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Abstract Fatigue is the primary reason for the failure of structural components. Resistivity of 
a coarse grain heat affected zone against fatigue crack initiation in presence of micro-defects 
is discussed in the present article. Samples of material with a martensitic coarse grain heat 
affected zone microstructure were prepared by proper thermal treatments. Microstructurally 
small holes were used as artificial micro-defects. They were created by drilling. Compressive 
residual stresses appear in the material due to the irreversibility of plastic deformation. 
Moment of hole drilling enables to prepare samples with and without effects of residual 
stresses. Critical stress level for fatigue crack initiation depends on the actual size of the hole. 
The location and the way of crack initiation is affected by the presence and character of 
residual stresses. 
 

Introduction 
Welds consist of base material, heat affected zone (HAZ) and weld metal. Figure 1 

shows the weld microstructure. The filler material and part of the base material melt down 
during welding and form solidified weld metal while the base material in the close vicinity 
undergoes transformation to HAZ.  

The HAZ formation is result of an applied thermal cycle caused by the heat source 
movement, which is necessary to melt material during welding. The effects of the thermal 
cycle diminish with the distance from the fusion line. The material close to the weld metal is 
exposed almost to the melting point. High temperatures give rise to grain growth. The result is 
formation of a coarse-grain microstructure in the so-called coarse-grain heat-affected zone 
(CGHAZ) found adjacent to the fusion line. The coarse grain microstructure influences the 
mechanical properties, such as impact toughness and fatigue limit. 

 
Table 1: Chemical composition of the steel CT781 

Elem. C Si Mn P S Cr Ni Mo Cu Al 
wt. [%] 0.18 0.22 0.43 0.012 0.028 1.56 1.48 0.28 0.15 0.023 
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Figure 1: The microstructure across the 

weld  
Figure 2: The simulation of HAZ 

microstructure using a thermal-cycle simulator 
 
Concentration of the stress appears at the weld toes of loaded welds, due to the shape of 

the solidified weld metal. The location of stress concentration in Figure 2 is marked as Kt 
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(left, above). In order to avoid stress concentration at the weld toes fine grinding of weld 
reinforcement is sometimes performed, but it is economically hardly acceptable. If grinding of 
welds is not carried out, the fatigue strength is certainly reduced.  

Weld defects in the weld metal and HAZ appear mainly due to insufficiently controlled 
process of welding. Non-destructive examination methods are successfully used to assure 
regular soundness of welds. Defects, smaller than the threshold sensitivity of the method, 
cannot be detected. Presence of those small defects in welds caused either by welding or base 
metal production can promote crack initiation during cyclic loading. The final consequence of 
defects is lower fatigue strength of welds. 

The effect of defect on the fatigue limit of polycrystalline metals ceases to exist when its 
size is smaller than the biggest microstructural units [1]. Such microstructurally small defects 
are micro-defects. Grains are usually the biggest microstructural units of a CGHAZ. 

During cyclic loading at a sufficient high level fatigue cracks appear due to the 
interactive effect of micro-defects and applied remote stress. The first stage of the fatigue 
crack appearance is crack initiation. Crack initiation in the specimens with micro-defects of 
the size of microstructural units is made easier because of the locally enhanced stress/strain 
field. 

Crack initiation from micro-defects is followed by unusual fast crack growth [2]. Grain 
boundaries are strong barriers for the crack growth in this early sequence of fatigue crack 
propagation. However, growth rate of cracks smaller than grains decreases when crack tip 
approaches grain boundary. If the level of cyclic stress is not enough high to overcome such 
obstacles, crack growth will stop. Stable cracks are non-propagating cracks. 

Welding residual stresses are present in the welds in the as-welded condition [3]. 
Tensile welding residual stresses promote crack emanation from micro-defects, while 
compressive ones have an opposite effect. 

For all above described reasons CGHAZ often represents the weakest link of cyclically 
loaded high quality welds because of 

- coarse grain microstructure 
- changed mechanical properties 
- welding residual stresses 
- stress concentration due to weld shape 
- existence of defects 

Only if fatigue tests are executed on actual welds and after that specimens with an 
initiated fatigue crack examined in details the most critical HAZ microstructure will be 
located. Fatigue limit prediction of welds with or without micro-defects is therefore a 
thankless task. 

Artificial HAZ microstructures can be used to study behaviour of different areas of 
welds during fatigue [4-8]. The advantages of such an approach are: 

- identical microstructure in an extensive volume of the sample 
- homogeneity of material, i.e. without present weld defects 
- absence of the welding residual stresses 
- possibility to simulate effects of defects by preparing artificial micro-defects 

The fact that preparation of artificial micro-defects in mechanical way results in 
appearance of residual stresses is crucial for the behaviour of polycrystalline metals with such 
defects. Residual stresses can be tensile or compressive and sometimes even at the yield point 
of the material.  The main reason of residual stress appearance due to micro-defects 
preparation is irreversibility of material plastic deformation. 

All residual stresses have effect on the fatigue crack initiation from micro-defects. Local 
very high residual stresses can even change the actual shape of prepared micro-defect. 

To evaluate the effects of defect size to the fatigue limit alone, effects of residual 
stresses due to artificial defects preparation should be omitted. Electro-etching is usually used. 
Part of material with the highest stress is removed without plastic deformation. In this way the 
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residual stress level is substantially lowered. Unfortunately, removing of residual stresses by 
etching is accompanied with change of shape and size of the micro-defects.  

The aim of this article is to discuss about the influence of residual stresses caused by 
drilling small holes to the fatigue strength of coarse grain steel. 
 

Material, specimens and experimental procedure 
 
Testing which is impossible with samples of materials from the real welds, as the tensile 

test, the impact test, the fatigue test etc, is easily performed using specimens with artificial 
HAZ microstructure. Microstructure is prepared by simulation using either a weld thermal 
cycle simulator or a furnace. 

Data on heating rate (T& ), peak temperature (Tmax) and cooling time (∆t8/5) are used for 
simulation of thermal conditions during welding. Sketch in Figure 2 (right, above) presents a 
temperature lapse during preparation of CGHAZ microstructure using a weld thermal cycle 
simulator. Actual simulation is shown in the photograph (right, below). Few shapes of 
specimens with the limited volume of simulated CGHAZ microstructure located in the middle 
of the specimen’s length (shaded areas) are shown in the drawing (left, below). 

If CGHAZ microstructure is prepared in a furnace an appropriate heat treatment should 
be applied to the pieces of base material in order to obtain as coarse grain microstructure as 
relevant microstructural constituents. In the first part of the heat treatment a coarse grain 
annealing should be performed to obtain right grain size, in the second one, suitable 
quenching medium should be used to assure formation of the expected microstructural 
constituents. The main advantage of HAZ microstructure simulation in furnace is 
homogeneous microstructure in the whole specimen not only in a limited volume.  

Nickel-molybdenum steel CT781 (W. Nr. 1.6587) is used in the research. Its chemical 
composition is presented in Table 1. The steel is used in the automotive industry.  

In order to form CGHAZ microstructure using weld thermal cycle simulator a thermal 
cycle with T& = 200°C/s, Tmax =1350°C, ∆t8/5 = 5 s is simulated. Simulation parameters define 
“cold” welding, resulting in martensitic microstructure with the grain size of approx. 200 µm 
(Figure 3a) and hardness 460 HV10.  

 

  
a) b) 

Figure 3: Microstructure of the simulated CGHAZ: a) preparation using the welding 
thermal simulator, b) preparation in the furnace 
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Figure 4: The heat treatment for CGHAZ formation in the furnace 
 
The aim of the CGHAZ microstructure simulation in furnace was to prepare the same 

microstructure in the whole sample (Figure 4). At the first step suitably shaped samples of 
steel are heated in the furnace to 1100°C and held for 3 hours. Grains grow to the size of 
approx. 200 µm. The coarse grain annealing, is followed by cooling in water. The next step is 
heating to 870°C and water quenching. The result of combined thermal treatment is 
martensitic microstructure. The grain size and the hardness of this microstructure is the same 
as that prepared with the thermal cycle simulator; only the martensitic needles are somewhat 
finer (Figure 3b). 

In order to determine the fatigue limit of CGHAZ material rotary bending fatigue test 
was used. Dimensions of the circumferentially notched bend specimen are shown in Figure 5. 
Stress at the bottom of the notch is concentrated (theoretical stress concentration factor Kt = 
1.74 [9]). Stress due to cyclic bend-loading during the test is alternating (stress rate R = − 1). 
Microstructurally small defects (micro-defects) at the bottom of the notch are prepared by 
drilling holes with diameter approximately 90 µm and depth 50 µm. It is obviously that the 
prepared holes belong to micro-defect because they are smaller than the biggest 
microstructural unit, i.e. average grain. 

 
Figure 5: Rotary bending specimen 

 
During the cyclic loading at a specified level fatigue cracks appear due to the interactive 

effect small hole and applied stress. The moment of crack initiation was detected, testing 
stopped and specimen analysed using optical and scanning microscopes. 

A volume of material is plastically deformed when drilling hole. Level of generated 
residual stresses depends on material properties, their expansion on the volume of deformed 
material. The effects of those residual stresses are crucial for the fatigue crack initiation stage 
and early growth of micro-cracks. 

A new approach to remove residual stresses was necessary in the experimental work 
with drilled holes. Re-crystallisation during transformation in the last stage of CGHAZ 
simulation using furnace seems a convenient way to remove residual stresses without 
significant change of defect’s geometry. 

Therefore, two stress conditions of the specimen with small holes were prepared: 
1. as-drilled condition, i.e. with residual stresses (drilling is executed after the complete heat 

treatment for CGHAZ simulation – point 2 in Figure 4) 
2. residual stress-free condition, i.e. without residual stresses (drilling is executed before 

heating for water quenching − point 1 in Figure 4) 
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Results and discussion 
 
Unification of effects of small defects, small cracks, small inclusions etc on the fatigue 

strength of metals was studied by Murakami and Endo more than twenty years ago [10]. They 
did not approach it as a notch problem. The fatigue limit of polycrystalline metals was 
interpreted as the condition for non-propagation of cracks emanating from defects. They 

introduced geometrical parameter of small defects area  with which the transition from the 
non-propagating crack to the propagating crack condition is defined. It is the square root of an 
orthogonal projection of micro-defect to the plane of applied stress. This defect size parameter 
was used with great success as quantitative measure of detrimental effect of small defects to 
the fatigue strength of metals [11-18]. The greatest portion of published results is dealing with 
the effects of drilled small holes, though other kind of small defects were used, too. 

Geometrical concept of area of a drilled hole is shown in Figure 6 (the shaded area). 
Residual stresses caused by hole-drilling of strain-hardening elastic-plastic steel are 
compressive in the surrounding area of the hole. It is possible that prepared hole even slightly 
changes shape due to elastic stress relaxation after drilling.   

 

 
Figure 6: Orthogonal projection of the hole to the plane of applied stress 

 

According to Murakami, fatigue limit and threshold stress intensity factor of 

polycrystalline metals are calculated from parameter area  and hardness [11,12] as:  
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σw is fatigue limit in MPa, th∆K  threshold stress intensity factor in MPa m1/2, while HV is 

Vickers hardness number and area  defect’s size parameter in µm. For the used holes it is 
equal to approximately 58 µm. 

The dimensions of drilled hole used as a micro-defect in the present research are: length 
and depth, d and h (Fig. 6). Stress intensity at the deepest point of the outlined ellipse is lower 
than that at the surface [19]. Therefore, crack from drilled hole is expected to initiate at the 
surface. Different crack grow rate due to different stress intensity range in different directions 
gradually fulfils necessary crack shape condition (aspect ratio approximately 0.4). 

In the material treated as continuum the highest stress concentration caused by such 
hole exists at the surface. This is the next reason to expect crack initiation at the surface.  

In the case of polycrystalline metals with micro-defects stress intensity along the crack 
periphery cannot be defined. Stress/strain field depends on the orientation of grains, too. 
Nevertheless, crack initiation from the used micro-defect is most likely at the surfaces. Cracks 
will then continue its propagation and finally will comprise the whole drilled hole as 
schematically shown in Fig. 7. 
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Figure 7: Four stages of crack initiation and early growth from drilled hole in the 

residual stress-free condition 
 

Fatigue limit of smooth specimens with the studied simulated CGHAZ material, i.e. 
without drilled holes, is 751 MPa. First non-propagating cracks of size smaller or equal to 
grain size were perceived at the stress level 733 MPa.  

Un-designedly created compressive residual stresses due to material cutting during 
drilling are limited to nearby surroundings of the hole. They act as an additional obstruction to 
crack initiation. This can be illustrated as follows: 
a) Residual stress-free condition  

As shown in Fig. 8 numerous cracks initiated from the hole at the stress level of 410 MPa. 
All of them are at this stage non-propagating cracks because their lengths are constant 
during the last few million cycles. 

b) As-drilled condition 
 

 
 

        
 

Figure 8: Non-propagating cracks initiated at the edge of the hole perpendicular to the 
applied cyclic stress in the residual stress-free condition 
 

As shown in Fig. 9 only one crack initiated at each side of the hole at the stress level of 
694 MPa. All of them are non-propagating cracks at this stage because their lengths are 
constant during the last million cycles. 

If stress level is higher than 410 and 694 MPa, respectively, initiated cracks (stage 1 in 
Fig. 7) continue to propagate further at the specimen’s surface and towards the bottom of the 
hole (stages 2 and 3 in Fig. 7). The effect of cracks depends on the sum of crack lengths and 
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lengths of the defect, d. When both cracks approach the deepest point of the hole, cracks 
become a single crack (stage 4 in Fig. 7). After that crack continue to propagate without 
influence of the hole.  

Differences of crack/cracks initiation in both stress conditions illustrate the stress level, 
the number of initiated cracks and the mode of early crack growth: 
− Stress level to perceive crack initiation in the residual stress-free condition is 400 MPa 

while it is 525 MPa in the as-drilled condition. The difference is 125 MPa, i.e. 25%. The 
compressive residual stresses nearby hole obstruct crack initiation. It is quite likely that 
crack in the as-drilled condition actually does not initiate just at the edge of the hole where 
residual stresses are the highest. 

− Numerous of cracks are initiated in the same time in the residual stress-free condition. 
Stress/strain conditions for crack initiations are almost the same in wider zone just at the 
edge where stress is concentrated when obstruction does not exist. 

− Crack propagation is relatively straight in the as-drilled conditions while it propagates in a 
zigzag in the residual stress-free condition    

The reason for described crack behaviour during initiation and early crack/cracks 
growth are residual stresses arisen as a result of drilling. They are compressive. The highest 
level of those stresses exists just at the edge of the hole where cracks tend to initiated due to 
free surface which is the most favourable site for slip and later for crack initiation. When 
initiated cracks are spread far enough, they join and spread further as a single crack. 

 

 
 

        
 

Figure 9: Non-propagating cracks initiated at the edge of the hole perpendicular to the 
applied cyclic stress in the as-drilled stress condition 

 
Conclusion 
Artificially defected specimens with simulated microstructure of CGHAZ were fatigue 

tested. Crack initiation and its early growth was followed and analysed. The effects of 
residual stresses caused by drilling were discussed. 
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Actual shape of a hole is needed to calculate defect size parameter area  which enables 
assessment of the fatigue limit, σw, and the threshold stress intensity factor, ∆Kth, of materials 
with micro-defects.  

Residual stresses in the nearest surroundings of an artificial micro-defect have decisive 
effect on the stress level sufficient to cause initiation of the crack from small hole. Cracks 
initiation depends on the residual stresses.  If residual stresses exist, only one crack will 
initiate at the edge of the hole at higher stress level, but, if  residual stresses do not exist there 
are more initiated cracks at 25% lower stress level. 
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