

Ternopil Iyan Pul'uj National Technical University

ВИЩА ТЕХНІЧНА ОСВІТА ГАРАНТ ВАШОГО УСПІХУ І ДОСТАТКУ

ANDIA A HANNAN

UKRAINE

Design Methods of Switch Mode Power Supplies

Dr. Volodymyr Yaskiv 56, Ruska str., Ternopil, 46001, Ukraine yaskiv@yahoo.com

Criteria for designing of power supplies

ensure of functional parameters at activity of the disturbing factor efficiency reliability mass and dimensions > cost Specific requirement are following: high dynamic characteristics at high quality of output voltagés 100% change of a load current Iow level electromagnetic interference (EMI) other

Design of Switch Mode Power Supplies on base of High Frequency Magnetic Amplifier

25 years expirience

SMPS designing for different assignments – space, radar, medicine, information technology, transport systems, lighting systems, welding, communication, nuclear power station, etc.

Comparative analysis of transistor and magnetic switches

- The advantages of the magnetic switch in comparison with transistor switch are essential:
- is an AC voltage switch
- not critical to the form of input voltage
- gain on a current up to 1000
- simplicity of the control circuit (1-2 transistors in a linear mode)
- does not create electromagnetic interferences
- is by the filter of input interferences (both in non-saturated, and in a saturated condition)
 - high efficiency (99 %), the losses do not depend on load current
 high level of radiation stability and mechanical stability
 - does not require protection (itself serves a protection device of highfrequency transistor inverter)
- multifunctionality: the power amplifier, power switching device, pulsewidth modulator, executes functions of the integrator, comparator, protection device

Comparative analysis of power supply on MS with transistor analogs

Advantages SMPS on magnetic switches in comparison with traditional transistor power supplies:

- capability of designing of multichannel SMPS with equivalent and independent output channels with 100 % range of change of the load current
- are suppose a broad range of change of input voltage
- high level of specific power
- high quality of output voltages (the high-frequency peaks and low-frequency component are absent)
- Iow level of EMI
- high level of dynamic parameters
- high efficiency
- in 2-3 times the cost price is lower
- high level of radiation stability and mechanical stability
- above reliability for the account as physical nature of MK, so and of essential simplification of circuitry
- high level of unification possibility of using of one standard size of MS and same circuitry solutions for designing of SMPS in the broad range of output parameters

Main technical data of the multichannel switch mode power supplies:

Range of the input voltage change to ± 30% Efficiency 0.80 - 0. Output voltage levels 5 - 200∨ Pulse output voltage 10 - 50 r (low-frequency reply and high voltage spike are absent) Common non-stability to 1% **Current load levels** to 100A Range of the load current change 100% Possibility of the current stabilization Specific power on the home hardware 100 - 50 50 - 500 Output power multi-output SPS 1-10 or I Number of output regulated channels Output power of the channel 25 - 500 50 - 100 Frequency **-60** -+80 Temperature range Electro-magnetic compatibility and electro-safety in requirement accordance with base international standards of the computer and medical equipment

Structure of the switch mode power supply on magnetic switces with of the high level load current (5 V, 200 A)

Bl oc k-

Multiway Switch Mode Power Supply for Radio Devices

> input voltage > output power > number output channels common nonstability > ripple of output voltages

• ~

 $220 \pm$

100

Power System and Control of Apparatus of "Artificial Kidney"

Block- scheme of the apparatus «the artificial kidney»
 (1 – dialyser, 2 – electrochemical regenerator, 3 – block of padding clearing, 4 – pump, 5 – power suply, 6 – control system, 7 - sensor unit of concentration, 8 – heat exchanger, 9 - sensor unit of temperature)

> input voltage > output power > number output channels > input current of control; Common nonstability

220

onal Technical University of Ukraine v Polytechnical Institute"

Ternopol State Ivan Pul'uj Technical University

- input AC voltage
- input voltage range
- output channels

- range of the load current change
- efficiency
- ripple of output voltages
- common nonstability
- working frequency
- temperature range
- size

Switch Mode Power Supply for Radiostations of the Railway Transport

> output power > output voltage > load current 155...265V AC, 1 > input voltage > load current range \succ efficiency > working frequency > output voltage ripple common nonstability - 40

Power Supply of Brake Devices of the Electric Drive of Antenna

>

> output power

> max output power

 \succ number output channels

output voltage

load current

common nonstability

ripple of output voltages

Power supply for car radio scaner

- input voltage	$12V \pm 20\%$
- output power	100 W
- output voltage	24 V
- load current	04 A
- efficiency	75 %

- working frequency

50 кНz

05.13.2005 08:21

THILLE

产业基于

国家软件

THE & LEFE &

Power supply for IT

- input voltage
- output power
- output voltage
- load current
- efficiency
- working frequency
- temperature range
- dimension

220V ±20%, 50 Hz 240 W 24 V 0...10 A 88-92 % 50 KHz -10...+50 ° C 120x200x50 mm

Power supply with high level load current

- input voltage
- output power
- output voltage
- load current
- efficiency
- working frequency
- температурний діапазон
- габарити

135...270В, 50 Гц. 250 Вт 5 В 0...50 А 82 % 50 кГц - 40... +50 °С

100х220х60 мм

Power supply 24V, 10A

The load characteristics of the experimental MS power supply

Load current, A	0			4	,8		3	Input AC voltage,
	* **	*	**	*	** '	*/	**	
Output DC voltage, V	24,10	24,07	24,03	24,08	/24,03	24,09	24,01	100
	24,09	24,07	24,03	24,08	24,03	24,09	24,01	110
	24,09	24,07	24,03	24,08	24,02	24,09	24,01	120

Electromagnetic interferences for different power supplies (output power 240W) (analog PS – left, our PS design on magnetic switches – right)

EUT: DC/DC Converter Work Order: Serial Number: Prototype Date: 05/1 /00/2 Customer: Temperature: 24.4 Attendees: none Humidity: 41% Project: None Power: [120VAC/60Hz Tested by: Power: [120VAC/60Hz FCS 15/PCIFICATIONS Test Method	
Serial Number: Prototype Date: (6574 408 Cutsomer: Temperature: 24.4 Attendees: none Humidity: 41% Project: None Baromstric Press; 1016 Tested by: Power: 120VAC/60Hz Baromstric Press; 1016 Test SPECIFICATIONS Test Method Job Site: FCC 15.109(g) (CISPR 22:1997) Class A ANSI C63.4	
Customer: Temperature: 24.4 Attendes: none Project: None Tested by: Power: 120VAC/60Hz Barometric Pres: 1016 Test Method FCC 15.109(g) (CISPR 22:1997) Class A ANSI C63.4	
Promotives, linking of the product o	
Tested by: Power: 120VAC/60Hz Job Sife: TEST SPECIFICATIONS Test Method ANSI C63.4 ANSI C63.4	
TEST SPECIFICATIONS Test Method FCC 15.109(g) (CISPR 22:1997) Class A ANSI C63.4	
FCC 15.109(g) (CISPR 22:1997) Class A ANSI C63.4	Man Cale
TEST DADAMETEDS	
Ito I PARAINETERS	
UT OPERATING MODES	No. of Concession, Name
EVIATIONS FROM TEST STANDARD	
o deviations.	
un # 2	
onfiguration # 1	
esults Evaluation Signature	
80	
70	
70	
60	
50	
2 40	
30	
30 30 MA	
30 J J J J J J J J J J J J J J J J J J J	
30 20	
30 20 10 10 10 10 10 10 10 10 10 10 10 10 10	
30 20 10	
30 20 10	
30 20 10	
	1000
	1000
30 20 10 10 100 MHz	1000
30 20 10 10 100 MHz	1000
30 20 10 10 10 MHz Pointy/	1000
Time American Presson Anterna International States	1000
Freq Amphade Preamp Minght Transdoor Cate Amphade Type Transdoor Appled Amphade Spectral Appled Amphade Spectral Amphade Spec	1000
Transdoor (HHz) Amphudo (HS) Preamp (HS) (HS) (HS) (HS) (HS) (HS) (HS) (HS)	1000
To Arrestado Presamp (nHz) Arrestado Code (Hz) Postario/ (Hz) Debedra (Hz) Debedra (Hz	1000
Ten Ampikudo (dB) Preamp (dB) Anterna (nm) Transducor (dB) Cable (dB) Transducor (dB) Detector (dB) Detector (dB) Detector (dB) Adjusted (dB) Adjusted (dB) Adjusted (dB) Spec. Lini (dB) 166.947 67.9 21.6 1.5 15.7 0.7 0.0 H -10.5 51.2 40.0 146.647 67.9 21.6 2.0 14.7 0.7 0.0 H -10.5 51.2 40.0	1000
To Arrestado Presump (MHz) Arrestado Timesdacer (m) Posterior (MHz) Description (m) Descrin (m) Descrin (m) Descrin (m) </td <td>1000</td>	1000
To Ampilualo Present (dHX2) Anterna (Heght (dBW) Transducer (dB) External (dB) External (dB) Detector (dB) Detector (dB) Adjusted (dB) Adjusted (dB) Spec. Lmi (dB) 160.740 67.0 21.6 1.5 15.7 0.7 0.0 H -10.5 51.2 40.0 166.61711 66.4 21.4 1.0 13.1 0.3 0.0 V -10.5 48.5 40.0 181.464 60.9 21.5 1.5 0.9 0.0 H -10.5 48.5 40.0	1000 t Compared 1 Spec. (dB) 123 83 857
Tool Argehade (dBur) (dBur) Preamp (dBur) (dBur) Argehade (dB) Preamp (dBur) Argehade (dB) Preamp (dBur) Argehade (dB) Preamp (dBur) Argehade (dB) Preamp (dBur) Argehade (dB) Detector (dB) Detector (dB) Detector (dB) Detector (dB) Detector (dB) Detector (dB) Detector (dB) Argehade (dB) Argehade (dB) Argehade (dB) Spec. Lmi (dB) 160.740 67.0 21.6 1.5 15.5 0.7 0.0 H -10.5 51.2 40.0 186.347 66.9 21.6 1.5 15.5 0.7 0.0 H -10.5 51.2 40.0 186.349 60.9 21.5 1.5 15.5 0.7 0.0 H -10.5 51.2 40.0 186.349 60.9 21.5 1.5 15.5 0.7 0.0 H -10.5 48.0 40.0 186.349 60.9 21.5 1.5 15.5 0.7 0.0 H -10.5 45.7 40.0	1000 1000
To Amplikulo Preamp (dBW/) Anterna Hegyti (dBW) Transduor (dB) Cable (dB) External (dB) Transduor (dB) Detector (dB) Detector (dB) Adjusteet (dB)	1000 t Compared I Spec. (dl) 112 83 8-57 5-5
To Argehade Preamp (nHz) Argehade Argehade <td>1000 1000</td>	1000 1000
To Amplikulo Preamp (dBW) Anterna Hegyti (dBW) Transducer (dB) External (dB) Transducer (dB) External (dB) Distance (dB) Distance (dB) Arigented dBu/m Arigented dBu/m Spec. Lml dBu/m 160,740 67.0 21.6 1.5 15.5 0.7 0.0 H -10.5 51.2 40.0 166,47 64.9 21.5 1.5 15.5 0.7 0.0 H -10.5 48.3 40.0 181.464 60.9 21.5 1.5 15.5 0.7 0.0 H -10.5 48.3 40.0 183.49 61.3 21.6 1.5 15.5 0.7 0.0 H -10.5 48.5 40.0 168.399 61.3 21.6 1.5 15.5 0.7 0.0 H -10.5 45.5 40.0 33.316 50.6 21.4 3.5 35.5 0.0 V -10.5 45.5 40.0 33.316 50.6 21.5 1.	1000 1000
Tree Argehade Presmp (rdBv) Argehade Argehade <t< td=""><td>1000 112 83 80 55 55 18 10</td></t<>	1000 112 83 80 55 55 18 10
To Amplikulo (dBW) Preamp (dBW) Anterna Height (m) Transduor (dB) Cable (dB) Esternal (dB) Transduor Tope Detector (dB) Detector (dB) Arigented (dB)	1000 1000
To Arrighted 0 Preamp (MHz) Arrighted (MHz) Preamp (MHz) Arrighted 0 Preamp (MHz) Arrighted (MHz) Detect (MHz) Detect (MHz) Detect (MHz) Detect (MHz) Arrighted (MHz) Arrighted (MHz) Arrighted (MHz) Arrighted (MHz) Detect (MHz) Detect (MHz) Detect (MHz) Detect (MHz) Arrighted (MHz) Arrighted (MHz) Spec. Limi (MHz) 160.740 67.0 21.6 1.5 15.5 0.7 0.0 H -10.5 51.2 40.0 186.477 64.9 21.6 1.5 15.5 0.7 0.0 H -10.5 51.2 40.0 188.319 61.3 21.6 1.5 15.5 0.7 0.0 H -10.5 45.5 40.0 133.316 50.6 21.5 1.5 15.5	1000 112 83 1000
To Amphulo Preamp (dHz) Anterna (eB) Transducer (eB) Cable (eB) External (eB) Transducer (eB) Defaulty (eB) Anterna (eB) Defaulty (eB) Defaulty (eB) Defaulty (eB) Defaulty (eB) Anterna (eB) Defaulty (eB) Anterna (eB) Defaulty (eB) Defaulty (eB) Defaulty (eB) Defaulty (eB) Anterna (eB) Defaulty (eB) Defaulty (eB) Defaulty (eB) Defaulty (eB) Anterna (eB) Anterna (eB) Defaulty (eB) Defaulty (eB) Defaulty (eB) Defaulty (eB) Defaulty (eB) Anterna (eB) Anterna (eB) Anterna (eB) Anterna (eB) Anter	1000 Compared 1 Spec. (df) 112 83 55 55 55 18 10 0 21 10 10 10 10 10 10 10 10 10 1
To Arrightado (dH) Preamp (dH) Arrightado (dH) Preamp (dH) Arrightado (dH) Preamp (dH) Arrightado (dH) Preamp (dH) Arrightado (dH) Timesdacor (dH) Potartiy/ (dH) Debedci (dH) Debedci	1000 1000 112 83 80 57 55 58 18 10 27 112 83 80 57 55 58 18 10 21 21 1000
To Anghluto Preamp (dHtz) Anghluto Preamp (dB) Anterna Height (dB) Transducer (dB) Cable (dB) External (dB) Transducer (dB) Detactor (dB) Detactor (dB) Angentee (dB) Angentee (dB) Angentee (dB) Angentee (dB) Spec. Limit (dB) 160.740 67.0 21.6 1.5 15.5 0.7 0.0 H -10.5 51.2 40.0 166.740 67.0 21.6 1.5 15.5 0.7 0.0 H -10.5 48.3 40.0 181.464 60.9 21.5 1.5 15.5 0.7 0.0 H -10.5 48.3 40.0 183.49 61.3 21.6 1.5 15.5 0.7 0.0 H -10.5 48.5 40.0 183.49 61.3 21.6 1.5 15.5 0.7 0.0 H -10.5 45.5 40.0 147.712 58.4 21.6 1.0 14.7 0.7 0.0 V -10.5 4	1000 1112 359cc (dl) 112 35 55 55 55 55 55 55 55 55 55 55 55 55
To Angelade Preamp (MHz) Angelade Preamp (MHz) Angelade Preamp (MHz) Angelade Preamp (MHz) Angelade See: Linit (MHz) Debed (MHz) Debed (M	1000 1112 83 1000 112 83 80 57 55 55 55 55 58 18 10 22 10 21 2,7 -3,5 -3,5
To Angiliato Presmp (dHk2) Angiliato Presmp (dHW) Anterna (mm) Transducer (dB) External (dB) Transducer (dB) Detector (dB) Detector (dB) Detector (dB) Anternal (dB) Anternal (dB) Transducer (dB) Detector (dB) Detector (dB) Detector (dB) Anternal (dB) Anternal (dB) Transducer (dB) Detector (dB) Detector (dB) Anternal (dB) Anternal (dB) Anternal (dB) Anternal (dB) Detector (dB) Detector (dB) Anternal (dB)	1000 11000 1112 839cc. (dl) 1112 833 55 55 55 55 55 55 55 55 55 55 55 55 5
To Arrochikole Preamp (MHz) Arrochikole Preamp (MHz) Arrochikole	1000 1112 83 112 83 83 83 83 83 18 10 21 112 83 83 83 18 10 21 112 83 83 10 21 112 83 83 10 10 10 10 10 10 10 10 10 10 10 10 10
To Arngillade Preamp (MHz) Artherna Height (dBW) Timesducer (dB) Cable (dB) External (dB) Preamp (dB) Artherna Height (dB) Timesducer (dB) External (dB) Detector (dB) Distance (dB) Artherna dBW/m Spec. Limit dB) 169,740 67.0 21.6 1.5 15.5 0.7 0.0 H -10.5 51.2 40.0 181,464 60.9 21.6 2.0 14.7 0.7 0.0 H -10.5 48.3 40.0 181,464 60.9 21.5 1.5 15.5 0.7 0.0 H -10.5 48.3 40.0 183,464 60.9 21.5 1.5 15.5 0.7 0.0 H -10.5 48.5 40.0 183,464 60.9 21.4 3.5 13.1 0.3 0.0 V -10.5 45.5 40.0 183,464 60.6 21.5 1.0 23.1 0.1 0.0 V -10.5 45.5 40.0	1000 1000 1112 30 55 55 55 18 10 20 112 30 57 55 55 55 55 55 55 55 55 55

EUT: Serial Number: Customer:	AC/DC Cor Prototype	nverter							Ten	Date: Date: nperature: Humidity:	05/14/08 24.4 41%	
Project:	None						Barome	tric Pres.:	1016			
Tested by:						Power:	120VAC/60)Hz		Job Site:		
ST SPECIFICAT	PR 22:1997) Class A	and the second				ANSI C63.4	4				
0 10.100(9)(010		10140014										
ST PARAMETER	29	CALCULATION CALCULATION	LA COURSE OF	and the second second	STATES OF STREET, SALES				and the second		and the second	a sub-
tenna Height(s)	(m)	1.0, 1.5, 2.	0, 2.5, 3.5			Test Dista	nce (m)	3				
MMENTS	D.C	200/4		lane sherest		al san serian	and the states	and the second secon	and the second of			
ignetic amp Ac/	DC COnven	er 200/1										
	MODES	Sector Sector			-				Contraction of the			
IT OPERATING I	NODES											
VIATIONS FROM	M TEST STA	NDARD		a succession of the		and the second second	and the second					
in #	1	1										
nfiguration #		1	1									
sults	Evalu	ation						Signature				
80												
00												
70												
60												
50												
e			man									-
5			~~									
ng 40 1												
P												
30					٨٨							
				10	VYV	A					Lines a	-
20				VV	N V	Λ						
						I \.			A STATE			
10 -						N.	AM	- Andrew				
							MA.4					
0												
10						100						1000
						MHz						
			Antenna			External	Polarity/ Transducer		Distance			Compare
Freq	Amplitude	Preamp	Height	Transducer	Cable	Attenuation	Туре	Detector	Adjustment	Adjusted	Spec. Limit	Spec
(MHZ)	(dBUV)	(05)	(11)	(ub)	(00)	(00)		[PRC] from scan)	(ub)	abuviti	GOUVAII	(30)
30.592	54.0	21.5	1.0	24.7	0.1	0.0	V		-10.5	46.8	40.0	6.8
36.632	56.2	21.5	1.0	21.1	0.2	0.0	v		-10.5	45.5	40.0	5.5
37.342	42.8	21.5	3.5	20.6	0.2	0.0	Н		-10.5	31.7	40.0	-8.3
32.132 73.580	48.1	21.5	3.5	13.3	0.4	0.0	v		-10.5	29.8	40.0	-10.
66.356	47.9	21.4	1.0	13.1	0.3	0.0	V		-10.5	29.5	40.0	-10.
51.198	42.1	21.3	1.0	14.8	0.3	0.0	H		-10.5	25.4	40.0	-14.
86.606	41.0	21.6	1.0	14.4	0.4	0.0	V		-10.5	23.8	40.0	-16.
54 869	40.8	21.3	1.0	14.2	0.3	0.0	V		-10.5	23.5	40.0	10
60.672	41.0	21.4	1.0	13.4	U.Z	0.0	¥		-10.0	2.0.7		-16
60.672 56.172	38.6	21.3	1.0	14.0	0.2	0.0	V		-10.5	21.0	40.0	-16. -16. -19.
60.672 56.172 44.448	38.6 33.5	21.3	1.0	14.0	0.2	0.0	н		-10.5	21.0 19.1	40.0	-16. -16. -19. -20.
60.672 56.172 44.448 991.859 911.933	38.6 33.5 23.4 23.8	21.3 21.4 21.4 21.5	1.0 2.5 2.5 2.0	14.0 17.2 29.9 29.2	0.2 0.2 3.0 2.8	0.0 0.0 0.0 0.0	V H V V		-10.5 -10.5 -10.5 -10.5	21.0 19.1 24.4 23.9	40.0 40.0 47.0 47.0	-16. -16. -19. -20. -22. -23.
60.672 56.172 44.448 991.859 911.933 995.174	38.6 33.5 23.4 23.8 22.7	21.3 21.4 21.4 21.5 21.4	1.0 2.5 2.5 2.0 1.0	14.0 17.2 29.9 29.2 29.9	0.2 0.2 3.0 2.8 3.0	0.0 0.0 0.0 0.0 0.0	> H > > > >		-10.5 -10.5 -10.5 -10.5 -10.5	21.0 19.1 24.4 23.9 23.8	40.0 40.0 47.0 47.0 47.0	-16. -16. -19. -20. -22. -23. -23.
60.672 56.172 44.448 991.859 911.933 995.174 948.166 903.042	38.6 33.5 23.4 23.8 22.7 23.6 22.7	21.3 21.4 21.5 21.4 21.5 21.4 21.5	1.0 2.5 2.0 1.0 2.5 2.0	14.0 17.2 29.9 29.2 29.9 29.2 29.9	0.2 0.2 3.0 2.8 3.0 2.9 3.0	0.0 0.0 0.0 0.0 0.0 0.0	> H > > > л		-10.5 -10.5 -10.5 -10.5 -10.5 -10.5 -10.5	21.0 19.1 24.4 23.9 23.8 23.8 23.8 23.7	40.0 40.0 47.0 47.0 47.0 47.0 47.0	-16. -16. -19. -20. -22. -23. -23. -23. -23.

Block Diagram of the proposed ac-dc converter

A basic push-pull MagAmp regulator circuit

Experimental waveforms of line voltage and current under full load (Pout=240W) as measured for: 230VAC, (b) 115VAC, (c) 90VAC line voltages. Ch1: Line voltage (100V/Div); Ch2: Line current (1.33Amp/Div); Horizontal scale 5mSec.

Power Factor as measured at 230VAC, 115VAC, 90VAC line voltages.

Converter's efficiency as measured for 230VAC, 115VAC, 90VAC line voltages.

THANKS

et sur in

PORTE DESCRIPTION OF