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Abstract. A model of strongly correlated electron system in which magnetic impurity levels 
are hybridized with conduction band has been considered. The effective Hamiltonian has been 
constructed for the case of strong Coulomb correlation on basis of configurational representation 
of Hamiltonian with Hubbard X-operators describing the localized spin subsystem. Criteria 
for the ferromagnetic ordering stabilization have been found in partial case of partially filled 
band for arbitrary temperatures and Curie temperature has been calculated. For the partial 
case of weak effective exchange the formula for the Curie temperature reproducing the well-
established results has been calculated analytically. The electron concentration region favorable 
for ferromagnetic ordering is determined by hybridization through effective exchange integral. 

1. In troduct ion 
Theoretical investigations of electrical and magnetic properties of a "quantum dot" have 
originated from the pioneering paper [1]. Since then, many generalizations and extensions of 
the Anderson model have been developed and used for description of heavy fermion [2] and 
quantum dot systems [3]-[5]. One of the first generalizations of the single impurity Anderson 
model [1] for the case of periodically spaced Anderson-Hubbard centers has been proposed in 
papers [6, 7]. It has been proven in the framework of the periodic Anderson model (PAM) 
that in the regime of strong intra-atomic interaction of localized magnetic moments the indirect 
(through the conduction band) exchange interaction occurs, which is proportional to the forth 
order of the hybridization parameter V{i\a) and also the indirect hopping of the current carriers 
takes place, being dependent on the hybridization parameter squared. Recent years have seen a 
renewed interest to the periodic Anderson model in connection with quantum dot systems and 
their promising properties. Electric conductivity of the system with quantum dots modelled by 
single- and double-impurities Anderson models has been studied in series of papers and transport 
properties were found to be spin-dependent [8, 9]. In this work the effective Hamiltonian of PAM 
is obtained by canonical transformation method. It allows the derivation of the Hamiltonians for 
partial cases in controllable manner. As a test of the approach applicability, the ferromagnetic 
ordering condition in a partial case of the model are studied. 
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2. Configurational representat ion of H a m i l t o n i a n 
Following papers [6, 10], we start from the model of Anderson-Hubbard material which 
describe localized (d—) subsystem hybridized with conduction (c—) band. Coulomb and 
exchange interactions within the localized subsystem are the most conveniently described in 
the configurational representation of Hubbard X-operators. 

H = HQ + Hh + H^ + H2h + H^ + Hh^ (1) 
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Here operator Xfl describes transition of site i from state |/) to state \k), (^{cy^) are creation 
(annihilation) operators for band electrons. Energy parameters of the model are the chemical 
potential //, the energy of intra-site Coulomb repulsion of electrons U, the direct inter-site 
exchange interaction J(ij), hybridization parameters V(ik) and V(ijk, — k ) . Let us introduce 
the dimensionless parameters which describe relative hybridization: 

EF-Ed
 ftV " Ed + U-EF 

V(k,-kij) _ ., . . . . 

2(EF-Ed)=
V^K-kl^ 

V(ij,-kk) _ ... . . . 
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V(ij,-kk) _ 
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If one of the parameters vx (x = h, d, 2h, 2d, hd) satisfies the condition vx « 1 then one can 
apply the perturbation theory to the hybridization interaction terms Hx (we note, tha t the 
configuration representation of the Hamiltonian is most appropriate for this purpose). 

In the case when Ed + U — EF » EF — Ed (or opposite case) one can neglect corresponding 
translation processes in the Hamiltonian. These conclusions are in accordance with estimation 
of the hybridization matrix elements in the model of heavy fermions (see monograph [11]). The 
X—operator representation of the Anderson-like Hamiltonian is also suitable for mathematical 
treatment within Green function method. 

3. Canonical transformat ion and effective H a m i l t o n i a n 
According to the methodology of effective Hamiltonian derivation we assume that parameters 
characterizing the relative value of hybridization are small enough and perform the canonical 



transformation which excludes the terms of the first order in hybridization parameters V(ik) 
and V(ijk, —k) 

H = e^sh+sd+sih+sid) He~^sh+Sd+Sih+Sid) 5 (2) 

where the unitary operator constituents are determined from equations 

[S~h'Ho]+Hh = 0, [Si,H0]+Hi = 0, 

[S2-h, H0] + - [S-h, H-h] - H2-h = 0, 

[S2d> H°] + 2 ft' Hd ~ H2d = °> 

which exclude the negligible processes. In above equations a prime by the Poisson bracket means 
that the terms \ [Sj,Hj\ having the same operator structure as H2, are included. 

In this way the equation (2) up to the forth order of magnitude has the following form (we 
take V{ik) to be first order of magnitude, V(ijk, —k) the second order, HQ of the zeroth order) 

H H+[ShH] + \ [SK, [SK,H0]] + I [Sh, [Sh, [S~h,H]]] + 

+ 
24 Sk> ^ . * * . 6 ft. ft. ft. *<>]]] + . . . (3) 

Let us take into account that spin-spin interaction between localized magnetic moments and 
indirect hopping in localized subsystem at t r ibute only to terms of the fourth order of magnitude. 
Thus, we can neglect the processes of double creation or annihilation of electrons on the same site 
and the interaction of BCS-type in the itinerant subsystem. The resulting effective Hamiltonian 
has the form 

H — HQ + H1 + Hcd, (4) 

where 
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In the above formulae to(ij), £2(2.7), £02 ( u ) are the integrals of indirect hopping through the 
sites with localized electrons (cation subsystem in transition metal compounds, quantum dots, 
etc), J i ( ikk ' i ) and J2(ikk'i) are hybridization exchange integrals. 
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The magnitudes of these parameters can essentially renormalize the bare band hopping integral 
and enhance localization effects. In fig. 1 the mechanisms of the band and hybridization 
hoppings are shown. Due to the substantial overlapping of the wave functions of conduction 
electrons one should expect that not only indirect hopping renormalizes the band hopping but 
also hybridization exchange has greater magnitude (of order of tA/U3) than direct exchange 
interactions. In the case of strong correlation U » u>d (here Wd is d—band halfwidth) and 
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Figure 1. Hybridization 
and band hopping pro­
cesses. 

n < 1 the effective Hamiltonian of localized electron subsystem has the form: 

Heff = (Ed - M) E ( 4 + 4 ) + E Uij)xfx^ -J-f-Y! ( x r * r + * r * r ) • (5) 
i ija ijff 

In distinction from standard t — J Hamiltonian the hopping amplitude is substantially 
renormalized as it represents an indirect hopping here. In other respects the Hamiltonian (5) is 
very simple and allows for analytical calculations. The simplest analytical approach of choice is 
the decoupling of equation of motions, similar to the first step of work [3]. 

4. Condi t ion of ferromagnet ic ordering 
The energy spectrum obtained within projection procedure [12] in the Green function method 
Ek = —fj, — iok + znaJeff allows us to calculate the mean numbers of spin-up and spin-down 
electrons 
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where shifted chemical potential fj,a = fj, + zJeffna. Equation for system magnetization has the 
form 
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At n —> 0 the above equation reproduces the corresponding molecular field equation. The 
obtained equation has the ferromagnetic solution determined by the condition 

zJeff > 
2(1 -n)wd 

(2 - n ) 2 coth 
(1 - n)wd 

( 2 - n ) 6 
— coth Wd 

26 

(1 - n)wd 

( 2 - n ) 6 
(8) 

4(l-n), For zero temperature this yields the inequality z Jeff > (2-n)2
wd which is in agreement with the 

condition of ferromagnetic ordering stabilization in polar model with strong interaction ([13]). 
Equalizing left and right sides of the inequality (8) we obtain the equation for Curie temperature. 
Let us take @c <^wd- Then 

6 c 

wd 

( 1 - n ) 

( 2 - n ) l n ^ ' 
(9) 

where the ground state system magnetization is 

m 0 
(2 - n ) 2 -

4(1 -n)wd 

zJ. eff 
(10) 

If the band is less than half-filled, one has 6 c = zJeff/2 from eq. (9), in agreement with 
the above considerations. It is interesting to note that in eq. (9) Curie temperature value 
is proportional to the conduction band width, though ferromagnetic ordering is stabilized by 
exchange mechanism. One can see from eq. (10) that the saturation can be reached only for half-
filled band. From figs. 2,3 one can see that the ferromagnetic ordering is quite stable for electron 
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Figure 2. Temperature dependence of FiS^re 3 . Concentration dependence of 
magnetization at n = 0.9. zJeff/wd = 1 C u r i e temperature. zJeff/wd = 1 for solid 
for solid curve, zJeff/wd = 0.5 for dashed c u r v e ' zJeff/™d = 0.75 for dashed curve, 
curve, zJeff/w = 0.4 for dotted curve. zJeff/™ = 0-5 for dotted curve. 

concentrations n > 0.5, in agreement with the results of paper [14]. The electron concentration 
region favorable for ferromagnetic ordering is considerably widened by hybridization through 
effective exchange integral. Summarizing, we note that taking c — d hybridization into account 
as a perturbation leads to effective Hamiltonian in which the indirect hopping in (<r-0)- and 
(ti-o" )-subbands and indirect c — eZ-exchange interaction are enhanced. 
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