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Summary. The solution of a wide class of the problems of mathematical physics can be obtained in the
form of Fourier series. When considering the problems, concerned with study of the localized actions, the quick-
changing solutions are obtained, in this connection the series converge slowly. To solve complex problems the
Fourier series method is used jointly with other approaches, in particular, when using in addition the boundary
element method the series coefficients are determined by solving one- and two-dimensional integral equations that
demands a large amount of calculations. The series coefficients are determined with certain errors what can cause
the loss of calculation accuracy. In such cases the problem of improvement the series convergence with controlled
accuracy of calculations will be of high priority. Below we propose method of improving the Fourier series
convergence for functions which can be approximated with sufficiently high accuracy by the least squares method
by means of the first degree piecewise-continuous polynomials on whole interval of series specifying.
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Introduction. The solutions for wide range of applied problems can be found in Fourier
series. Here often the series convergence is low that requires calculations of a large number of
series terms. As it indicated in references [1], in such cases they predominantly use the formulas
that are obtained from series summing-up as incorrect [2]. As the functions, being described by
the series with improved convergence, are here calculated as certain averaging of basic
value [1] then fast-variable values within localized operations will be determined with the
largest error.

The article deals with the comprehensive research of the ways to improve Fourier series
convergence for the functions in assumption that they can be approximated with given accuracy
by piecewise-continuous polynomials of first degree. The constructed formula was used to improve
the accuracy of numerical inversion of Laplace transform.

Formulation of problem. Let the function f(x) at 0<x <L is given by the series

f(x)= i a e, (1)

where a, are given coefficients, 4 = Z—EH , L=const.

Let us look up the case when coefficients a, slowly decrease during the increasing of

n parameter due to which the series converge slowly. To define functions with given accuracy
one has to consider a large number of series terms (around 1000). While finding solution of
complicated problems in mathematical physics the series terms can be defined numerically (for
example, by method integral equations [3, 4, 5]), that requires large number of calculations.
Due to this fact there appears the relevant question how to find functions with controlled

accuracy on the basis of relatively small number of coefficients in a, series.
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Approximation of functions with piecewise-continuous polynomials. Let us look at
continuous along section c<x<d function f(x). We shall describe it along this section

approximately with the following function
N

fFo)= f(x)=> Ag;(x),
j=0

where g;(x) are given linearly independent functions. Coefficients A, are found with the
method of least squares in order to minimize the formula

|=j¢uﬂf(m—§jmgxm}dh

where ¢(x) is a given function weighting. There comes system of equities to determine
coefficients A,

ZaijAjzﬂi, i=0,..,N, (2)
where
b b
@ :J.¢gigjdx’ B =_[¢7fgidx'

Let us study the approximation of functions with linear piecewise-continuous functions.

The section [c,d ] is divided into N subsections with the step h = % and put onto

1 | X=X | S X=X,

where xj=c+jh, S(z)=1 at |z|<1 and S(z) = 0 at |z|>1.
It should be mentioned that in this case f(x;)=A,.
Then the equation system (2) at ¢ =1 will be following

aA,_, +bA +aA  =p,, j=1..,N-1,
0,5bA, +aA = 5, @)
aA,_; +0,5bA, = 5, ,
2 1 “ x|
where b=-h, a=h, f=[f(x+x)1-—=|d, i=1.,N-1
2n a=gh A= focen)(1-ax, 1o

-h

By =} f(X+C)(1—%jdx, By =I f (d —x)(l—%jdx.

0
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Improvement of Fourier series convergence. Let us use the mentioned-above
approach for the case when function f (x) is determined by formula (1).
Coefficients f;, that are constituents of equation system (3), inthiscaseat ¢ =0, d = L

are derived with formula
- N i | X— Xj | iA,X
ﬂj:jfgjdx:Zanj 1——h e dx. 4
0 N== Xy
Hence we find

B;=h> ay(054he™ at j=0,N,

= eh"_1-iih = e " _1+iAh
—hY a0 g =-hY a0
Fo n;oo " (A4h)? A n;n " (4,h)?
sin?z
where y(z) = ——.
Z

Initially we accept that f (x) is continuous periodic function (at f (0)= f (L) ). Denote
for it the coefficients A, as C;. For such functions the equation system (3) is recorded as

aC,,+bC,+aC,, =4, =h> ay(054h)e ", j=0,.,N, (5)

n=—o0

whereC , =C,,, C,,=C,.
The solution for the system (5) is expressed as

C,=h> a,B,7(0.54,h)e™, j=0,.,N,

N=—o0

where B, are unknown constants.
Having inserted this solution into system equation (5) we get

B, [aexp(i4,h) +b+aexp(-it,h)]=1.
And there comes

5 3
" h(2+cosAh)’

and

Cj = Z anl—‘n exp(iﬂ’nxj) ' (6)

where T, =B,7(0,54,h)h=g(4,h), g(t)= 3 (sin(t/Z)j.

2+cost t/2
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To find solution for equation system (3) in general case (when f(0) = f (L)) one has to
additionally investigate relevant to it homogenous system which is recorded as

aA, +bA +aA =0, j=0,.,N.

The general solution for this difference equation system is
A; = Ulylj +U2;/2j ,
where U, , are arbitrary constants, y, , are roots of equation
a+by+ay’ =0,

that are equal to y,, = —2++/3 .
Then the full solution for the equation system (3) is recorded as

U,
A =C,+Uy) +=27y,).
V2

The first system equation (3) is solved identically. Out of two last equations we obtain
the following system

U,(0,5b+ay,)+U,(0,5b+ay,)r," =p,—0,5bC,-aC,,
U, (0,5by, +a)y'* +U, (0,5b+a/y,) = B, —0,5bC, —aC,,_,.
At N >10 practically precise solution to this system can be recorded in simple manner

f,—-0,5bC, —aC, 6p,/h-2C,-C,

! 0,5b+ay, \/§ ’
B, —0,5bC, —aC, , 68,/h-2C, -C, ,
? 0,5b+aly, J3 '

Thus, we have

f(x)= 2 al,exp(iz,x;)+Uy/ +Up ™. (7)

N=—o

For periodic functions the joint points can be selected at random and we will get the
formula for series calculation

f(x)= i a,I', exp(id,x).

n=—o0

At large arguments values g(t)=0O(t?), ie. [,=0(n?)—0 as n—o, so the
series (7) converges faster than initial series (4). The coefficients I' | are defined by means of
function g. The graph of this function is displayed on Figure 1.
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Figure 1. The graph of function g

Figure 1 shows that in order to improve the convergence of slow-converging series it is
worth to limit terms in M series. They have to be selected in such way that 4,,h=2xr,47x, i.e.
accept M = N or M = 2N . Here the first series terms will be least due to the close to zero
values of I, multipliers.

The next one is the example highlighting the peculiarities of the formula (6). We accept
that f(x) =sign(x),—z<x <, i.e. the function is split. Fourier series distribution for this
function is

F(x) = ii sin(22nn_—11)x . ®)

T =1

Having used the formulas to improve the convergence we get (function f is periodic)

4 & . sin(2n-1)x
f(Xx)=—>TI ———.
9 EZ; " 2n-1 ©)
At h=27z/N innodal points x; = hj the precise value of this function is
f(x,)=sign(x,)L+7"), where y =2+ /3. (10)

Here N isan arbitrary integer number, j=0,+1,+2,... .

Out of formula (10) it is seen that relative error of the formula (9) in nodal points is
equal to ¢, = y“‘. This error is alternating and decreases fast during counter-wise movement
from point of discontinuity because y =-0.2679. Maximal error value is reached in the first
point. In the third point the relative error is less than 2 per cent.

Table 1 displays the function f(x) in nodal points at N =60 and at series (8) there are
10000 terms (2" column) and 60 terms ( f, (x) , 3" column). The 4™ and 5™ columns display the

precise f function value and approximate series value (9) when they retain 60 terms ( £, (x)).
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Table Ne 1

Estimation of efficiency of the formula of convergence improvement (9) for the series (8)

X f(x) fy (X) f(x) fiu (%)

0 -0,00009 0 0 0
0,1047 1,0003 0,90264 1,26302 1,26795
0,2094 1,00016 0,94957 0,93026 0,9282
0,3142 0,9998 0,96585 1,01893 1,01924
0,4189 1,00008 0,97399 0,99503 0,99484
0,5236 1,00006 0,97882 1,00139 1,00138
0,6283 0,99991 0,98197 0,99966 0,99963
0,7330 1,00005 0,98416 1,00011 1,0001
0,9425 0,99992 0,98689 1,00001 1,00001
1,0472 1,0001 0,98775 1 1
1,2566 0,99996 0,98885 1 1
1,3614 1,00003 0,98916 1 1
1,5708 0,99994 0,98939 1 1

Table 1 displays that to sum up directly the slowly converging series with high accuracy

one has to calculate up to 10000 terms. The formula of convergence improvement allows
finding of series value with accuracy higher than 1 per cent everywhere except for three nodal
points bein% closest to point of discontinuity; the series in formula (6) is fast converging (data
of 4"and 5% columns). The presented results illustrate inherent features of the selected formula
of convergence improvement: high accuracy in the areas where the function is smooth; fast
decreasing of errors during counter-wise movement from the function special points.

Let us use the obtained formula for convergence improvement of series that describe
functions being used during conformable displaying of the exterior of the unit disk in given
area

() =cs + icng-", I£]>1,

where c; are given coefficients.
The closest convergence of this series appears on the line where

w(o-)zco-+2cne_im , o'=eit, O<t<2r. (11)
n=0

After convergence improvement in correlation (11) we get
w(c)=co+y cIe™. (12)
n=0

Having extended analytically this series we obtain approximate formula for
conformable displaying

o) =cC+ Y 6T, 1L (13)

Let us present some properties of formula (13). During application of this formula the
ellipsis stays the ellipsis with the same correlation of semi-axis, but its dimensions grow
into g(h) times. Really, in general case for arbitrary allocation of ellipsis hole we get

wo(l)=ad +b/{ +c,

where a, b, ¢ are known constants.
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Having applied the suggested convergence improvement we obtain
w()=T (ag+b/{)+c.

As result it is seen that at h~ 0.1 we have I', ~1.001, i.e. the dimensions remain

practically unchangeable. It also means that selected transformation retains rectilinear crack the
same crack. The boundaries fragments being ellipses, straight lines, and cracks retain their
forms except for small junction areas between them.

Fourier series convergence improvement in Laplace inversion formula on
Prudnikov main formulas.

Let us study the problem of function f(t) allocation on the basis of popular Laplace

[ee]

integral image F(s)= J' f (t)exp(—st)dt. We mark via & constant the fact that function F (s)
0
is analytical at Re(s) > &. Then there exists the precise formula of original exterior through its

image [6]

f(t)z%expanll)jé F (s, )exp(2znit /1)~ R, (14)

=—00

where s, =(c+2zni)/l; cis the constant to improve solution convergence (Re(c) >0); l isa
certain constant, 0 <t <|

Rlzzw:exp(—nc) f(t+nl). (15)

As a rule, the series in formula (14) converges slowly due to the fact that for wide class
of functions F(s,) =0(1/n), where at large n values the series is alternating. That is why
during series calculations with formula (14) one has to keep a large number of terms in it.
Accordingly, it is problematic to use the formula (14) directly. In certain list of issues [7 — 9]
for the class of functions with known values of the original and its derivative at t=0 and at
large values of the independent variable the were obtained the specified inversion formulas that
facilitate calculating the original with controlled accuracy via fast converging series.

Let us investigate the wide-spread case when the only known fact is original, which can
be approximated with predetermined accuracy by the first degree piecewise-continuous
polynomials.

To apply formula (14) it is necessary to sum-up slowly converging series with
predetermined accuracy

S(t)=> A exp(2rnit/l), O<t<l, where A =F(s,).

We indicate that formula (7) can be efficiently applied with this purpose. As an example
let us study the image predetermined with the formula F (s) =1/\/s2 +a’, where a=const. It
should be mentioned, that an original for this image is the function f (t) = J,(at), where J,(at)

is the Bessel first class function. We accepted c=8, a=1, | =6 and denied remainder term
R,, as it has small multiplier here e® ~3-10™*.

Table 2 displays values of precise function y, = f(t) and relative error in per cent

g = uloo , &= uloo ,

Yr Yr
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where Y, is the function obtained on the basis of formula (7) at N =60 (there are 60 terms in
series), Y, is starting series with 1000 terms.

Table Ne 2.
Precise values of the originals and the error of Laplace inversion formula
y=J,(x) y=e"

T Yr & &, Yr & &,
0,000 1,000 -1,014 -50,0 1,000 -1,345 -50,0
0,500 0,938 -0,153 0,099 0,607 -0,448 0,140
1,000 0,765 -0,226 0,013 0,368 -0,450 0,000
1,500 0,512 -0,349 -0,212 0,223 -0,450 -0,526
2,000 0,224 -0,717 1,206 0,135 -0,450 1,953
2,500 -0,048 2,523 6,725 0,082 -0,449 -3,985
3,000 -0,260 0,272 0,007 0,050 -0,453 0,039
3,500 -0,380 0,044 -3,236 0,030 -0,490 40,91
4,000 -0,397 -0,070 9,601 0,018 -0,769 -207,7
4,500 -0,321 -0,122 -20,03 0,011 -3,078 579,2
5,000 -0,178 0,623 0,333 0,007 -29,2 -11,47

As it can be seen from Table 2 the suggested formula (7) facilitates higher accuracy at
60 terms in series than direct calculation of series with 1000 terms. The most relative errors of
the formula (7) occur in points where function f(x) is small in terms of value.

Table 2 also displays the results of calculations for the function f(t)=e™, which image
IS F(s)=1/(s+1). We can see that original allocation accuracy due to formula (7) for this

function is also high.

Conclusions. The author suggested Fourier series convergence improvement for the
functions that can be approximated with sufficiently high accuracy with the method of least
squares by piecewise — continuous polynomials of the first degree along the entire task section
within a series. The obtained formulas are applied to improve the series convergences which
appear at Laplace numerical transformation by means of Prudnikov formula. The basic problem
in this method is reduced to finding the sum of slowly convergent Fourier series. Given
examples illustrate the efficiency of given approach for numerical determination the originals
on basis of their Laplace images.
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YK 539.3

CIIOCIb MOKPAIIIEHHS 3BI)KHOCTI PSIIIB ®YP’E TA NOT'O
3ACTOCYBAHHA JIAA YU CJI0OBOI'O OBEPHEHHSA
INEPETBOPEHHA JIAIIJIACA

Tersana Coasip

Inemumym npukiaouux npoobaem MexaniKu i Mamemamuxu
im. A. C. Iliocmpueawa HAH Yxpainu, Jlveis, Yxpaina

Pe3tome. Po38’530K wupoxoeo Koaa 3a0ay MamemamuyHoi Qizuxu modce Oymu OmpumaHo y eueisoi
paois @yp’e. [lpu po3ensdi 3a0ay, wjo no8 sa3ami 3 O0CIIONCCHHAM JOKANIZ08AHUX Oill, OMPUMYIOMb WUBUOKOIMIHHI
PO38’A3KU, Y 36 SA3KY 3 UUM PSAOU NOBIIbHO 30icaromubca. s po38 a3y8anus CKIAOHUX 3a0ay Memoo psdie Pyp’e
BUKOPUCTNOBYIOMb CYMICHO 3 THUWUMU niOXo0amu. 30Kkpema, npu 000amKk08OMY 3ACHOCYBAHHI MEMOOY ePAHUYHUX
enemenmie xKoeghiyicumu psaoi@ 3HAXOOAMbCA UWISAXOM PO36 SA3Y8AHHST 00HO- AO0 0BOBUMIDHUX THMESPATbHUX
PIBHAND, WO GIONOGIOHO GuMA2Ac 3HAYHO20 00csaey oduucienv. Ilpu yvomy xoeiyicnmu psaoie 3HAX00SAMb 3
nesHUMU NOXUOKAMU, WO BIONOBIOHO MOdCe NPU3Becmuy 00 8Mpamu MoYHOCMI PO3PAXyHKIe. Y maxux eunaoxkax
AKmyanbHow € npodieMa NOKPawjeHHs 30IHCHOCMI P0i8 3 KOHMPOIbOB8AHOI MOYHICIMIO po3paxyHKie. Huocue
3anpONOHOBAHO MemoO NOKpaweHHs 30ixchocmi padie Dyp’e 0na ynkyiu, ski mMocyms 6ymu 3 00CMAmMHbLO
BUCOKOI MOYHICMIO ANPOKCUMOBAHI MEMOOOM HAUMEHWUX K6a0pamie KyCKOB0-HenepepeHUMU HONHOMAMU
Nepuio2o CMenetst Ha 8CbOMY NPOMINCKY 3a0A6AHHS PAOY.

Karouosi caoBa: psaou @Dyp’e, noxpawenna 30ixcnocmi psoie, KycKOGO-Henepepeui NoaiHOMU,
KOH@OpMHe 8i000padicenHsi, yuciose obepHenHs: nepemeopenus Jlannaca.
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