.5.1 Fig.5.2 0 Fig.5.3 S5t
The transient process can be described by linear differential equation, which is
formed with the help of Kirchhoff’s laws. Commutation laws should be used to solve
this equation.
The partial solution of inhomogeneous differential equation is the steady-state

component I or Vg . The general solution of homogeneous differential equation is
the transient component 7, or #,, which dies out with time. The solution of linear
differential equation is current (voltage), which is equal to the sum of transient and
steady-state components i(¢) =i, +i,, (W) =V, + V). Therefore, to calculate transient

process means to find the current or voltage changing rule.
Let's analyse the transient process when RL link is connected to DC source
(fig.5.1). According the differential equation to the Kirchhoff’s second law for after

commutation steady-state mode is: Ldi/dt + Ri =V . Its solution is i(f) =i, +iy,. The
partial solution iy, of inhomogeneous differential equation Ldi,/dt+Ri =V is

equal to the current value when transient process is over i, =V /R (because X, =0
for DC).
[, 1is the general solution of homogeneous differential equation

Ldi /dt+Ri, =0. The characteristic equation corresponding to this differential one
is pL+R=0 with its root p=—R/L. The time constant is T=1/p=L/R. Since the
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characteristic equation has one real root, the transient component is i, = Ae”.
Constant of  integration can be found from initial  conditions:
i(0)=i,(0)+i,(0)=A+V/R. According to the first commutation law
i(0)=i(0-)=0,s0 A=—V /R, i,=—V/Re """,

The solution of differential equation is (fig.5.2):

i=i,+igz=-V/Re"™"" +V/R=V/R1-e""").
The voltage on resistive element is (fig.5.3):
v =Ri=RWV/R)(1-e ™"y =V(1—-e®""),
The voltage on inductive element is (fig.5.3):

di d(V V R
v =L —=L—| — l_e—(R/L)t — L (=2). _e—(R/L)t :Ve—(R/L)t.
Yodt dt(R( )j RO )

Let's analyse the transient process when RL link is disconnected from DC
source and shortened (fig.5.4). The differential equation according to the Kirchhoff’s
second law for after commutation steady-state mode is: Ldi/dt+ Ri = 0. Its solution is

i(t)=i,+i,. The partial solution I, of inhomogeneous differential equation
Ldi, /dt+ Ri, =0 is equal to the current value when transient process is over i, =0

I[,is the general solution of homogeneous differential equation
Ldi /dt+Ri, =0. The characteristic equation corresponding to this differential one
is pL+R=0 with its root p=—R/L. The time constant is T=1/p=L/R. Since the
characteristic equation has one real root, the transient component is i, = Ae” .
Constant of integration can be found from initial conditions: i(0) =7,(0)+i(0)=4 .
According to the first commutation law i(O) =i(0—) =V/ R, so 4=V /R,
i, =V /Re ™",

The solution of differential equation is (fig.5.6):

i=i. =V/Re"™"",
The voltage on resistive element is (fig.5.5):
v,=Ri=R(WV /R)e ™" =Ve "

i L % i
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The voltage on inductive element is (fig.5.5):
v, = Lﬁ = Li(ze_(m”j = LK(—E) (e Py = =Pt
dt dt\ R R L
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Let's analyse the transient process when RC link is connected to DC source
(fig.5.7). The differential equation according to the Kirchhoff’s second law for after

, i=Udv./df), then
RUdv,./dt)+v.=V. Its solution is V.=V, +U.,. The partial solution V., of

commutation  steady-state mode is  Ri+v. =V

inhomogeneous differential equation RUdAV./df)+v.=V equals to the voltage
value on C when the transient process is over. The circuit current equals zero in this
case, because the input voltage is applied directly to capacitance V.o =V .

K C 1 v

V(Css
o—o><c | | - V
|| \4
Vc P
lV ] R _ V/R ;
ver It KI VR T
[ [

o -V T T I
Fig.5.7 Fig.5.8 0 Fig.5.9 5t

Vo, 1s the general solution of homogeneous differential equation
RU(dv,./df)+v.=0. The characteristic equation corresponding to this differential
one is RCpr1=0 with its root p=—1/(R(. The time constant is T=1/p=RC,
Since the characteristic equation has one real root, the transient component is
v, =Ae”. Constant of integration can be found from initial conditions:
v.(0)=v,(0)+v. (0)=A+V. According to the first commutation law
v(0)=v.(0-)=0,s0 A=V, v, =—Ve''",

The solution of differential equation is (fig.5.8):

v.(t)=V Ve =V (1 -e"" )=V (1-e"").

The current is (fig.5.9):

i=C(dv/dt)= C%(V ~Ve'*)=~CV (RC)(~e""*)= (V| R)e™"™ .

The voltage on resistive element is (fig.5.9):
v, =Ri=R(V/R)(e"")=Ve"'*,
Let's analyse the transient process when RC link is disconnected from DC

source and shortened (fig.5.10). The differential equation according to the
Kirchhoff’s second law for after commutation steady-state mode is:

RU(dv,./df)+v.=0. Its solution is V. =V, +V... The partial solution V., equals
zero, because this equation is homogeneous.

Vo, 1s the general solution of homogeneous differential equation
RU(dv,./df)+v.=0. The characteristic equation corresponding to this differential
one is RCpr1=0 with its root p=—1/(R(. The time constant is T=1/p=RC,
Since the characteristic equation has one real root, the transient component is
v, =Ae”. Constant of integration can be found from initial conditions:
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Ve 0)= Ver 0)+ vCSS(O) =A4.

v.(0)=v.(0-)=V (the circuit current is equal to zero in this case, because the input

According to the

first

voltage is applied directly to the capacitance), v, = Ve "',

The solution of differential equation is (fig.5.11):

The current is (fig.5.12):

v(t)=v,, (t)=Ve """

commutation

i=C(dv,/dt)= C%(Ve‘”” )=CV (RC)(—e"")=~(V' | R)e ™" .

The voltage on resistive element is (fig.5.12):

v, =Ri=R(-V/R)(e""*)=—Ve "

i C T %
o=  — — 7
St
l v K I:I R i
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o &‘ VR Kl " r
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Attachment
No Greek letters
1 A o alfa
2 B b beta
3 I Y gamma
4 A 0 delta
5 E € epsilon
6 Z ¢ dzeta
7 H n eta
8 O 0, teta
9 1 ! Jjota
10 K K kapa
11 A A lambda
12 M U miu
13 N v niu
14 ) ¢ ksi
15 0] 0 micron
16 17 T pi
17 P p ro
18 2 0, sigma
19 T T fau

(98]
—

law



20 Y 0 ipsilon
21 0] ® fi
22 X X hi
23 v W psi
24 Q Q) omega
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Physical values designation and units

Designati

Value Dimension
on

Resistance R, Q Om
Reactance X, Q Om
Impedance Z, Q Om
Conductance G, Sm Simens
Susceptance B, Sm Simens
Admittance Y, Sm Simens
Capacity C F Farada
Inductance L H Henry
Inductance mutual M, H Henry
Electromotive force EV Volt
Potential o,V Volt
Voltage v,V Volt
Current 1, A Amper
Active power P W Watt
Reactive power O, VAr Volt-Amper reactive
Total power S, VA Volt-Amper
Magnetomotive force F, A Amper
Magnetic induction B T Tesla
Magnetic field tension H, A/m Amper per meter
Magnetic stream D, Wb Weber
Linkage v, Wb Weber
Magnetic permeability (absolute) | u,,, I'n/m | Henry per meter
Magnetic permeability (relative) | u
Magnetic constant to, Tr/m | 47107
Frequency f, Hz Herz
Angular frequency w, rad/s | radian per second
Length I, m meter
Hight, depth h, m meter
Layer o, d m meter
Arial S, m’ square meter
Magnetic resistance R,
Number of turns w
Force F,N Newton
Work (energy) w,J Joule
Charge 0C Coulomb
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