ЗГИН КРУГЛОЇ ПЛАСТИНИ З РАДІАЛЬНОЮ ТРІЩИНОЮ, БЕРЕГИ ЯКОЇ КОНТАКТУЮТЬ

В.К. Опанасович, М.С. Слободян

BENDING OF A CIRCULAR PLATE WITH A RADIAL CRACK WHOSE FLANKS ARE IN CONTACT

V.K.Opanasovych, M.S. Slobodyan

Львівський національний університет ім. Івана Франка, Львів, Україна

Abstract Bending of the circle isotropic plate with radial crack with contact shores is investigated. For want of solving of a problem was considered, that the shores of a crack come in contact on the upper basis on all it's length. A solving of a problem constructed with use of methods of the theory of functions of a complex variable and complex potentials. The system of singular integral equations was untied numerically with the help of method of mechanical quadratures. The numerical analysis of a problem is conducted, because of which constructed graphic dependence of contact pressure and moments intensity factor and strain intensity factor.

В багатьох галузях техніки широко використовуються пластинчаті елементи. Тріщиноподібні дефекти значною мірою впливають на їх експлуатаційні характеристики. Постановка задач згину пластин з тріщинами без урахування контакту берегів та методи їх розв'язування подано в монографіях [1-3]. Дослідження, які проведено в публікаціях [4-8], показують, що взаємодія поверхонь тріщин значно впливає на розподіл напружено-деформованого стану в околі дефектів. У роботі [8] досліджено згин круглої пластини з центральною тріщиною, береги якої контактують. В даній статті цей результат узагальнюється на випадок радіальної тріщини.

Постановка задачі.

Розглянемо круглу пластину радіуса R, яка містить радіальну прямолінійну тріщину завдовжки 2l, береги якої вільні від зовнішнього навантаження. Пластина згинається рівномірно розподіленими моментами M_0 (див. рис. 1). Нехай під дією

Рис. 1. Схема навантаження пластини та розміщення тріщини.

згинальних моментів береги тріщини приходять у гладкий контакт по лінії на верхній основі пластини. Виберемо в центрі серединної площини пластини початок декартової системи координат $Oxy\tilde{z}$, направивши вісь $O\tilde{z}$ перпендикулярно до неї. Введемо в площині Oxy полярну систему координат r і θ з полюсом у точці O та полярною

віссю Ox. Вважатимемо, що тріщина розміщено вздовж осі Ox. Пов'яжемо з тріщиною декартову систему координат $O_1x_1y_1$. Через A і B позначимо точки площини Oxy, які співпадають з кінцями тріщини; лінію, де розміщена тріщина, позначимо через L_1 , границю круглої пластини – через L, область всередині круглої пластини – через S^+ , ззовні – через S^- .

Оскільки береги тріщини контактують, то розв'язок задачі подамо у вигляді розв'язків двох задач: плоскої задачі та задачі згину (класична теорія); при таких крайових умовах

$$\sigma_{rr} = 0, \ \sigma_{r\theta} = 0, \ M_r = M_0, \ P_r = 0, \ x \in L,$$
(1)

$$\sigma_{y_1y_1}^{\pm} = -N/(2h), \ \sigma_{x_1y_1}^{\pm} = 0, \ M_{y_1}^{\pm} = hN, \ P^{\pm} = 0, \ [v_{II}] + h[\partial w/\partial y_1] = 0, \ x_1 \in L_1,$$
(2)

де N – контактне зусилля між берегами тріщини, $\sigma_{x_1y_1}$, $\sigma_{y_1y_1}$, σ_{rr} і $\sigma_{r\theta}$ – компоненти тензора напружень в декартові і полярній системах координат відповідно, v_{Π} – проекція вектора переміщень у плоскій задачі на вісь O_1y_1 , w – прогин пластини в задачі згину, M_r і M_{y_1} – згинальні моменти, P_r – узагальнена в сенсі Кірхгофа перерізувальна сил; $[f] = f^+ - f^-$, значками "+" і "–" позначені граничні значення функції при прямуванні точки площини до тріщини при $y_1 \rightarrow \pm 0$.

Побудова розв'язку.

Для розв'язку задачі згину та плоскої задачі введемо комплексні потенціали [3, 9] відповідно $\Phi_{13}(z)$, $\Psi_{13}(z)$ та $\Phi_{1\Pi}(z)$ і $\Psi_{1\Pi}(z)$, які подамо у вигляді

$$\Phi_{3}(z) = \Phi_{13}(z) + \Phi_{23}(z), \quad \Psi_{3}(z) = \Psi_{13}(z) + \Psi_{23}(z), \quad (3)$$

$$\Phi_{\Pi}(z) = \Phi_{\Pi}(z) + \Phi_{2\Pi}(z), \quad \Psi_{\Pi}(z) = \Psi_{\Pi}(z) + \Psi_{2\Pi}(z), \quad (4)$$

де $\Phi_{13}(z)$, $\Psi_{13}(z)$ і $\Phi_{1\Pi}(z)$, $\Psi_{1\Pi}(z)$ – голоморфні ззовні тріщини функції, а $\Phi_{23}(z)$, $\Psi_{23}(z)$ і $\Phi_{2\Pi}(z)$, $\Psi_{2\Pi}(z)$ – голоморфні в області S^+ , z = x + iy, $i^2 = -1$.

Якщо ввести функції [3, 10]

$$\Phi_{2\binom{3}{\Pi}}(z) = -\overline{\Phi}_{2\binom{3}{\Pi}}(R^{2}/z) + R^{2}/z \,\overline{\Phi}_{2\binom{3}{\Pi}}(R^{2}/z) + R^{2}/z^{2} \,\overline{\Psi}_{2\binom{3}{\Pi}}(R^{2}/z),$$

$$\Omega_{13}(z_{1}) = -\overline{\Phi}_{13}(z_{1}) - z_{1}\overline{\Phi}_{13}'(z_{1}) - \overline{\Psi}_{13}(z_{1}),$$

$$\Omega_{1\Pi}(z_{1}) = \overline{\Phi}_{1\Pi}(z_{1}) + z_{1}\overline{\Phi}_{1\Pi}'(z_{1}) + \overline{\Psi}_{1\Pi}(z_{1}),$$
(5)

то для визначення напружено-деформованого стану пластини отримаємо

$$\begin{pmatrix} \widetilde{g} \\ \sigma_{rr} + i\sigma_{r\theta} \end{pmatrix} = \begin{pmatrix} \Phi_{23}(z) \\ \Phi_{2\Pi}(z) \end{pmatrix} - \frac{R^2}{r^2} \begin{pmatrix} \Phi_{23}(R^2/\overline{z}) \\ \Phi_{2\Pi}(R^2/\overline{z}) \end{pmatrix} + \left(1 - \frac{R^2}{r^2}\right) \left\{ \begin{pmatrix} \overline{\Phi_{23}(z)} \\ \overline{\Phi_{2\Pi}(z)} \end{pmatrix} - \overline{z} \begin{pmatrix} \overline{\Phi_{23}'(z)} \\ \overline{\Phi_{2\Pi}'(z)} \end{pmatrix} + \left(\frac{1 + \frac{\overline{z}}{z}}{z} \right) \begin{pmatrix} \overline{\Phi_{13}(z_1)} \\ \overline{\Phi_{1\Pi}(z_1)} \end{pmatrix} + \frac{\overline{z}}{z} \left\{ \begin{pmatrix} \Omega_{13}(\overline{z}_1) \\ -\Omega_{1\Pi}(\overline{z}_1) \end{pmatrix} - \left(z_1 - \overline{z}_1\right) \begin{pmatrix} \overline{\Phi_{13}'(z_1)} \\ \overline{\Phi_{1\Pi}'(z_1)} \end{pmatrix} \right\}, \quad (6)$$

$$\begin{pmatrix} \tilde{f} \\ -(2i\mu/z) \cdot \partial(u_{\Pi} + iv_{\Pi}) / \partial\theta \end{pmatrix} = \begin{pmatrix} \tilde{\kappa} \Phi_{23}(z) \\ \kappa \Phi_{2\Pi}(z) \end{pmatrix} + \frac{R^{2}}{r^{2}} \begin{pmatrix} \Phi_{23}(R^{2}/\bar{z}) \\ \Phi_{2\Pi}(R^{2}/\bar{z}) \end{pmatrix} - \begin{pmatrix} 1 - \frac{R^{2}}{r^{2}} \end{pmatrix} \left\{ \begin{pmatrix} \Phi_{23}(z) \\ \Phi_{2\Pi}(z) \end{pmatrix} - \left(1 - \frac{R^{2}}{r^{2}} \right) \right\} + \begin{pmatrix} \tilde{\kappa} \Phi_{13}(z_{1}) \\ \kappa \Phi_{1\Pi}(z_{1}) \end{pmatrix} - \begin{pmatrix} 1 + \frac{\bar{z}}{z} \end{pmatrix} \begin{pmatrix} \overline{\Phi_{13}(z_{1})} \\ \overline{\Phi_{1\Pi}(z_{1})} \end{pmatrix} - \frac{\bar{z}}{z} \left\{ \begin{pmatrix} \Omega_{13}(\bar{z}_{1}) \\ -\Omega_{1\Pi}(\bar{z}_{1}) \end{pmatrix} - (z_{1} - \bar{z}_{1}) \begin{pmatrix} \overline{\Phi_{13}'(z_{1})} \\ \overline{\Phi_{1\Pi}'(z_{1})} \end{pmatrix} \right\}, (7)$$

$$\begin{pmatrix} \partial g / \partial x \\ \sigma_{yy} - i\sigma_{xy} \end{pmatrix} = \begin{pmatrix} \Phi_{13}(z_{1}) \\ \Phi_{1\Pi}(z_{1}) \end{pmatrix} - \begin{pmatrix} \Omega_{13}(\bar{z}_{1}) \\ -\Omega_{1\Pi}(\bar{z}_{1}) \end{pmatrix} + (z_{1} - \bar{z}_{1}) \begin{pmatrix} \overline{\Phi_{13}'(z_{1})} \\ \overline{\Phi_{1\Pi}'(z_{1})} \end{pmatrix} + \begin{pmatrix} \Phi_{23}(z) \\ \Phi_{2\Pi}(z) \end{pmatrix} + \\ + \begin{pmatrix} 1 + \frac{R^{2}}{\bar{z}^{2}} \end{pmatrix} \begin{pmatrix} \overline{\Phi_{23}(z)} \\ \overline{\Phi_{2\Pi}(z)} \end{pmatrix} + z \begin{pmatrix} 1 - \frac{R^{2}}{r^{2}} \end{pmatrix} \begin{pmatrix} \overline{\Phi_{23}'(z)} \\ \overline{\Phi_{2\Pi}'(z)} \end{pmatrix} + \frac{R^{2}}{\bar{z}^{2}} \begin{pmatrix} \Phi_{23}(R^{2}/\bar{z}) \\ \Phi_{2\Pi}(R^{2}/\bar{z}) \end{pmatrix}, (8)$$

492

$$\begin{pmatrix} f \\ 2\mu \partial(u_{\Pi} + iv_{\Pi})/\partial x_{1} \end{pmatrix} = \begin{pmatrix} \tilde{\kappa} \Phi_{13}(z_{1}) \\ \kappa \Phi_{1\Pi}(z_{1}) \end{pmatrix} + \begin{pmatrix} \Omega_{13}(\bar{z}_{1}) \\ -\Omega_{1\Pi}(\bar{z}_{1}) \end{pmatrix} - (z_{1} - \bar{z}_{1}) \begin{pmatrix} \overline{\Phi'_{13}(z_{1})} \\ \overline{\Phi'_{1\Pi}(z_{1})} \end{pmatrix} + \begin{pmatrix} \tilde{\kappa} \Phi_{23}(z) \\ \kappa \Phi_{2\Pi}(z) \end{pmatrix} - \left(1 + \frac{R^{2}}{\bar{z}^{2}}\right) \begin{pmatrix} \overline{\Phi_{23}(z)} \\ \overline{\Phi'_{2\Pi}(z)} \end{pmatrix} - z \left(1 - \frac{R^{2}}{r^{2}}\right) \begin{pmatrix} \overline{\Phi'_{23}(z)} \\ \overline{\Phi'_{2\Pi}(z)} \end{pmatrix} - \frac{R^{2}}{\bar{z}^{2}} \begin{pmatrix} \Phi_{23}(R^{2}/\bar{z}) \\ \Phi_{2\Pi}(R^{2}/\bar{z}) \end{pmatrix},$$
(9)

де μ – модуль зсуву, ν – коефіцієнт Пуассона, E – модуль Юнга, $z_1 = x_1 + iy_1 = z - x_0$,

$$g = \frac{\partial w}{\partial x} + i \frac{\partial w}{\partial y}, \quad f = -\frac{1}{D(1-\nu)} \left(M_y + i\widetilde{c}' + iH_{xy} + i \int_{t_0}^t N_y(\tau) d\tau \right), \quad \kappa = \frac{3-\nu}{1+\nu}, \quad \tilde{\kappa} = \frac{3+\nu}{1-\nu}, \quad r^2 = z \cdot \overline{z},$$
$$\widetilde{g} = \frac{1}{iz} \frac{\partial}{\partial \theta} \left\{ \left(\frac{\partial w}{\partial r} + \frac{i}{r} \frac{\partial w}{\partial \theta} \right) e^{i\theta} \right\}, \quad f = -\frac{1}{D(1-\nu)} \left(M_r + iH_{r\theta} + i \int_0^s N_n(s) ds \right), \quad D = \frac{2Eh^3}{3(1-\nu^2)},$$

 H_{xy} і $H_{r\theta}$ – крутні моменти в декартові та полярній системах координат відповідно. Для функцій $\Phi_{23}(z)$ і $\Phi_{2\Pi}(z)$ справедливі подання

$$\Phi_{23}(z) = \begin{cases} A'_0 + A'_1 z + \dots, \ z \to 0, \\ B'_0 + B'_1 z^{-1} + \dots, \ z \to \infty, \end{cases}$$
(10)

$$\Phi_{2\Pi}(z) = \begin{cases} a'_0 + a'_1 z + \dots, \ z \to 0, \\ b'_0 + b'_1 z^{-1} + \dots, \ z \to \infty, \end{cases}$$
(11)

та виконуються умови

$$A'_0 + \overline{B}'_0 = 0, \ B'_1 = 0, \ a'_0 + \overline{b}'_0 = 0, \ b'_1 = 0.$$
 (12)

Задача згину пластини.

З крайової умови (2) та формули (9) отримаємо задачу лінійного спряження

$$(\widetilde{\kappa}\Phi_{13}(x_1) - \Omega_{13}(x_1))^+ - (\widetilde{\kappa}\Phi_{13}(x_1) - \Omega_{13}(x_1))^- = 0, x_1 \in L_1,$$

розв'язавши яку матимемо

$$\Omega_{13}(z_1) = \tilde{\kappa} \Phi_{13}(z_1). \tag{13}$$

На основі [2] функцію $\Phi_{13}(z_1)$ подамо у вигляді

$$\Phi_{13}(z_1) = \frac{1}{2\pi i} \int_{-l}^{l} \frac{y_1(t)dt}{t - z_1}, \quad y_1(x) = \frac{1}{1 + \tilde{\kappa}} \left[\frac{\partial g}{\partial x} \right].$$
(14)

Якщо ввести функцію

$$F_{3}(z) = \begin{cases} -\Phi_{23}(z) - \tilde{\kappa}\Phi_{13}(z - x_{0}), \ z \in S^{-}, \\ \tilde{\kappa}\Phi_{23}(z) + M_{0}(D(1 - \nu))^{-1} - (1 + R^{2}z^{-2})\overline{\Phi}_{13}(R^{2}/z - x_{0}) - \\ -R^{2}z^{-2} \{\tilde{\kappa}\Phi_{13}(R^{2}/z - x_{0}) - (z - R^{2}/z)\overline{\Phi}_{13}'(R^{2}/z - x_{0})\}, \ z \in S^{+}, \end{cases}$$
(15)

то, на основі (1) і (7), вона задовольняє задачу лінійного спряження

$$F_3^+(s) - F_3^-(s) = 0, \ s \in L.$$
 (16)

Врахувавши (10) і (14), розв'язок задачі (16) можна подати у вигляді $F_3(z) = -B_0'$,

звідки, беручи до уваги (15), отримаємо

$$\Phi_{23}(z) = \begin{cases} B'_0 - \tilde{\kappa} \Phi_{13}(z - x_0), \ z \in S^-, \\ (-B'_0 - M_0(D(1 - \nu))^{-1} + (1 + R^2 z^{-2})\overline{\Phi}_{13}(R^2/z - x_0) + \\ + R^2 z^{-2} \{ \tilde{\kappa} \Phi_{13}(R^2/z - x_0) - (z - R^2/z) \overline{\Phi}'_{13}(R^2/z - x_0) \} \} / \tilde{\kappa}, \ z \in S^+. \end{cases}$$
(17)

На основі крайової умови (2) та залежності (9) можемо записати $\tilde{\kappa}\Phi_{13}^+(x_1) + \tilde{\kappa}\Phi_{13}^-(x_1) + \tilde{\kappa}\Phi_{23}(x_1 + x_0) - \left\{1 + R^2(x_1 + x_0)^{-2}\right\}\overline{\Phi_{23}(x_1 + x_0)} - \left\{x_1 + x_0 - R^2/(x_1 + x_0)\right\} \times \overline{\Phi_{23}'(x_1 + x_0)} - R^2(x_1 + x_0)^{-2}\Phi_{23}(R^2/(x_1 + x_0)) = m(M_y + i\tilde{c}'), m = -(D(1 - v))^{-1}, x_1 \in L_1.$ (18)

494 XIII Internation Colloquium "MECHANICAL FATIGUE OF METALS"

Взявши до уваги вирази для функцій $\Phi_{13}(z_1)$ (14) і $\Phi_{23}(z)$ (17), для знаходження невідомої функції $y_1(t)$ з (18) отримаємо сингулярне інтегральне рівняння

$$\int_{-1}^{1} \left\{ K(\eta,\xi) Y_1(\eta) + L(\eta,\xi) \overline{Y_1(\eta)} \right\} d\eta = \widetilde{m} h N / M_0 + \widetilde{m} i c + P(\xi), \ \xi \in [-1,1],$$
(19)

де

$$L(\eta,\xi) = \frac{\lambda}{2\pi i} \left\{ -\frac{T}{\tilde{\kappa}} + \frac{T-X}{TX-1} + \frac{X-T-XT^{2}+T^{3}}{(TX-1)^{2}} \right\}, K(\eta,\xi) = \frac{\tilde{\kappa}}{\pi i} \frac{1}{\eta-\xi} + \frac{\lambda}{2\pi i \tilde{\kappa}} \left\{ -\tilde{\kappa}T + \frac{\tilde{\kappa}T-\tilde{\kappa}X+T+\tilde{\kappa}^{2}T}{TX-1} + \frac{3X-3T-T^{2}X+T^{3}}{(TX-1)^{2}} + \frac{4T^{2}X-2TX^{2}-2T^{3}}{(TX-1)^{3}} \right\}, P(\xi) = 1.5(1+\nu),$$

$$T = X_{0} + \lambda\eta, X = x_{0} + \lambda\xi, \ \lambda = l/R, \ X_{0} = x_{0}/R, \ x_{1} = l\xi, \ t = l\eta, \ c = Eh^{3}\tilde{c}'/M_{0},$$

$$\tilde{m} = -1.5(1+\nu), \ y_{1}(t)Eh^{3}/M_{0} = Y_{1}(t) = Y_{11}(t) + iY_{12}(t), \ Y_{1j}(t) - \text{дійсні функції} \ (j = 1,2).$$

Рівняння (19) доповнюємо додатковими умовами

$$\int_{-1}^{1} Y_{1}(\eta) d\eta = 0, \quad \int_{-1}^{1} \eta Y_{11}(\eta) d\eta = 0, \quad (20)$$

які виражають собою однозначність кутів повороту та прогину пластини при обході контуру тріщини.

Плоска задача.

Для плоскої задачі на основі формул (6)-(12) та крайових умов (1), (2), як це було зроблено у задачі згину, можна отримати наступні співвідношення

$$\Phi_{\Pi}(z_1) = \Omega_{\Pi}(z_1), \qquad (21)$$

$$\Phi_{1\Pi}(z_1) = \frac{1}{2\pi} \int_{-l}^{l} \frac{g_1'(t)dt}{t - z_1}, \ g_1'(x_1) = \frac{2\mu}{i(1 + \kappa)} \left[\frac{\partial(u_{\Pi} + iv_{\Pi})}{\partial x_1} \right], \tag{22}$$

$$\Phi_{2\Pi}(z) = \begin{cases} b'_{0} + \Phi_{1\Pi}(z - x_{0}), \ z \in S^{-}, \\ b'_{0} - (1 + R^{2} z^{-2}) \overline{\Phi}_{1\Pi}(R^{2} / z - x_{0}) + R^{2} z^{-2} \{ \Phi_{1\Pi}(R^{2} / z - x_{0}) + (z - R^{2} / z) \overline{\Phi}_{1\Pi}(R^{2} / z - x_{0}) \}, \ z \in S^{+}. \end{cases}$$
(23)

З крайової умови (2) та формули (8) отримаємо

$$0.5 N/h = \Phi_{1\Pi}^{+}(x_{1}) + \Phi_{1\Pi}^{-}(x_{1}) + \Phi_{2\Pi}(x_{1} + x_{0}) + \left\{1 + R^{2}(x_{1} + x_{0})^{-2}\right\} \Phi_{2\Pi}(x_{1} + x_{0}) + \left\{x_{1} - R^{2}/(x_{1} + x_{0})\right\} \Phi_{2\Pi}'(x_{1} + x_{0}) + R^{2}(x_{1} + x_{0})^{-2} \Phi_{2\Pi}(R^{2}/(x_{1} + x_{0})), x_{1} \in L_{1}.$$
(24)

Врахувавши залежності (21)-(23), на основі (24) отримаємо сингулярне інтегральне рівняння для знаходження невідомої функції $g'_1(t)$, яке в безрозмірних координатах має вигляд

$$\int_{-1}^{1} \left\{ R(\eta,\xi) G_{1}'(t) + S(\eta,\xi) \overline{G_{1}'(t)} \right\} d\eta = -0.5 \, hN/M_{0} \, , \, \xi \in [-1,1],$$
(25)

де

$$S(\eta,\xi) = \frac{\lambda}{2\pi} \left\{ T + \frac{T-X}{TX-1} + \frac{X-T-T^2X+T^3}{(TX-1)^2} \right\}, \ R(\eta,\xi) = \frac{1}{\pi(\eta-\xi)} + \frac{\lambda}{2\pi} \left\{ T + \frac{2T+T-X}{TX-1} + \frac{3X-3T-T^2X+T^3}{(TX-1)^2} + \frac{4T^2X-2TX^2-2T^3}{(TX-1)^3} \right\}, \ \frac{h^2g_1'(t)}{M_0} = G_1(t) = G_{11}(t) + iG_{12}(t),$$

 $G_{1i}(t)$ – дійсні функції (j = 1, 2).

Виходячи з умов однозначності переміщень при обході контуру тріщини, отримаємо

$$\int_{-1}^{1} G_{1}(\eta) d\eta = 0.$$
 (26)

Зауважимо, що на основі (2) функції $Y_{12}(\eta)$ і $G_{11}(\eta)$ пов'язані співвідношенням

$$G_{11}(\eta) + \frac{1 + \tilde{\kappa}}{(1 + \kappa)(1 + \nu)} Y_{12}(\eta) = 0, \ \eta \in [-1, 1].$$
(27)

Маючи вираз для комплексних потенціалів плоскої задачі та задачі згину, можемо обчислити коефіцієнти інтенсивності зусиль (КІЗ) і моментів (КІМ) [2].

Числовий аналіз задачі та висновки.

Отримана система сингулярних інтегральних рівнянь (19), (20), (25)-(27) розв'язана чисельно за допомогою методу механічних квадратур [11]. Проведено числовий аналіз задачі, який подано на рис. 2-5 при v = 0.3. Якщо вважати, що пластина безмежна ($\lambda = 0$), то приходимо до результатів робіт [4, 6], а у випадку центральної тріщини ($X_0 = 0$) – до результатів роботи [8].

приведеного контактного зусилля для $\lambda = l/R = 0.5$ при різних $X_0 = x_0/R$ (крива 1 – $X_0 = 0$, крива 2 – $X_0 = 0.3$, крива 3 – $X_0 = 0.4$).

приведеного контактного зусилля для $X_0 = x_0/R = 0.25$ при різних $\lambda = l/R$ (крива 1 — $\lambda = 0$, крива 2 — $\lambda = 0.3$, крива 3 — $\lambda = 0.4$).

Як видно з рис. 2 і 3 контактне зусилля між берегами тріщини для круглої пластини з прямолінійною тріщиною є меншим ніж для безмежної пластини з тією ж тріщиною [4]; при наближенні тріщини до межі пластини контактне зусилля поблизу тієї вершини, яка знаходиться ближче до краю пластини; мінімум контактного зусилля зменшується при наближенні тріщини до краю пластини.

На основі рис. 4 можна зробити висновки: при віддалені тріщини від центру пластини КІМ у вершині B зростають, а у вершині A спочатку спадають а потім починають зростати; КІМ з урахуванням контакту берегів тріщини є значно менші ніж без його врахування; КІМ для круглої пластини є більшими ніж для безмежної пластини [8]; чим довша тріщина в порівнянні з радіусом кругової пластини тим КІМ є більшими; КІМ у вершині B є більшими ніж у вершині A.

Рис. 4. Графічна залежність приведених коефіцієнтів інтенсивності моментів $K^* = K_1/(M_0\sqrt{l})$ від відносної відстані від центру тріщини до центру пластини при різних довжинах тріщини (крива 1 – $\lambda = l/R = 0.1$, крива 2 – $\lambda = 0.4$, крива 3 – $\lambda = 0.7$).

Числовий аналіз показав, що між КІМ K_1 та КІЗ $k^* = k_N / (M_0 \sqrt{l}) = k_1$ існує залежність

$$\frac{k_1}{K_1} = \frac{3(1+v)}{3+v}$$

тому графічної залежності для КІЗ k_1 не наводимо.

На основі енергетичного критерію руйнування [12-14] знайдемо величину приведеного граничного моменту $\tilde{M} = \frac{M_0}{2h^2} \sqrt{\frac{\pi l}{2\gamma_* E}}$ з урахуванням контакту берегів тріщин (суцільні лінії)

$$\tilde{M} = \frac{M_0}{2h^2} \sqrt{\frac{\pi l}{2\gamma_* E}} = \frac{3+\nu}{\sqrt{6(1+\nu)(3+2\nu)}} \frac{1}{K_1}$$

та без врахування контакту берегів тріщини (штрихові лінії)

$$\widetilde{M} = \frac{M_0}{2h^2} \sqrt{\frac{\pi l}{2\gamma_* E}} = \sqrt{\frac{3+\nu}{3+3\nu}} \frac{1}{K_1},$$

де γ_* – густина ефективної поверхневої енергії матеріалу.

Як видно з рис. 5 величина критичного моменту, коли проходить руйнування пластини, спадає при зростанні відносної довжини тріщини λ ; врахування контакту берегів тріщини приводить до збільшення величини критичного моменту в порівнянні, якщо, контакту берегів не враховувати; при віддалені тріщини від центру пластини критичне значення моменту спадає.

Рис. 5. Графічна залежність приведеного критичного моменту від відносної довжини тріщини $\lambda = l/R$ при різному розміщенні тріщини (крива 1 – $X_0 = x_0/R = 0$, крива 2 – $X_0 = 0.3$, крива 3 – $X_0 = 0.7$).

Література

- 1. Бережницький Л. Т., Делявський М. В., Панасюк В. В. Изгиб тонких пластин с дефектами типа трещин. К.: Наук. думка, 1979. 400 с.
- Саврук М. П. Двумерные задачи упругости для тел с трещинами. К.: Наук. Думка, 1981. 324 с.
- 3. Прусов И. А. Метод сопряжения в теории плит. Минск, Изд-во БГУ, 1975. 256 с.
- 4. Шацький І. П. Згин пластини, ослабленої розрізом з контактуючими берегами. Доп. АН УРСР. Сер. А. Фіз.-мат. та техн. науки, 1988, № 7. с. 49-51.
- 5. І. Шацький, В. Перепічка, Т. Даляк, А. Щербій. Задачі теорії пластин та оболонок із взаємопов'язаними крайовими умовами на розрізах// Матем. проблеми механіки неоднорідних структур: в 2-х т. Львів: Каменяр, 2000. Т. 2, с. 51-54.
- 6. M. J. Young, C. T. Sun. Influence of crack closure on the stress intensity factor in bending plates A classical plate solution. International journal of fracture. Vol. 55, 1992. pp. 81-93.
- 7. Y. W. Kwon. Finite analysis of crack closure in plate bending. Computers and Structures. Vol. 32, No. 6, 1989. pp. 1439-1445.
- 8. Опанасович В., Слободян М. Згин круглої пластини з центральною тріщиною з урахуванням контакту її берегів // Тези всеукраїнської наукової конференції "Сучасні проблеми механіки". Львів, 5-8 грудня 2005 р. с. 15-16.
- 9. Мусхелишвили Н. И. Некоторые основные задачи математической теории упругости. М.:Наука, 1966. 708 с.
- 10. Прусов И. А. Некоторые задачи термоупругости. Минск: Изд-во Белорус. ун-та, 1962. 200 с.
- 11. Панасюк В. В., Саврук М. П., Дацышин А. П. Распространение напряжений около трещин в пластинах и оболочках. К.: Наук. думка, 1976. 444 с.
- 12. Осадчук В. А. Напряженно-деформированное состояние и предельное равновесие оболочек с разрезами. Киев: Наук. думка, 1985. 224 с.
- 13. Шацкий И.П. Взаимодействие коллинеарных разрезов с контактирующими кромками в изгибаемой пластине // Физ.-хим. механика материалов. 1990. 26, № 3. с. 70-75.
- A. L. Zehnder, M. J. Viz. Fracture mechanics of thin plates and shells under combined membrane, bending and twisting loads. Applied mechanics reviews. – 2005. – Vol. 58, Issue 1. – pp. 37-48.