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MULTIFRACTAL APPROACH TO THE DESCRIPTION
AND WAVELET ANALYSIS OF THE FATIGUE DAMAGE

R.l. Zainetdinov
Moscow State University of Railway Communicationpktow, Russia

Abstract A phenomenological model for the multifractal dgstion of the fatigue damage
accumulation has been introduced. The multifragtak@ach gives probabilistic evidence for
the existence of a constructive process hidden he temporal pattern of damage
accumulation. It is shown that a series of Bernamihls results in multiplicative bi- or
polynomial process that recursively generates theltifnactal probability measure.
Connection between parameter of the Bernoulligreald multifractal spectrum is considered.
A technique for revealing the multifractal propestiof the damage accumulation is proposed.
For the approbation of the technique, a computeulsition study has been done. The wavelet
transform has been used for revealing the intritesoporal structure of data sets obtained
from numerical simulation, tests, empirical obséoregs and measurements.

1. Introduction

The purpose of the paper is to introduce an appiicatf the multifractal theory in the
reliability engineering, risk analysis and othdedds where we deal with series of events of
damage accumulation. We do not know whether som®pdeal pattern is hidden in an
apparently disordered set of events. The multifidbeory is a good basis for describing the
event sequence in time. It can provide a deepegrgtahding the nature of the event flow.
In reliability engineering for instance, the Weibdistribution is one of the most widely used
distribution because through the appropriate choicparameters a variety of failure rate
behaviors can be modeled. The two-parameter Wedlsiitibution assumes that the failure
rateA(t) is in the form of a power law [1]:

NOEL PN (1)

for all t= 0, wherea andA are positive and are referred to as the shapeeald parameters
of the distribution respectively. Such power lawgh integer or fractional exponents, are in
fact endless source of self-similarity or precisalglif-affinity. They can be qualified as self-
affine functions since their graphs are similattemselves when transformed by anisotropic
dilations. Deeper insight into damage accumulatitsprediction and prevention is to be
gained by using the multifractal approach.

In this paper, we present a technique for reveatimeg multifractal properties of the
damage accumulation process. For the approbatidheofechnique, a computer simulation
study has been done. Wavelet analysis was cardeth@rder to verify the fractality of data
sets obtained from numerical simulations, tests apdration. The continuous wavelet
transform of empirical data on damage accumulatimvides probabilistic evidence that a
multifractal description is appropriate.

2. Mathematical model. We refer to the failure sequence associated witmage
accumulation as a succession of appearance ofatheef events in time. A mathematical
construction that represents an event sequenceetsod the random points on the time scale
is referred to as a stochastic point process. Anuliagrete processes, point processes are
widely used in engineering to describe the randeents occurring in a system during its
lifetime (e.g., failures, jumps of damage accumaifgt terminations of repair, demand
arrivals, etc.). The point process can either beeateadas a list of impulses (jumps) located at
times where events occur or as a count proces#asim a sense to the “devil staircase”
fractal. Such a process may be called fractal win@mmber of the relevant statistics of the
point process exhibits scaling with related scakxgonents, indicating that the represented
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phenomenon contains clusters of events over avelatarge set of time scales. This scaling
leads naturally to power-law behavior.

Let S be a sample of events of limited size dNiring the specified period of time
[0, Tmay. The process time history for the sample S isasgnted by a sequence of idealized
impulses (jumps) of vanishing width, located atcsjied moments of the event tingi),
(i=1,..., N). Further, let us rescale the tim@) of every i-th member of sample S on the
maximum valuamax t(i) =1(i) / Tmax NOW we can consider the event distribution onuthig
interval of timeT = [0, 1]. In order to characterize this distributive divide the unit interval
into temporal subintervals of duratidit = 2". So N= 2" subintervals are needed to cover
interval T, wheren is the number of generation in the binary subdwisof the temporal
interval T. Let us label the subintervals by the index j 402, ...,V -1. The distribution of
the sample population over the temporal intervaliscified by the numbers;,Nof members
of the sample S in the j-th subinterval. We useftaetion of the total populatiop; = N;/ Ng
as a probabilistic measure for the content in debial At;. The setQ of such probabilistic
measures, :{ﬂj}jN:-; presents a complete description of the eventtsililion on intervallT

at stated resolutioft.

Now let us consider a case that satisfies the Bdlinimial conditions. In our inter-
pretation an event of interest is the failure, asged with damage accumulation, occurred on
the first half of intervall with probabilityp. The series of Bernoulli trials with paramepes
a sequence of generic independent trials in whiehetare only two outcomes, and probabi-
lity premains the same for all generations of the bisabdivision process of the interval

In the case of Bernoulli trials the probabilistieasureu is recursively generating by a
multiplicative binomial process (MBP) [2,3]. The pess provides an example of a
probability which has a rich asymptotic structunel as, in modern terms, multifractad]] In
fact, the binomial multifractal measure is a prddat the multiplicative cascade, which
attributes probabilities, to the dyadic tempordliatervals of the interval.

3. Wavelet transform of a measureWavelet transforms play an important role in thedgt
of self-similar and self-affine measures. The cardus wavelet transform (CWT) A u(t)}
of a measurg(t)

Woo{ 22D} = Iy W (D) A2 (1) (2)

is defined in terms of projections pft) onto a family of functions of the form

W (t)= Ial‘“w(t_bj

a

3)

normalized byda*2 In Eq.(2)Suppy is the support of measupe This family of functions
(3) formed by the dilations, which are controlled the positive real numbeaallR+, and
translations which are controlled by the real nuntidéR, of a single functiom)(t) named the
mother wavelet. The dilation parameteicontrols the frequency af.(t). The translation
parameteb simply moves the wavelet throughout the domain.

The wavelet transform can be regarded as a mathmhaticroscope [5,6]. Wavelet
analysis is a powerful tool for locating singuleest because a singularity of a meagu(t¢ at
t(i) produces a cone-like structure in the wavédansform Wy{ u(t)}, pointing towards the
point a=0, b=t(i). The wavelet transform assists visualizatidnself-similar or self-affine
properties of multifractal objects [5]. In partiad| it illustrates the complexity of the
multifractal under consideration, revealing ther&iehy that governs the relative positioning
of the singularities of a probabilistic measyé). In the point stochastic process which
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represents the damage accumulation time historgettengularities model the relative
positioning of the damage jumps in the courseroéti

4. Computer simulation study.For the approbation of the technique, a computaulsition
study has been done. As a first step, we haveechwut a multiscale analysis of data
generated by MBP as a result of the series of Relirtdals. The MBP produces shorter and
shorter temporal subintervalst that contain less and less fractions of the tatabhsure.
Finally the process generates a multifractal measupported by a generalized Cantor set on
the unit temporal interval T = [0, 1]. Fig. 1,a sf®the plot of the probability mass function,
that is measurel(x) of subinterval, located at x as a result of Bernoulli trials with
parameterp = 0.25 after n =12 generations. Fig. 1,b shows ple of the cumulative
distribution function F(x) for the MBP, that is th@easure for the interval [0, x], as a function
of x

FO = 4. @

The cumulative distribution function for the MBP rasevident feature, that is the self-
affinity of the function F(x), so the measure F(or the interval [0, X] is scaling in the sense
that the left half of line 2 in Fig. 1,b is obtath&om the whole, and the right half from the
whole when transformed by anisotropic dilations.
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Fig. 1. The computer simulation results: a - proligbimass function p(x);
b - cumulative distribution function F(x) for MBPegerated by Bernoulli trials with
p=0.25 (line 2);p=0.75 (1) and for Poisson process@.5) with parameteA=0.1 (3) and
A=0.5 (4)
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Connection between parameferof the Bernoulli trial and multifractal spectrura i
considered in [4]. Three types of the failure-caguggrocess associated with typical form of
cumulative distribution function are consideredoqass with early failures (whegm> 0.5),
independent procesp € 0.5), and process with late failurgs<{0.5). We use the forms for
describing the damage accumulation process: tis¢ firocess corresponds to the cyclic
softening of material, the second - to a unique agarevolution (Palmgren-Miner's rule) and
the third - to the cyclic hardening of material.[7]

In order to verify the fractality of data obtaindm numerical simulations the CWT of
the measure generated by the MBP was carried ouisimg the WavelLab package [6]. A
“Mexican hat” wavelet was used because it providetler visualization [8,9]. The graph of
the local maxima lines of the CWT skeleton for meagyt) generated by the MBP with
p=0.25 on the generalized Cantor set is shown inZighe maxima lines are converging
towards the singularities of the measure, and tBpyoduce its hierarchical structure [5]. The
symmetry of graph is broken by the non-uniform measThe successive forkings occur at
different scales. They reveal the multifractal natwf measure. By using the classical
example of the Bernoulli trials we have provedtdhnique and software.

5. Wavelet analysis of datasetsWavelet analysis is known to be a powerful tool for
analyzing fractal attractors. We have applied tMéTQo data on fractures obtained from tests
and operation. Wavelet transform provides a twoetlisional unfolding of the one-
dimensional time history, resolving both the tinmel ahe scale as independent variables. The
multifractal structures proposed in the damage mactation process are real-time structures,
in contrast to fractal attractors, which resideirase space. Thus the wavelet analysis can be
applied directly to data obtained from tests, ofp@naor from inspections of technical state in
operation.

Birnbaum-Saunders et al. data [10] have been u&edording to [10,11] the test
specimens were 6061-T6 aluminum strips. They werkectefl in reverse bending and three
stress amplitudes were used: 145 MPa, 179 MPaMB4 - for the first, second and third
sample respectively. Specimens were tested tordaillhe plots of empirical distribution
function F(N) as a function of the loading cycles Bre shown in Fig. 3. The empirical
distribution functions of the lifetime data are tbeamples of non-differentiable functions,
they are constant almost everywhere except in tpoggs where failures occur. We use a
generalized “devil staircase” fractal [2] for dabarg the empirical distribution function.

The wavelet analysis of the datasets was carriedbgutising the WavelLab [6].
Absolute values of the CWT W u(t)} coefficients and the skeletons were computétth whe
“Mexican hat” wavelet. Increasing the resolutiomaals progressively the successive genera-
tions of branching. The symmetry of the plot is mokoy non-uniformity of probabilistic
measure. Let Na) be the number of local maxima lines in the CWTletlom at the scala.

The concentration of data points around the strdigbtobserved in the plot of log(k&))
versus logh) can be regarded as a quantitative indicatiorhefdelf-similarity of the event
sequence in real data sets [5] (Fig. 4). Failureuoence is probabilistic process, which
results in the formation of self-affine temporalsters. Wavelet analysis of empirical data on
damage accumulation provides probabilistic evidefacethe existence of a multiplicative
process hidden in the temporal ordering of the dgmr@ecumulation jumps sequence.
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Fig. 2. Local maxima lines of the CWT skeleton ftbe multifractal measurg(t)
generated by the MBP with= 0.25 on the generalized Cantor set
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Fig. 3. Empirical distribution functions F{Nof lifetime data for the samples 1, 2 and 3
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Fig. 4. The linear regression fit in log-log plot thie number N of the local maxima

lines in the CWT skeleton versus the scale revdedsstlf-similarity of data generated by
MBP and empirical lifetime data for three sampléspecimens
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