
MODELING OF DISCONTINUOUS DEFORMATION IN Al-6%Mg ALLOY 
 

P. Yasniy1), V. Hlado1), I. Shulhan1), S. Fedak1), Y. Lapusta2) 
1) Ternopil Ivan Pul’uj National Technical University, 56, Ruska str., Ternopil 46001, 

Ukraine 
2) IFMA-LAMI, Campus de Clermont-Ferrand - Les Cezeaux, B.P. 265, F-63175 

Aubi`ere cedex, France 
 
 

ABSTRACT 
 
We describe a procedure for modeling the structural inhomogeneity of a material by the finite 
element method. We consider the material as a composite consisting of an elastoplastic 
matrix and brittle inclusions (dispersoids). The finite element model is based on experimental 
data on the concentration of inclusions and their geometrical sizes. The proposed finite 
element model describes well the discontinuous deformation of Al-6%Mg alloy. 
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INTRODUCTION 
 
Diagram of structural materials deformation in some tension is of discontinuous character. It 
is known about the effect of low-temperature discontinuous deformation of the materials, 
which is associated with the initiation of strain that results from pulse impact, either thermal 
or mechanical [1, 2]. 
Composite materials, which failed by multiple cracking mechanism, have got pulverized 
strain diagram [3]. Such diagrams are associated with the destruction of fibers in various 
cross sections of material. With the destruction of fiber, loading perceived by it is transmitted 
to the matrix, and on the tension chart there appears tooth, proportional to the load 
magnitude. On further deformation, local strengthening and growing tension in the matrix 
occurs, which causes the destruction of fibers’ segments in other cross sections. 
Also known Portevena - Le Chatelier effect of breaking fluidity, which is associated with 
plastic deformation by twinning, or with a sharp increase of mobile dislocations number  due 
to their exemption from consolidation of impurity atoms [4, 5]. Dislocation can be fixed by 
atmospheres of atoms impurities, second phase particles or in other way [6]. 
In work [7] it is investigated the relationship of discontinuous deformation under tensile of Аl-
6%Mg alloy with the second phase dispersed inclusions destruction. The dependence of 
instantaneous values of strain increments and the size distribution of dispersed phases is 
obtained. 
To get a real picture of stresses and strains distribution with taking into account the 
discontinuous rate in modeling structural elements by finite element method (FEM), material 
should be viewed as a heterogeneous one [8]. Besides, elastic plastic deformation chart of 
such material, obtained from the FEM, must be consistent with experimental chart. 
This work hasaimed to develop methods of simulation of structural components influence on 
Аl-6%Mg alloy deformation with ANSYS software applying, work of which is based on use of 
FEM. 
 
SPECIMEN, MATERIAL AND TESTING 
 



In the tensile stress-strain diagram of smooth cylindrical specimens at a temperature of 20°C, 
there appear strain jumps due to the cracking of disperse inclusions of the secondary phase 
and scattering of dislocation clouds [7].  
We studied the number of disperse inclusions in the cross section of specimens and their 
cracking after plastic deformation in the longitudinal direction by the method of transmission 
electron microscopy of thin foils on a TEM-125K microscope. The dispersoids of length from 
0.2 to 5 μm and diameter from 0.08 to 0.15 μm were stretched in the direction of forge-
rolling. Their number in the matrix of the α-solid solution of Mg in Al in cross section is about 
3  106 / mm2 [7]. 
After stretching in the longitudinal direction, the dispersoids crack (Fig. 1a) into 2 – 7 
fragments depending on the initial form factor α (the ratio between the length and width of an 
inclusion) till it reaches a value of 3.4. The dispersoids with initial α ≤ 3.4 are not destroyed. 
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Fig 1: Destruction of disperse inclusions in 

     the longitudinal direction, 30000 
Fig. 2: FEM model of the Al-6%Mg alloy 

 
The data obtained were used for finite element simulations of discontinuous deformation rate 
in Аl-6%Mg alloy. 
 
EVALUATION OF THE RESULTS 
 
Finite-element modelling 
 
Our computations by this method were carried out with the help of the ANSYS program 
package, version 9.0. The computational model was based on experimental data on the 
number of inclusions according to the histograms of their distribution depending on the initial 
form factor [7]. The number of inclusions in the model was n = 100. According to 
experimental data, for the cross section area S2 = 10– 8 m2, the total area of inclusions is S1 = 
5.42  10– 10 m2. 
We assumed the following: 
(a) the ratio between the area S1 of inclusions in the cross section and the area S2 of this 
section is equal to the ratio of the area S3 of inclusions in the longitudinal section to its area 
S4 : S1 / S2 = S3 / S4 ; we find from here S3 = 1.84  10– 11 m2 and S4 = 3.39  10– 10 m2 ; 



(b) the diameter of all inclusions in the model is identical d = 0.115 μm (averaged value), and 
their length is l = α d ; 
(c) the inclusions are rigidly adherent to the matrix.  
Taking into account these assumptions and the histogram of the number of dispersoids 
depending on their form factor α [7], we determined the number of inclusions n, their lengths, 
total area in the longitudinal cross section of the model S3, and the sizes of the computational 
model. 
We took the computational model in the form of a square, and then S4 = a2, where a = 1.842  
10– 15 m is the model size. 
We assigned the coordinates of placement of the inclusions inside the model according to 
the two-dimensional normal distribution. As the basis of the finite-element grid, we took an 
eight-node plane element plane 82, which has the properties of plasticity and creep, can 
increase its rigidity under loading, and also admits large displacements and strains. The 
number of elements in the model was 115,731. 
Our computations were carried out in the elastoplastic region by using the iteration 
calculation of strain growth and redistribution of the stress field in the matrix and inclusions, 
with regard for the kinematic hardening of the material. We applied the forces to the upper 
horizontal boundary of the model, fixed vertical displacements (along the Y axis) at the lower 
boundary, and limited the latter (Fig. 2). 
Calculations made in elastic-plastic formulation, using an iterative computation of strain 
growth and stress field redistribution in the matrix and inclusions, taking into account the 
effect Baushinhera and cinematic effect of strengthening the material [9]. Efforts were 
applied the upper horizontal line of the model, but the bottom line was fixed and vertical 
movement (axis Y) was limited (Fig. 2). It has been considered that the inclusions are 
deformed only elastically and elasticity modulus of the first kind is bigger than that of the 
matrix (Fig. 3). Mechanical properties of structural components of models were taken the 
same as characteristics of Аl-6%Mg alloy. Total mechanical characteristics of the interaction 
matrix (Fig. 3, curve 2) and inclusions (Fig. 3, curve 1) correspond to material deformation 
diagram (Fig. 3, curve 3). Mechanical characteristics of inclusions and Аl-6%Mg alloy are 
given in [10, 11]. Mechanical properties of matrix Аl-6%Mg alloy without inclusions were 
determined by iterative calculations by known deformations of inclusions and the total 
material. The parameters of estimation are compliance of total material deformation 
presented by the finite-element model, experimental data [12]. 
We believe that the destruction of the model takes place when the normal stresses, occuring 
in the model are higher or equals failure tension. Fracture stress for the matrix and inclusions 
 fm  finc are different and determined by their mechanical characteristics. In particular, 
according to the strain diagrams (Fig. 3), for the matrix fracture, stress is of  fm = 825 MPa, 
and for the inclusions –  finc = 1100 MPa. 
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Fig 3: Diagrams of inclusions deformation (1), matrix (2) and total diagram (3) of Аl-6%Mg 
alloy deformation. 

 
The distribution of normal stresses under the critical load shows that the model will begin to 
fail at the middle part of an inclusion, where the maximum normal stresses arise. We 
modeled the destruction of elements of the finite-element model in the ANSYS program 
package with the use of the procedure kill element. It determines the elements 
corresponding to the accepted fracture criterion. Under the critical stresses, the inclusion 
under consideration fails completely, forming two fragments with a form factor lesser by half 
than the initial (Fig. 4a). 
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Fig 4: Inclusion failure: a – failure of inclusion into two parts, b – fragment of the finite-
element net of the model under failure of inclusion into four parts 

 



After cracking of an inclusion into two parts (Fig. 4a), the plastic strains and normal stresses 
are redistributed. The maximum normal stresses are now observed at the middle part of 
fragments. Here, the critical breaking stresses arise again, and the fragments crack in half. 
The formed four fragments (Fig. 4b) have approximately equal but lesser by half form factors. 
Stresses in the matrix are always lower than the critical. 
Similar computations for the model with numerous inclusions (Fig. 2) show that the critical 
breaking stresses in the matrix and inclusions do not arise if the model is loaded with 
nominal stresses up to 229 MPa. There were no jumps in the stress-strain diagram, which 
was constructed in parallel at each step of iterations. Under stresses of 229 MPa, the 
inclusions with the greatest form factor α = 43.5 were destroyed according to the scheme for 
the model with a single inclusion, and the first strain jump appeared in the stress-strain 
diagram (Fig. 5). 
The next inclusion (with the form factor α = 40.5) was destroyed under a stress of 230 MPa, 
and one more strain jump appeared in the diagram (Fig. 5). The inclusion with the form factor 
α3 = 37.5 was destroyed at σ = 235 MPa and induced the next strain jump (Fig. 5). Several 
inclusions with identical form factors cracked simultaneously. 

 

 
Fig. 5: Appearance of jumps in the stress-strain diagram of AMg6 alloy as a result of 

destruction of the inclusions with the form factors 0 = 43.5 (zone 1), 40.5 (zone 2), and 37.5 
(zone 3).  

 
Figure 6 A demonstrates fragment of the calculation model during destruction of the 
inclusions with shape ratio  12 = 10.5 (loading applied to the model is 285 MPa). 
 



 
Fig. 6: Fragment of the calculation model during inclusions failure. 

 
Figure 7 presents a three-dimensional histogram of inclusions destruction of particular shape 
ratio depending on the load, applied to the model. 

 

 
Fig. 7: Histogram of dyspersoids fracture under the load of  calculation model. 

 
For reproducing the stress-strain diagram, we applied loads from 229 to 345 MPa to the 
computational model by iterations with a step of 1 MPa. Choice of the minimum level of 
stresses (229 MPa) was connected with the beginning of destruction of the inclusions in the 
model, and the maximum value (345 MPa) was determined by the mechanical characteristics 
of the modeled composite material. The calculated jump-like diagram for AMg6 alloy (Fig. 8b) 
is in good agreement with the experimental one (Fig. 8a). 
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Fig. 8: Stress-strain diagram for AMg6 alloy: (a) experimental data (1) and approximation 

over the upper envelope (2); (b) approximation over the upper envelope of 
experimental data (1), FEM computations (2), and approximation of the FEM data (3). 

 
SUMMARY AND CONCLUSIONS 

 
Using the finite element method, we have studied the influence of destruction of inclusions in 
a heterogeneous material on its jump-like deformation under uniaxial tension. We have 
obtained a calculated jump-like stress-strain diagram for AMg6 alloy, which is in good 
agreement with experimental data. 
When applying force to the estimated model of heterogeneous material in the middle part of 
the inclusions, marginal normal stress occurs, and as a result they are failed into two 
fragments with simultaneous redistribution of deformations and stresses in the model. 
On the basis of the developed procedure, one can carry out a linear or a nonlinear analysis 
of the stressstrain state and fracture of constructional materials with regard for the properties 
of their structural components. 
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