УДК664.68

Татьяна Казутина, Ирина Машкова

Учреждение образования «Могилевский государственный университет продовольствия, Республика Беларусь

СОВРЕМЕННЫЕ ПРИНЦИПЫ ПРОЕКТИРОВАНИЯ ПИЩЕВЫХ ПРОДУКТОВ

Tatyana Kazutina, Irina Mashkova MODERN PRINCIPLES OF DESIGN OF FOODSTUFF

Динамичное расширение ассортимента мучных кондитерских изделий и повышение качественного уровня их производства зависят от внедрения технологичных и наукоемких разработок, связанных с созданием различных полуфабрикатов, находящих применение в повседневном рационе питания. К последним относятся термостабильные фруктовые начинки, обладающие рядом определенных характеристик. В технологическом отношении термостабильные начинки являются наиболее сложными для производства и применения.

Разработка научно обоснованных технологических решений по созданию термостабильных начинок является актуальной задачей, решение которой позволит получитьновый ассортимент полуфабрикатов, специально предназначенных для выработки мучных кондитерских изделий. В качестве объекта исследования рассматривалась разработанная в учебно-исследовательской лаборатории МГУП фруктовая термостабильная начинка, изготовленная на основе яблочного пюре, сахара песка, лимонной кислоты, влагоудерживающих и структурообразующих компонентов.

В ходе проведенных исследований установлено, что для производства термостабильной начинки рекомендуется использовать яблочное пюре с массовой долей сухих веществ не менее 10,0%, уровнем pH не ниже 3,3 и массовой долей пектина не менее 4,0%. Кроме того, установлено соотношение сахара и яблочного пюре в рецептурной смеси -1:3 или 1:4 и массовая доля растворимых сухих веществ готовой фруктовой термостабильной начинки $-64,0\pm2,0\%$.

Улучшение термостабильных свойств начинок обусловлено применением в их рецептурной смеси различных влагоудерживающих компонентов(карбоксиметилцеллюлоза (КМЦ), яблочные выжимки, крахмал модифицированный), которые обладают способностью связывать жидкость и придавать конечному продукту необходимую структуру — от текучей, пастообразной до плотной, эластичной. Полученные образцы фруктовых начинок подвергались температурному воздействию, в результате чего были оценены органолептические, физико-химические и термостабильные свойства готового полуфабриката.

Проанализировав полученные данные, установлено, что дальнейшее изучение таких влагоудерживающих рецептурных компонентов, как яблочные выжимки и крахмал, нецелесообразно, так как образцы модифицированный термостабильных начинок, в рецептурный состав которых входили яблочные выжимки не обладали термостабильными свойствами, внесение же в рецептурную смесь позволило получить модифицированного крахмала начинку, обладаюшую термостабильными свойствами, однако, модифицированный крахмал, присутствующий в рецептуре в любой дозировке, придавал начинке крахмальный привкус, что является существенным недостатком и недопустимо в условиях массового производства. Образцы начинок, в рецептурный состав которых входил влагоудерживающий компонент – КМЦ, имели мягкую однородную консистенцию, легко дозировались и обладали достаточными термостабильными свойствами.

Современные принципы проектирования пищевых продуктов основаны на

выборе и обосновании определённых видов сырья и таких соотношений компонентов, которые обеспечили бы достижение заданных технологических характеристик полуфабрикатов и прогнозируемого качества готовых изделий. Поэтому построение математических моделей задач по определению рецептуры сырья позволит упростить вычислительный процесс и получить продукт с определенными качественными характеристиками. На основе анализа априорной информации об объекте исследования для нахождения оптимального рецептурного соотношения КМЦ и лимонной кислоты, позволяющего получить фруктовые начинки с термостабильными свойствами, использовали методику организации и проведения рототабельного и ортогонального центрально-композиционного планирования полного факторного эксперимента 2^2 со звездным плечом. Основными факторами, влияющими на термостабильные свойства фруктовой начинки, в состав которой в качестве влагоудерживающего компонента входит карбоксиметилцеллюлоза, являются: x_1 , x_2 , — количество КМЦ, количество лимонной кислоты соответственно, %.

Выбор основных уровней и интервалов варьирования факторов обусловлен следующими соображениями: для КМЦ — рекомендациями производителя КМЦ, предварительными экспериментами; для лимонной кислоты — интервалом рН фруктовой начинки, при котором КМЦ полностью растворяется, образуя гель повышенной вязкости (рH=3,4-3,3). Факторы совместимы и некоррелированы между собой. Критерием оценки влияния указанных факторов на показатели качества фруктовой начинки выбрана ее термостабильность (y_1) , %, которая обеспечивается набором и количественным соотношением рецептурных компонентов.

Для каждой комбинации уровней факторов осуществляли приготовление фруктовой начинки, у которой определяли термостабильность. Исследования проводили в виде модельных опытов. Полученные значения подвергались математической обработке. Используя факторный план 2^{2+*} , был проведен планируемый эксперимент с помощью пакета STATGRAPHICS и создана двухфакторная математическая модель начинки с оптимальным содержанием КМЦ и лимонной кислоты. В результате получено уравнение регрессии, адекватно описывающее зависимость термостабильности начинки (y_1) от количества дозируемых КМЦ (x_1) и лимонной кислоты (x_2) :

$$y_1 = 59,1185 + 98,3042 \cdot x_1 - 65,5102 \cdot x_1^2$$
 (1)

Анализ уравнения (1) показывает, что наибольшее влияние на термостабильные свойства фруктовых полуфабрикатов оказывает концентрация карбоксиметилцеллюлозы. Влияние концентрации лимонной кислоты менее выражено, что говорит о важности ее применения только для улучшения вкуса.

Задача оптимизации рецептуры фруктовой термостабильной начинки формулировалась следующим образом: требуется найти значения независимых переменных x_1 и x_2 ,при которых термостабильность данного полуфабриката будет не ниже 90%.В результате решения данной задачи было получено соотношение КМЦ и лимонной кислоты x_1 : x_2 (в % к массе яблочного пюре): 0,45:0,6, позволяющее получать фруктовую начинку с заданной термостабильностью \approx 90%.

Для проверки работоспособности математической модели получен коэффициент детерминации (R^2 =97,6949%), представляющий собой интегральную характеристику точности уравнения регрессии.

Результаты работы могут быть использованы на предприятиях хлебопекарной, кондитерской, консервной промышленности, что позволит предприятиям отрасли самостоятельно получать термостабильные начинки, достигая оптимального качества полуфабрикатов с учетом особенностей своего производства